Solving Linear Boundary Value Problem Using Shooting Continuous Explicit Runge-Kutta Method Madeha Sh. Yousif Bushra E. Kashiem University of Technology Received in : 20 May 2012 , Accepted in : 8 April 2013 Abstract In this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program. Keyword: Boundary Value problems, Shooting Method ,Continuous Explicit Runge- Kutta Method 324 | Mathematics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 Introduction The boundary value problem with second order describe many phenomena in the applied sciences, found in the theory of nonlinear diffusion generated by nonlinear sources, thermal ignition of gases and concentration in chemical or biological problems.[1] Consider second order linear two-point boundary value problem of the form: -[2] )1()()()()()( xhxyxgyxfxy =+′+′′ with the following boundary conditions:- βα == )(,)( byay where bxa << and )(),(),( xhxgxf are given continues functions. The boundary value problem of second order have been studied by a number of researchers, for example, Min and Salvador using spline collocation methods to solve fractional second order Boundary Value Problems [3], while Guoju and Xiuli investigate the existence of continues solutions for the second order boundary value problems with integral boundary conditions[4]. In this paper, we generalize the Shooting Continuous Runge-Kutta method to solve the boundary value problem of second order. Explicit Runge-Kutta Method (ERK)[5,6,7,8] Explicit Rung-Kutta method is one of the methods to solve initial value problems,Bucher put on the basic rules of using the explicit Rung-Kutta method to solve ODE'S and DDE's, which is completed by Jeltsch and Torrilhon. The general form of s-stage explicit Runge-Kutta formula, to compute the numerical solution of ordinary differential equations:- ),()( yxfxy =′ (2) With initial value condition 00 )( yxy = at )( nn hx + is defined by:- ∑+= = + s i iinnn kbhyy 1 1 (3) where ∑ ∑=++= − = − = 1 1 1 1 ,),( i j i j ijijijnnnini ackahyhcxfk (4) for i=1,2,…,s and iiij candba , are the coefficients of Runge-Kutta formula and ny is the associated approximation to )( nxy . In this paper, we use one important type of Runge-Kutta method when 0=ija , )( jif ≤ and 01 =c which is called Explicit Runge-Kutta method. The interval ],[ 0 Nxx can be divided into a so called mesh points NN xxxx =<<< ...10 and generate a discrete approximation )( ii xyy ≅ for each associated distribution of these mesh points is usually determined adaptively by the method in an attempt to deliver acceptable accuracy at minimum cost. 325 | Mathematics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 These methods generally accomplish this objective by keeping N as small as possible subject to constraint at an indirect measure of ii Ni yxy − = )(max ,...,2,1 would be kept small (relation to an accuracy parameter TOL). Continuous Explicit Runge-Kutta Method (CERK)[9, 10,11] The ERK methods can be developed to be called Continuous Explicit Rung-Kutta method to solve ordinary differential equation (ODE) and Delay differential equation (DDE). The first of research in this subject, Enright and Hayashi. A Continuous Explicit Runge-Kutta (CERK) method provides an approximation to an initial value problem. Such method may be obtained by appending additional stage to a discrete method, or alternatively by solving the appropriate order conditions directly. So, for some application, an approximation to the solution of the ODE:- 00 )( )5())(,( yxy xyxfy = =′ on the interval [ Nxx ,0 ] is needed, to obtain dense, output for plotting the solution of a standard ODE, to find the roots of the function associated with the solution of a standard ODE. Consequently, continuous (CERK) formula, which produces continuous approximation to the solution of an ODE on [ Nxx ,0 ] has been developed Enright and have the form:- ∑+= += ∑+=+ − = − − + = − 1 1 1 1 1 1 1 )( ),( ;)()()( i j jijnnni iniini s i innnnnn kahxzy yhcxfk krbhxzrhxz (6) for i=1,2,…, 1+s , and ]1,0[∈r where )(),...,(),( 121 rbrbrb s+ are polynomial with respect to r and 001 )( yxzn =− This class of (CERK) formula is constructed by adding extra stage such that (s+1) becomes )1( +s with jjss bac == ++ ,11 ,1 for j=1,2,…,s so that the approximation can easily be developed as a c′ interpolate. Note that since ))(,( 111 +++ = nnns xzxfk will be the first stage on the next attempted stops the actual cost per successful step is s derivative evaluation. Shooting Method[12,13,14] Arciniega and Allen applied a shooting method procedure to numerically solve linear systems of stratonovich boundary value problems. To illustrate the approach, we use the following TPBVP:- βα == =+′+′′ )(,)( )()()()()( byay xhxyxgyxfxy (7) The curve that represents y between these two points is desired, we anticipate that some such curve, such as the dotted line, its slope and curve true are interrelated to y and x the diff. eq. (7) 326 | Mathematics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 If we assume the slope of the curve at y(a), say 1)( Gay =′ then we solve the equation as an initial value problem using this assumed value, the result of this not the desired to β=)(by , we assume anther value of )(ay′ smaller for the slope, say 2)( Gay =′ and repeat. After these two trials, we linearly extrapolate for a third trial as follows:- )(*G slope Initialfor estimate edExtrapolat 1 12 12 1 RDRR GG − − − += (8) where R1=first result at endpoint (using G1) R2=second result at endpoint (using G2) D= the desired value t the endpoint so the correct value of y(b) result. Runge-Kutta Shooting Method for Solving TPBVP Consider the following second order TPBVP equations:- )()()()()( xhxyxgyxfxy =+′+′′ Subject to the boundary conditions where f, g, h are function and α , β are constant:- βα == )(,)( byay these equation changed into a first- order differential system:-       − +            =′ )( 0 )()( 10 2 1 xhy y xfxg y (9) with assume the initial condition 111 )(,)( Gab ayay = − − =′= αβ α applying explicit and continuous Rung-Kutta steps, the result we compare the computed value with the given conditions at the other boundary. Repeat the solution with assume anther value of 21 )( Gay =′ and with extrapolated estimate until agreement is attained at the other boundary. Algorthim Example (1):- Consider the following two-point boundary value Problem:- 04 =−′′ yy with boundary conditions:- y(-1)=-1.1752 , y(1)=10.0179 while the exact solution is :- y(x)  sinh(2x+1) Table (1) presents the results of the , Shooting fifth Explicit Runge-Kutta (SERKF(5)) and Shooting Continuous Explicit Runge-kutta method (SCERK) are used with differential value of r . Example (2):- Consider the following two-point boundary value Problem:- 327 | Mathematics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 xxyy −−=′′ 2 with boundary conditions:- y(0)=2 , y(1)=4 while the exact solution is :- 2)( 2 ++= xxxy  Table (2) presents the results of the, Shooting fifth Explicit Runge-Kutta (SERKF(5)) and Shooting Continuous Explicit Runge-kutta method (SCERK) are used with differential value of r . Conclusions The obtains results show that the SCERK Method gives better accuracy than SERKF(5) of the same order, since the error in SCERK method is decreasing when )1,0[∈r is increasing. References 1. Wenjing,S and Wenjine,G.(2011) "Positive Solutions For a Second-Order System With Integral Boundary Conditions", Electronic Journal of Differential Equations, 13, pp. 1–9. 2. Hikmet,C and Canan,A." The numerical solution of the singular two-point boundary value problems by using non-polynomial Spline functions" Proceedings of the 9th WSEAS Int. Conference on Applied Computer and Applied Computational Science. 3. Min,L and Salvador,J.(2009)"Solving Two-Point Boundary Value Problems of Fractional Differential Equations by Spline Collocation Methods" www.cc.ac.cn/ research- report/ 0903.pdf. 4. Guoju,Ye and Xiuli,Li.(2010) "Existence of Solutions of Second Order Boundary Value Problems with Integral Boundary Conditions and Singularities" Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, p.p.1-14,Article ID 807178,doi:10.1155. 5. Butcher,J','(1987) " The Numerical Analysis of ordinary differential equation", Jhon Wiley & sons, New York. 6. Baker.C.T.H., Pual.C.A.H.,(1994) " Computing Stability regions of Rung-Kutta Methods for DDE" IMA, J. of Num. and .No. 14,p.p. 347-362. 7. Baker,C and Pual,C.(1998) "Numerical Modeling by Retarded functional Differential Equations" Numerical analysis Report No.335, October . 8. Rolf,J and Manuel,T.(2006) " Flexible Stability Domains for Explicit Rung-Kutta Methods",Seminar for Applied Mathematics,8092 Zurich,Switzerland,email:{jeltsch,matorril}@math.ethz.ch 9. Enright,W.(1999)" Continues Numerical Method for ODE's with Defect Control", University of Toronto, Canada, M533, GU, December. 10. Verner.J .H and Zennaro.M.(1995) " Continuous Explicit Rung-Kutta Methods of ORD ER5",July,Vol.64,No.211.p.p 1123-1146. 11. Hayashi,H.(1996) "Numerical solution of Retarded and Neutral Delay Differential Equations Using Continues Rung-Kutta Methods", PH.D.Thesis of Toronto University. 12. Armando,A and Edward,A.(2004) "Shooting Methods for Numerical Solution of Stochastic Boundary-Value Problems" Stochastic Analysis and Applications. 22. 5, 1295– 1314. 13. Armando,A.(2007)" Shooting Methods for Numerical Solution of Nonlinear Stochastic Boundary-Value Problems" Stochastic Analysis and Applications, 25: 187–200. 14. Curtis,F.(1984)"Applied Numerical Analysis", Third Edition, Addison-Wesley Publishing Company,. 328 | Mathematics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 http://www.cc.ac.cn/ 5. Anna,N.(2010)" Economical Rung-Kutta Methods with weak second order for Stochastic differential equations", Int,J. contempt.Math.Sciences,Vol.5,No.24,1151-1160. Table (1) results the solution H x SERKF(5) SCERK 1=r 25.0=r |error|* 5.0=r |error|* 0.1 -0.5 0.0070096 0.0070096 0.0067226 0.0069 0.0067526 0.0069 0.5 3.6859483 3.6859483 3.6853062 0.0584 3.6854109 0.0583 1 10.1787000 10.1787000 10.1787000 0.0608 10.1787000 0.0608 0.05 -0.5 0.0070095 0.0070095 0.0067941 0.0069 0.0068918 0.0069 0.5 3.6859281 3.6859281 3.6853237 0.0584 3.6856672 0.0583 1 10.1787000 10.1787000 10.1787000 0.0608 10.1787000 0.0608 Table (2) results the solution h x SERKF(5) SCERK 1=r 25.0=r |error|* 5.0=r |error|* 0.1 0.1 2.1100000 2.1100000 2.1093142 7.0000e-004 2.1098533 1.0000e-004 0.5 2.7500011 2.7500011 2.7477002 0.0023 2.7497009 3.0000e-004 1 4.0000000 4.0000000 4.0000000 0.0000 4.0000000 0.0000 0.05 0.1 2.1100000 2.1100000 2.1093142 7.0000e-004 2.1098533 1.0000e-004 0.5 2.7500011 2.7500011 2.7477002 0.0023 2.7497009 3.0000e-004 1 4.0000000 4.0000000 4.0000000 0.0000 4.0000000 0.0000 * Where |error| represent the difference between the exact solution and (SCERK) for r=0.25, r=0.5. 329 | Mathematics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013 كتا الصریحة -حل مسائل القیم الحدودیة الخطیة باستخدام طریقة تھدیف رانج المستمرة شلتاغ یوسفمدیحة بشرى عیسى غشیم فرع الریاضیات / قسم العلوم التطبیقیھ / الجامعھ التكنلوجیھ 2013نیسان 8، قبل البحث في 2012ایار 20البحث في : استلم الخالصة كتا الصریحة المستمرة باستخدام -كتا الصریحة من الرتبة الخامسة وطریقة رانج-في ھذا البحث قمنا بتعمیم طریقة رانج لى ھذه الطرائق دمجت بأسم طریقة التھدیف لحل مسائل القیم الحدودیة من الرتبة الثانیة وذلك بتخفیضھا الى الرتبة االو كتا الصریحة المستمرة. وقد أُُ◌ستخدم برنامج الماتالب لحساب النتائج.-طریقة التھدیف لرانج كتا الصریحة المستمرة.-مسائل القیم الحدودیة،طریقة التھدیف،طریقة رانج-الكلمات المفتاحیة: 330 | Mathematics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013