etermination of Some Phenols in Tigris River by HPLC Jasim M. Shamar Dept. of Chemistry/College of Education For Pure Science(Ibn Al- Haitham)/ University of Baghdad Received in : 28 November 2012 , Accepted in :16 January 2013 Abstract This study describes the determination of some phenols in four different zones of Tigris river in Iraq including, AL-Krieat, AL-Kadhimiya, AL-Jadiriyah, and AL-Adhamiyah. The phenolic compounds analyzed were (2,3-dimethylphenol, 4-chlorophenol, 3-nitrophenol and 2,4-dinitrophenol) using reverse phase high performance liquid chromatography (RP- HPLC) with a UV detector on ODS-C18 column(150×4.6 mm I.D) and a mobile phase consisted of methanol-water(30:70)%(v/v) at pH 5.0, and a column temperature at 30C° with 20 µL injection. UV detection helps to identify different phenols at wave length at 280 nm with a flow rate at 0.5 ml/min. The separation time was (< 6) min.The results indicated that the AL-Adhamiyah zone contains the highest concentration of 3-nitrophenol (0.094 µg/mL), while the AL-Jadiriyah zone recorded the lowest concentration of 3-nitrophenol (0.056 µg/mL).On the other hand the other phenolic compounds studied did not record any concentration in four zones of Tigris river. The values of correlation coefficient and accuracy were calculated for 3-nitrophenol, the graph was linear with very good correlation coefficient (R2>0.9999). Key words: Phenols, Tigris river, High performance liquid chromatography. 250 | Chemistry @@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Ü‹1a26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 Introduction Phenolic compounds, one kind of priority pollutants, often occur in the aquatic environment due to their widespread use in many industrial processes such as the manufacture of plastics, dyes, drugs, antioxidants, and pesticides[1]. Phenols, even at concentrations below 1 µg/L, can affect the taste and odor of water. Hence, identification and monitoring of these compounds at trace level in drinking water and surface waters are imperative. Priority phenols consist of a number of substituted phenolic compounds including halogenated (e.g., chlorophenol), nitrated (e.g., 2-nitrophenol), alkylated (e.g., 2,4-dinitrophenol), and ether (e.g., methoxyphenol). Priority phenols are used (or produced) in several industrial processes. They are commonly used as preservatives, disinfectants, in pulp processing, in the manufacture of pesticides and other intermediates. Unfortunately, priority phenols are now common environmental pollutants found in potable water, sediments and soil. Many priority phenols especially the chlorophenols, are known for their toxicity, carcinogenicity and persistence in the environment[2]. Pentachlorophenol is widely used as a wood preservative and has been found to be an indoor air contaminant[3]. Many phenol derivatives are now included in the lists of priority pollutants in many countries. The European Community (EC) directive specifies a legal tolerance level of 0.5 μg/L for each phenol in water intended for human consumption and Japan’s Ministry of Health, Labour, and Welfare specifies a maximum contaminant level (MCL) of 5 μg/L for phenols in drinking water. The U.S. EPA specifies a MCL of 1 μg/L for pentachlorophenol, and eleven common phenols are on the U.S. EPA priority pollutants list[2,4]. The U.S. EPA lists eleven phenols on its list of priority pollutants. The European Union has set the maximum total and individual phenol permitted concentrations in water used for human consumption at 0.5 μg/L and 0.1 mg/L, respectively[2]. Gas chromatography(GC) is commonly used for detection of phenols[5,6], but nonvolatiles in many water samples can poison GC columns. Liquid chromatography (LC) methods require preconcentration[7] and matrix elimination to detect low concentrations. Solid-phase extraction (SPE) is highly effective, but is time consuming and expensive. On-line SPE combined with HPLC reduces the labour and expense of manual SPE and allows phenols to be determined at low concentrations in real samples[8]. High performance liqid chromatography(HPLC) is widely used for the determination of phenolic compounds. HPLC with electrochemical detection(ECD) provides superior sensitivity for most of the phenols of interest with the exception of the dinitrophenols which are measured by UV absorbance. Previous studies[9,10] have shown that reversed-phase liquid chromatography (RP-LC) coupled to atmospheric pressure chemical ionization mass spectrometry (APCI-MS) can effectively separate and detect a range of phenolic compounds at low ppb levels. Generally, HPLC was often used to determine phenols because of its stable sensitivity[11–14]. Prior to HPLC analysis, an effective preconcentration step is always necessary. Recently, LPME has shown to be an attractive alternative for sample preparation. Till date, LPME has been successfully applied for the extraction of organic pollutants from a variety of matrices [15–20]. In the present study we use the HPLC technique for the determination of various phenolic compound in different samples. Apparatus HPLC analysis was carried out on an LC-10AT liquid chromatography (Shimadzu, Japan), with two LC-10ATVP pumps and an SPD-10A UV/VIS detector. The analytical column was avp-ODS-C18 column (150×4.6 mm I.D) practical size 5 µm; Shimadzu. A 7125 injector with 20 µL loop (Rheodyne CA, USA). AM 420 pH meter (Hanna, Italy) was used to measure the PH of mobile phase. 251 | Chemistry @@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Ü‹1a26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 Experimental Materials and Reagents 2,3-Dimethylphenol was obtained from (Fluka AG, Germany); 3-nitrophenol was obtained from (Riedel-De, Germany); 2,4-dinitrophenol and 4-chlorophenol were obtained from (BDH Chemicals, England). Methanol was used as a component of the mobile phase was obtained from (Tedia Chemical Co. Germany GFS) and deionised water. Water samples In this work, four water samples were used for evaluation including AL_Krieat, AL_Kadhimiya, AL_Jadiriyah and AL_Adhamiyah were collected from Tigris river in Baghdad city (500 mL of each sample). Before the environmental water samples were used, they were filtered through 0.45µm micropore membranes. Method for preparing standard solution and sample solution, separation of each compounds and determination of four phenols Each phenol was dissolved in methanol to obtain a standard stock solution with the concentration of 100 µg/mL. A mixed standard solution containing four phenols was prepared in methanol. Working solutions were prepared daily by appropriate dilution of the standard solutions with ultrapure water with the concentration of 1 µg/mL. Phenols were eluted by using mobile phase consisted of methanol: water(30:70)v/v at flow rate of 0.5 mL/min. The injection volume and detection of wavelength were 20 µL and 280 nm, respectively. The retention times( tR1 and tR2 ) were used to calculate the capacity factors of the first and second eluted phenols, k′1 and k′2, respectively, by use of the equations (k′1 = (t1 - t0)/t0) and (k′2 = (t2 - t0)/t0), the number of theoretical plates(N) is calculated by use of the equation N=(16(tR /w) 2), the selectivity factor was calculated by use of the equation (α = k′2/ k′1) and the resolution factor by the use of the equation (RS = 2(t2 − t1)/(w1 + w2)), where w1 and w2 are the widths of the two peaks, where tR is the retention time of the sample and t0 is the of mobile phase(1.60 min.). Phenols were initially identified by the retention times, and the concentrations were determined by comparing the peak areas of the samples to the phenols standard. Results and discussion The isocratic method enables the separation and detection of four different standard phenols in a 6 minute run (Fig.1). A good separation can be achieved in a short separation time . In this selected solvent using methanol:water(30:70)% as an eluent gave a good peak shapes and a good resolution of phenolic compounds. As a consequence of the separation, it was found that the elution order of the four compounds were as follows; 2,3-dimethylphenol, 4-chlorophenol, 3-nitrophenol and 2,4- dinitrophenol. Initial investigations into the change in the capacity factors( k′ ) of phenols with pH of eluent, and the percentage of an organic modifier showed that for full separation of phenols with avp-ODS-C18 column the pH should be kept at 5 and the organic modifier at 30% v/v methanol can be used under isocratic conditions. After multiple preliminary assay an ODS-C18 column an isocratic elution program by using methanol-water as solvent was chosen.The phenolic compounds have been identified according to their retention times of standard and samples solutions. Table 1 gives the retention times, peak height and peak area for a number of the phenols, and table 2 shows the retention time(tR), capacity factor(K¯), number of theoretical plates(N), separation factor(α) and resolution(Rs) of the phenolic compounds. 252 | Chemistry @@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Ü‹1a26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 Application Four environmental water samples, including AL_Krieat, AL_Kadhimiya, AL_Jadiriyah and AL_Adhamiyah in Tigris river. The proposed procedure has been successfully applied to the determination of phenols in river water. A sep-pak C18 cartridge was preconditioned for phenolic compounds by passing 500 ml of each sample through the cartridge, after the sample passed completely then washed with 5 ml methanol. The final volume of each sample was 5 mL that means it is concentrated one hundred times. Fig. 2 shows the chromatogram for separation of 3-nitrophenol in Tigris river (AL-Krieat zone), fig.3 shows the chromatogram for separation of 3-nitrophenol in Tigris river(AL-Kadhimiya zone), fig.4 shows the chromatogram for separation of 3-nitrophenol in Tigris River (AL-Jadiriyah zone), and fig.5 shows the chromatogram for separation of 3-nitrophenol in Tigris river (AL-Adhamiyah zone). All of these sample analysis were by using λ max 280 nm (UV-Detector), detection on column ODS-C18 (150 × 4.6 mm I.D) and mobile phase (30:70)% methanol : water at PH 5 with flow rate 0.5 mL/min and column temperature 30 C°. In all studied zones of Tigris river (AL_Krieat, AL_Kadhimiya, AL_Jadiriyah and AL_Adhamiyah) contained 3-nitrophenol at different concentrations,(0.073 µg/mL), ( 0.084 µg/mL), (0.056 µg/mL) and (0.094 µg/mL) respectively.While the other phenolic compounds studied did not record any concentration in four zones of Tigris river (table 3). Fig.6 shows the linear relationships between peak area and the concentrations of 3-nitrophenol in all studied zones. The concentration, retention time, peak area, peak height, corresponding regression equation, correlation coefficient and accuracy of 3-nitrophenol are summarized in table 4. References 1. Moore, J.W. and Ramamoorthy, S. (1984) "Organic chemical in natural waters, applied monitoring and impact assessment ", Springer-Verlag , New York. 2. Penalver, A.; Pocurull, E.; Borrull, F. and Marce, R.M. (2002) "Solid-phase microextraction coupled to high-performance liquid chromatography to determine phenolic compounds in water samples.", J. Chromatogr., 953: 79-87. 3. Sarrion, M.N.; Santos, F.J. and Galceran, M.T. (2002) "Determination of chlorophenols by solid-phase microextraction and liquid chromatography with electrochemical detection.", J. Chromatogr., 947: 155-165. 4. U.S. Environmental protection agency.(2007) "Current national recommended water quality criteria". (accessed Aug 23). 5. Fiamegos,Y.C.; Nanos, C.G.; Pilidis, G.A. and Stalikas, C.D. (2003) "Phase-transfer catalytic determination of phenols as methylated derivatives by gas chromatography with flame ionization and mass-selective detection.", J. Chromatogr., 983: 215-223. 6. Peng, X.; Wang, Z.; Yang, C; Chena, F. and Maia, B. (2006) "Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography- mass spectrometry (GC-MS).", J. Chromatogr., 1116: 51-56. 7. Masque, N.; Galia, M.; Marce, R.M. and Borrull, F. (1997) "Chemically modified polymeric resin used as sorbent in a solid-phase extraction process to determine phenolic compounds in water.", J. Chromatogr., 771: 55-61. 8. Ye, X.; Kuklenyik, Z.; Needham, L.L. and Calafat, A.M. (2005) "Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine." Anal. Chem., 77: 5407-5413. 9. Alonso, M.C.; Puig, D.; Silonger, I.; Grasserbauer, M. and Barcelo, D. (1998) "Determination of priority phenolic compounds in soil samples by various extraction methods followed by liquid chromatography - atmospheric pressure chemical ionisation mass spectrometry.", J. Chromatogr., 823: 231-239. 253 | Chemistry @@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Ü‹1a26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TG8-4JKRTRP-9&_user=3297724&_coverDate=05%2F26%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000058537&_version=1&_urlVersion=0&_userid=3297724&md5=12154592ce783828a96ebb9d2e0863b8 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TG8-4JKRTRP-9&_user=3297724&_coverDate=05%2F26%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000058537&_version=1&_urlVersion=0&_userid=3297724&md5=12154592ce783828a96ebb9d2e0863b8 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TG8-4JKRTRP-9&_user=3297724&_coverDate=05%2F26%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000058537&_version=1&_urlVersion=0&_userid=3297724&md5=12154592ce783828a96ebb9d2e0863b8 http://www.ingentaconnect.com/content/els/00219673/1997/00000771/00000001/art00125;jsessionid=1dh9ja2ltageh.alice http://www.ingentaconnect.com/content/els/00219673/1997/00000771/00000001/art00125;jsessionid=1dh9ja2ltageh.alice http://www.ingentaconnect.com/content/els/00219673/1997/00000771/00000001/art00125;jsessionid=1dh9ja2ltageh.alice 10. Martinez, J.; Belmonte, A. and Garrido, A. (2004) "Determination of fifteen priority phenolic compounds in environmental samples from Andalusia (Spain) by liquid chromatography-mass spectrometry. ", Analytical of Bioanalytical Chem., 379: 125-130. 11. Zhao, L. and Lee, H.K. (2001) "Determination of phenols in water using liquid phase microextraction with back extraction combined with high-performance liquid chromatography.",J.Chromatogr.,931:95-105. 12. Jiang, K.; Oh, S.Y. and Lee, H.K. (2005) "Dynamic Liquid-Liquid Microextraction with Automated Movement of the Acceptor Phase.",Anal.Chem.,77:1689-1695. 13. Sarafraz-Yazdi, A.; Beiknejad, D. and Eshaghi, Z. (2005) "LC Determination of Mono- Substituted Phenols in Water Using Liquid-Liquid Phase Microextraction.", Chromatographia, 62: 49-54. 14. Zhang, J.; Jiang, H.; Zou, M. and Shi, L.J. (2006) "Selective solid-phase extraction of bisphenol A using molecularly imprinted polymers and its application to biological and environmental samples. "Analytical of Bioanalytical Chem., 385:780-786. 15. Basheer, C.; Lee, H.K. and Obbard, J.P. (2004) "Application of liquid-phase microextraction and gas chromatography-mass spectrometry for the determination of polychlorinated biphenyls in blood plasma.", J. Chromatogr., 1022:161-162. 16. Hou, L. and Lee, H.K. (2004) "Determination of pesticides in soil by liquid-phase microextraction and gas chromatography–mass spectrometry. ", J. Chromatogr., 1038:37- 42. 17. Yazdi, A.S. and Eshaghi, Z. (2005) "Surfactant enhanced liquid-phase microextraction of basic drugs of abuse in hair combined with high performance liquid chromatography. ", J. Chromatogr.,1094: 1-8. 18. Jager, L. and Andrews, A.R. (2002) "Development of a screening method for cocaine and cocaine metabolites in saliva using hollow fiber membrane solvent microextraction. ", Anal. Chem. Acta , 458: 311-320. 19. Leinonen, A.; Vuorensola, K.; Lepola, L.M. and Kuuranne, T. (2006) "Liquid-phase microextraction for sample preparation in analysis of unconjugated anabolic steroids in urine. ", Anal. Chem. Acta, 559: 166-172. 20. Dubey, D.K.; Pardasani, D.; Gupta, A.K. and Palit, M. (2006) "Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water. " J. Chromatogr., 1107: 29-35. Table (1): Retention time, peak height, and peak area of phenols by using RP-HPLC on column ODS-C18 and mobile phase methanol-water(30:70)%(v/v) at pH 5.0, and column temperature 30C°. Peak area % Peak area µv peak height cm tR (min) Phenols No. 38.344 295528 7.00 2.644 2,3-Dimethylphenol 1 28.476 219471 5.50 3.688 4-Chlorophenol 2 20.154 155330 3.50 4.094 3-Nitrophenol 3 5.732 44175 1.00 5.118 2,4-Dinitrophenol 4 92.706 714504 17.00 Total 254 | Chemistry @@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Ü‹1a26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 http://www.biomedexperts.com/Abstract.bme/16427062/Hollow_fiber-mediated_liquid-phase_microextraction_of_chemical_warfare_agents_from_water http://www.biomedexperts.com/Abstract.bme/16427062/Hollow_fiber-mediated_liquid-phase_microextraction_of_chemical_warfare_agents_from_water http://www.biomedexperts.com/Abstract.bme/16427062/Hollow_fiber-mediated_liquid-phase_microextraction_of_chemical_warfare_agents_from_water Table (2): Retention time(t R ),capacity factor(K¯), number of theoretical plates(N), separation factor(α) and resolution(Rs) of phenols using RP-HPLC on column ODS-C18 and mobile phase methanol-water(30:70)%(v/v) at pH 5.0, and column temperature 30C°. Rs α N K¯ tR min Dead time (to) min Phenols No. 2.644 0.65 310.69 ـــــــ ـــــــ 1.6 2,3-Dimethylphenol 1 1.74 2.00 604.50 1.30 3.688 4-Chlorophenol 2 0.58 1.19 419.02 1.55 4.094 3-Nitrophenol 3 1.46 1.41 1164.17 2.19 5.118 2,4-Dinitrophenol 4 Table (3):Concentrations of phenols in Tigris river using RP-HPLC on column ODS-C18 and mobile phase methanol-water(30:70)%(v/v) at pH 5.0,and column temperature 30C°. No. Phenols AL- Krieat zone µg/mL AL- Kadhimiya zone µg/mL AL-Jadiriyah zone µg/mL AL- Adhamiyah zone µg/mL 1 2,3-Dimethylphenol - - - - 2 4-Chlorophenol - - - - 3 3-Nitrophenol 0.073 0.084 0.056 0.094 4 2,4-Dinitrophenol - - - - Table (4): Concentrations, retention time(tR), peak area, peak height, corresponding regression equation, correlation coefficient and accuracy of 3-nitrophenol for four water samples in Tigris river using RP-HPLC on column ODS-C18 and mobile phase methanol-water(30:70)%(v/v) at pH 5.0, and column temperature 30C°. 3-Nitrophenol Water sample No. Peak Height % Peak area % Peak Height(cm) Peak Area (µv) t R (min) Conc. µg/mL 42.664 48.038 6.00 285963 3.991 0.073 AL-Krieat zone 1 60.138 56.886 6.50 329182 3.961 0.084 AL-Kadhimiya zone 2 60.950 58.031 6.80 219433 3.960 0.056 AL-Jadiriyah zone 3 57.290 63.423 6.80 368388 4.187 0.094 AL-Adhamiyah zone 4 0.307 Total 0.076 Mean 21.20 R.S.D. % y = 3.9E + 6x –142.30 Regression equation 1.0000 Correlation coefficient (R2) 255 | Chemistry @@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Ü‹1a26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 256 | Chemistry @@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Ü‹1a26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 Fig.(1):Chromatogram for separation of 2,3-dimethylphenol, 4-chlorophenol,3- nitrophenol and 2,4-dinitrophenol respectively by using RP-HPLC on column ODS-C18 and mobile phase methanol-water(30:70)%(v/v) at pH 5.0, and column temperature Fig.(2): Chromatogram for separation of 3-nitrophenol in Tigris river(AL-Krieat zone) on column ODS-C18( 150 × 4.6 mm I.D ) and mobile phase( 30:70 )% methanol : water at pH 5 with flow rate 0.5 mL/min and column temperature 30 C°. Fig.(3): Chromatogram for separation of 3-nitrophenol in Tigris river(AL-Kadhimiya zone) on column ODS-C18( 150 × 4.6 mm I.D ) and mobile phase( 30:70 )% methanol : water at pH 5 with flow rate 0.5 mL/min and column temperature30 C°. Fig.(4): Chromatogram for separation of 3-nitrophenol in Tigris river(AL-Jadiriyah zone) on column ODS-C18( 150 × 4.6 mm I.D ) and mobile phase( 30:70 )% methanol : water at pH 5 with flow rate 0.5 mL/min and column temperature 30 C°. Fig.(5): Chromatogram for separation of 3-nitrophenol in Tigris river(AL-Adhamiyah zone) on column ODS-C18( 150 × 4.6 mm I.D ) and mobile phase( 30:70 )% methanol: water at pH 5 with flow rate 0.5 mL/min and column temperature 30 C°. Fig.(6): The relationship between peak area and concentrations of 3-nitrophenol in all studies zones of Tigris river including AL-Jadiriyah, AL-Krieat, AL-Kadhimiya and AL-Adhamiyah zone respectively. تقدیر بعض الفینوالت في میاه نھر دجلة بإستعمال تقنیة كروموتوغرافیا السائل ذي األداء العالي جاسم محمد شامار جامعة بغداد ) /ابن الھیثم(كلیة التربیة للعلوم الصرفة /الكیمیاء علوم قسم 2013كانون الثاني 16قبل البحث في : ، 2012تشرین الثاني 28استلم البحث في : الخالصة تناولت ھذه الدراسة تقدیر بعض الفینوالت في أربع مناطق مختلفة من نھر دجلة في العراق التي تضمنت الكریع�ات، -۳كل�ورو فین�ول، -٤ثن�ائي مثی�ل فین�ول، -۲،۳تم تحلیل المركبات الفینولیة المدروس�ة( .والكاظمیة، والجادریة واألعظمیة م�عالط�ور المعك�وس -فین�ول) باس�تعمال تقنی�ة كروموتوغرافی�ا الس�ائل ذي األداء الع�اليثن�ائي ن�ایترو -۲،٤نایترو فینول و : 30مل�م وط�ور متح�رك م�ن المیث�انول والم�اء( (4.6×150) بأبع�اد ODS-C18على عمود لألشعة فوق البنفسجیة كاشف 280/دقیقة وطول موجي مل 0.5بمعدل جریان 30) (°Cودرجة حرارة العمود الكروموتوغرافي pH 5.0)% ذي 70 ن�ایترو فین�ول ( -۳بینت النتائج ان منطقة األعظمی�ة تحت�وي عل�ى أعل�ى تركی�ز م�ن · ) دقیقة >٦نانومیتر خالل زمن قدره ( ف�ي .مایكروغرام/م�ل) 0.056ن�ایترو فین�ول ( -۳مایكروغرام/مل)، بینما سجلت منطقة الجادری�ة اق�ل تركی�ز م�ن 0.094 حس�بت ق�یم الدق�ة، ومعادل�ة .حین لم تسجل المركبات الفینولیة المدروسة االخرى أي تركی�ز ف�ي المن�اطق االربع�ة م�ن النھ�ر · نایترو فینول في المناطق المدروسة -۳ومعامل االرتباط للمركب الخط المستقیم، ت األداء العالي. الفینوالت ؛ نھر دجلة، كروموتوغرافیا السائل ذا الكلمات المفتاحیة: 258 | Chemistry @@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Ü‹1a26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013