@1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 Repeated Corrected Simpson's 3/8 Quadrature Method for Solving Fredholm Linear Integral Equations of the Second Kind Wafaa F. Mansoor Shaymaa M. Shraida Dept. of Mathematics/College of Education for Pure Science(Ibn AL-Haitham) / University of Baghdad Received in:28 May 2012 , Accepted in:9 December 2012 Abstract In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example. Keywords : Fredholm integral equations, repeated corrected Simpson's 3/8 method, numerical approximation. 328 | Mathematics @1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 Introduction Recall that the following linear integral equation of the second kind: b(x) a u(x) f (x) k(x, y)u(y)dy,= + λ ∫ …(1.1) where a x b,≤ ≤ λ is areal number, f , k are given continuous functions and u is the unknown function that must be determined. If b(x) = b then equation (1.1) is called Fredholm linear integral equation of the second kind. Also, if b(x) = x then equation (1.1) is called Volterra linear integral equation of the second kind. The mathematical modeling for many problems in different disciplines, such as engineering, chemistry, physics and biology leads to the above form of integral equations. Most differential equations can be expressed as integral equations, [1], [2]. There are some analytical methods for solving integral equations, [3], [4]. There are several numerical methods for solving the integral equations given by (1.1). For example, Repeated modified Trapezoid quadrature method [5], Runge-Kutta method [6], Taylor-series method [7], expansion methods [8] and decompostion method [9], [10]. In this paper, we use the repeated corrected Simpson's 3/8 method to find the numerical solution for (1.1) in case b(x) = b, where b is a known constant. To do this, recall that the repeated corrected Simpson's 3/8 method, [11]: [ ] [ ] b 2 8 (8) 0 1 2 3 0 2 1 3 a 3h 3h 81(b a)h f (x) dx 31f + 81(f + f ) + 31f 19 f + 27(f f ) 19f f ( ), a b 224 1120 4480 λ λ − − ′ ′ ′ ′= + − − + ξ ≤ ξ ≤∫ …(1.2) where 0f f (a)= , 1f f (a h)= + , 2f f (a 2h)= + , 3f f (b)= , 0f f (a)′ ′= , 1f f (a h)′ ′= + , 2f f (a 2h)′ ′= + and 3f f (b)′ ′= . Solution of Fredholm Linear Integral Equations of the second kind In this section we use repeated corrected Simpson's 3/8 method to find the numerical solutions of the following integral equation: b a u(x) f (x) k(x, y)u(y)dy,= + λ∫ …(2.1) To do this, we approximate the integral part that appeared in the right-hand side of equation (2.1) by the repeated corrected Simpson's 3/8 rule to get n 2 n 3 0 0 j j j 1 j 1 j j j 1,4,7,... j 3,6,... 2 n n 0 0 0 0 j 1 j 1 j 1 j 1 j 1,4,7 3h u(x) f (x) 31k(x, x )u 81 k(x, x )u k(x, x )u 62 k(x, x )u 224 3h 31k(x, x )u 19k(x, x )u 19J(x, x )u 27 k(x, x )u J(x, x )u 1120 − − + + = = + + + + = λ    = + + + + +       λ  ′ ′+ + + +   ∑ ∑ n 2 j j j j n n n nk(x, x )u J(x, x )u 19k(x, x )u 19J(x, x )u −  ′ ′− − − −   ∑ …(2.2) where J(x, y) = k(x, y) y ∂ ∂ . Hence for 0 1 nx x , x ,..., x= , we get the following system equations: 329 | Mathematics @1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 n 2 n 3 i i i,0 0 i, j j i, j 1 j 1 i, j j i,n n j 1,4,7,... j 3,6,... 2 n 2 i,0 0 i,0 0 i, j 1 j 1 i, j 1 j 1 i, j j i, j j i,n n j 1,4,7 3h u f + 31k u 81 k u k u 62 k u 31k u 224 3h 19k u 19J u 27 k u J u k u J u 19k u 1 1120 − − + + = = − + + + + =  λ    = + + + + +        λ  ′ ′ ′ ′+ + + − − − −    ∑ ∑ ∑ i,n n9J u , i 0,1,..., n  =  …(2.3) where ' 'i i i i i i i, j i j i,p i pu u(x ), u u (x ), f f (x ), k k(x , y ), J J(x , x ), i, j 0,1,..., n, p 0, n.= = = = = = = From equation (2.1) and setting k(x, y) H(x, y) x ∂ = ∂ we obtain b a u (x) f (x) H(x, y)u(y)dy, a x b′ ′= + λ ≤ ≤∫ …(2.4) We note that if u is the solution of (2.1) it is a solution of (2.4) too. Now, for solving equation (2.4), we must consider two cases. Case (1): The partial derivative k(x, y) L(x, y) x y ∂ = ∂ ∂ does not exists, in this case, we approximate the integral part that appeared in the right hand side of equation (2.4) with the repeated Simpson’s 3/8 rule to obtain: n n 1 3 3 0 0 3 j 1 3 j 1 3 j 2 3 j 2 i 3 j 3 j n n j 1 j 1 3h u (x) =f (x)+ H(x, x )u 3 H(x, x )u H(x, x )u 2 H(x , x )u H(x, x )u 8 − − − − − = =  λ    ′ ′ + + + +       ∑ ∑ …(2.5) By setting 0 1 nx x , x ,..., x= , in (2.5) one can get: n n 1 3 3 i i i,0 0 i,3 j 1 3 j 1 i,3 j 2 3 j 2 i,3 j 3 j i,n n j 1 j 1 3h u =f + H u 3 H u H u 2 H u H u 8 − − − − − = =  λ    ′ ′ + + + +       ∑ ∑ …(2.6) From equations (2.6) and (2.3) one can get the following system which consists of n 2n 3 3 − + equations with n 2n 3 3 − + unknowns 'i 0 pu , i 0,1,..., n, u , u and for i=0, p, n,(p = 1,2,...,n-1)′= 330 | Mathematics @1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 2n 2 n 3 i i i,0 0 i, j j i, j 1 j 1 i, j j i,n n i,0 0 i,0 0 j 1,4,7,... j 3,6,... n 2 i, j 1 j 1 i, j 1 j 1 i, j j i, j j i,n n j 1,4,7 3h 3h u f + 31k u 81 k u k u 62 k u 31k u 19k u 19J u 224 1120 27 k u J u k u J u 19k u 1 − − + + = = − + + + + =   λ λ    ′= + + + + + + +          ′ ′ ′+ − − − −  ∑ ∑ ∑ i,n n n n 1 3 3 0 0 0,0 0 0,3 j 1 3 j 1 0,3 j 2 3 j 2 0,3 j 3 j 0,n n j 1 j 1 n 1 3 p p p,0 0 p,3 j 1 3 j 1 p,3 j 2 3 j 2 p,3 j 3 j p,n n j 1 9J u , i 0,1,..., n, 3h u =f + H u 3 H u H u 2 H u H u , 8 3h u = f H u 3 H u H u 2 H u H u 8 − − − − − = = − − − − − =  =   λ    ′ ′ + + + +        λ    ′ ′ + + + + +       ∑ ∑ ∑ n 3 j 1 n n 1 3 3 n n n,0 0 n,3 j 1 3 j 1 n,3 j 2 3 j 2 n,3 j 3 j n,n n j 1 j 1 , p 1, 2,..., n 1, 3h u = f H u 3 H u H u 2 H u H u . 8 = − − − − − = =                = −    λ    ′ ′ + + + + +        ∑ ∑ ∑ …(2.7) By solving the above system given by equation (2.7) the numerical solutions of equation (2.1), are obtained. Case (2): The partial derivative k(x, y) L(x, y) x y ∂ = ∂ ∂ exists, in this case, we approximate the integral part that appeared in the right hand side of equation (2.4) with the repeated corrected Simpson’s 3/8 rule to obtain: [ n 2 n 3 0 0 j j j 1 j 1 j j j 1,4,7,... j 3,6,... 2 n n 0 0 0 0 j 1 j 1 j 1 j 1 j 1,4,7,. 3h u (x) =f (x)+ 31H(x, x )u 81 H(x, x )u H(x, x )u 62 H(x, x )u 224 3h 31H(x, x )u 19H(x, x )u 19L(x, x )u 27 H(x, x )u L(x, x )u 1120 − − + + = = + + + + = λ    ′ ′ + + + +       λ ′ ′+ + + +   ∑ ∑ n 3 .. j j j j n n n nH(x, x )u L(x, x )u 19H(x, x )u 19L(x, x )u − −  ′ ′− − −   ∑ …(2.8) By setting 0 1 nx x , x ,..., x= , in (2.8) one can get: [ n 2 n 3 i i i 0 0 i j j i j 1 j 1 i j j i n n j 1,4,7,... j 3,6,... 2 n 3 i 0 0 i 0 0 i j 1 j 1 i j 1 j 1 i j j i j j i n j 1,4,7,... 3h u =f + 31H , u 81 H , u H , u 62 H , u 31H , u 224 3h 19H , u 19L , u 27 H , u L , u H , u L , u 19H , u 1120 − − + + = = − + + + + =  λ    ′ ′ + + + + +        λ  ′ ′ ′ ′+ + + − − −  ∑ ∑ ∑ n i n n19L , u  −   …(2.9) From equations (2.9) and (2.3) one can get the following system which consists of n 2n 3 3 − + equations with n 2n 3 3 − + unknowns iu , i 0,1,..., n,= 0u′ , ' pu and nu′ For i=0, p, n, (p = 1,2,…,n-1). 331 | Mathematics @1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 2n 2 n 3 i i i,0 0 i, j j i, j 1 j 1 i, j j i,n n i,0 0 i,0 0 j 1,4,7,... j 3,6,... n 2 i, j 1 j 1 i, j 1 j 1 i, j j i, j j i,n n j 1,4,7 3h 3h u f + 31k u 81 k u k u 62 k u 31k u 19k u 19J u 224 1120 27 k u J u k u J u 19k u 1 − − + + = = − + + + + =   λ λ    ′= + + + + + + +          ′ ′ ′+ − − − −  ∑ ∑ ∑ i,n n 2n 2 n 3 0 0 0,0 0 0, j j 0, j 1 j 1 0, j j 0,n n 0,0 0 0,0 0 j 1,4,7,... j 3,6,... 0, j 1 j 1 0, j 1 j 1 0, j j 0, j j j 1 9J u , i 0,1,..., n 3h 3h u f 31H u 81 H u H u 62 H u 31H u 19H u 19L u 224 1120 27 H u L u H u L u − − + + = = + + + + =   =    λ λ ′ ′ ′= + + + + + + + +        ′ ′+ − −  ∑ ∑ n 2 0,n n 0,n n ,4,7,... 2n 2 n 3 p p p,0 0 p, j j p, j 1 j 1 k, j j p,n n p,0 0 p,0 0 j 1,4,7,... j 3,6,... p, j 1 j 1 p, j 1 j 1 p, j j 19H u 19L u 3h 3h u f 31H u 81 H u H u 62 H u 31H u 19H u 19L u 224 1120 27 H u L u H u L − − − + + = = + + + +  ′− −     λ λ  ′ ′ ′= + + + + + + + +       ′ ′+ − − ∑ ∑ ∑ [ n 2 p, j j p,n n p,n n j 1,4,7,... 2n 2 n 3 n n n,0 0 n, j j n, j 1 j 1 n, j j n,n n n0 0 n0 0 j 1,4,7,... j 3,6,... nj 1 j 1 u 19H u 19L u , where p j, j 1 3h 3h u f 31H u 81 H u H u 62 H u 31H u 19H u 19L u 224 1120 27 H u − = − − + + = = + +    ′− − = +     λ λ ′ ′ ′= + + + + + + + +      ′ + ∑ ∑ ∑ n 2 nj 1 j 1 nj j nj j nn n nn n j 1,4,7,... L u H u L u 19H u 19L u − + + =                                   ′ ′− − − −    ∑ …(2.10) By solving the above system given by equation (2.10) the numerical solutions of equation (2.1), are obtained. Numerical Example In this section, we give some numerical examples to illustrate the above method for solving Fredholm linear integral equation of the second kind. Also, we compare this method with other methods such as repeated Simpson's 3/8 method and repeated corrected Trapezoidal method for solving Fredholm linear integral equation of the second kind. Consider the following Fredholm linear integral equation of the second kind: 37 5 7 1 22 2 2 0 2 2 4 u(x) x (x 1) (x 1) x x (x y) u(y)dy 7 5 35 = − + + + − + +∫ , 0 ≤ x ≤ 1 …(3.1) where 7 5 7 2 2 22 2 4f (x) x (x 1) (x 1) x x , 7 5 35 = − + + + − 3 2 k(x, y) (x y)= + . This example is constructed such that the exact solution is u(x) = x. It is clear that 2k(x, y) x y ∂ = ∂ ∂ 3 4 (x y)+ does not exist at x = y = [0, 1]. To do this, first, we divide the interval [0,1] into 9 intervals such that i i x , 9 = i 0,1,..., 9= Therefore, the numerical solution of system (3.1) can be 332 | Mathematics @1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 obtained by equation (2.7), and illustrated in Table 1، Which contains the exact solutions and the numerical solutions by using the repeated Simpson's 3/8, repeated corrected trapezoidal and repeated corrected Simpson's 3/8 method are given for h =0.112. Also, the least square error denoted by LSER and absolute error denoted by ABSER are presented in Table (1). Second, we divide the interval [0,1] into 18 subintervals that i i x , 18 = i 0,1,...,18= Therefore, the numerical solution of system (3.1) can be obtained by equation (2.7), the results are presented in Table 2. The exact solutions and the numerical solutions using the repeated Simpson's 3/8, repeated corrected trapezoidal and repeated corrected Simpson's 3/8 method for h =0.056. Also, in this table, the least square error denoted by LSER and absolute error denoted by ABSER are presented. Third, we divide the interval [0,1] into 36 subintervals that i i x , 36 = i 0,1,..., 36= Therefore, the numerical solution of system (3.1) can be obtained by equation (2.7), the results of which being presented in Table 3. In that table, the exact solutions and the numerical solutions by using the repeated Simpson's 3/8, repeated corrected trapezoidal and repeated corrected Simpson's 3/8 method are given for h =0.028. Also, the least square error denoted by LSER and absolute error denoted by ABSER are also included in table 3. Discussion In this paper we proposed the repeated corrected Simpson's 3/8 method for solving Fredholm linear integral equation of the second kind. This method can be easily applied and it is efficient and accurate to estimate the solution of Fredholm linear integral equation when the function k(x, y) x ∂ ∂ , k(x, y) y ∂ ∂ and f (x)′ exist. References 1. Burton, T.A. (2005) Volterra integral and differential equation, second ed., Elsevier, Netherlands. 2. kanwal, P. (1971) Linear integral equations, theory and technique, Academic press, Inc. 3. Polyanin A. and Manzhirov, A. (1998) Handbook of integral equations, Crc press Llc. 4. Atkinson, K. (1997) The Numerical solution of integral equations of the second kind, combridge University press. 5.Saberi-Nadjafi, J. and Heidari, M. (2007) Solving Linear Integral Equations of the Second Kind with Repeated Modified Trapezoid Quadrature Method, Applied Mathematical and Computer, 189, No. 4, 980-985. 6. Maleknejad, K. and Shahrezaee, M. (2004) Solving Runge-Kutta mthod for numerical solution of the Volterra integral equations, Applied Mathematical and Computer, 149, No. 2, 399-410. 7.Maleknejad, K.; Rabbani, M.; and Aghazadeh, N. (2006) Numerical solution of second kind Fredholm integral equations system by using a Taylor-series expansion method, Applied Mathematical and Computer, 175, No. 2, 1229-1234. 8. Rabbani, M.; Maleknejad, K. and Aghazadeh, N. (2007) Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method, Applied Mathematical and Computer, 187, No. 2, 1143-1146. 9. Babolian, E.; Biazar, J.and Vahidi, A. R. (2004) On the decomposition method for system of linear equations and system of linear Volterra integral equations, Applied Mathematical and Computer, 147, No. 1, 19-27. 333 | Mathematics @1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 10. Vahidi, A. R.; Mokhtari, M.and Vahidi, A. R. (2008) On the decomposition method for system of linear Fredholm integral equations of the second kind, Applied Mathematical Sciences, 2, No. 2, 57- 62. 11.Al-Sa’dany, Sh. (2008) Some modified quadrature method for solving systems of Volterra linear integral equations, M.Sc. Thesis, University of Baghdad. Table (1): Comparison between the solution via corrected Trapezoidal, repeated Simpson's 3/8 and corrected Simpson's 3/8 with exact solution with N = 9 Nodes Exact Solutio ns Numerical solutions ui ,N=9 xi ui corrected Trapezoidal repeated Simpson's 3/8 corrected Simpson's 3/8 0 0 0.00000422427391 -0.00000804493901 0.00000074026838 0.1 0.1 0.11111322328397 0.11111173431260 0.11111125469004 0.2 0.2 0.22222443564682 0.22222707233601 0.22222240727548 0.3 0.3 0.33333593424825 0.33334133788125 0.33333358046105 0.4 0.4 0.44444756925228 0.44445521086227 0.44444476277767 0.56 0.56 0.55555929602997 0.55556892483339 0.55555595228195 0.67 0.67 0.66667109471999 0.66668258127157 0.66666714815178 0.78 0.78 0.77778295432453 0.77779623077884 0.77777834986280 0.89 0.89 0.88889486785395 0.88890990091898 0.88888955702285 1 1 1.00000683043123 1.00002360760331 1.00000076931735 LSER 1.8653e-010 2.0399e-009 2.5200e-012 ABSER 4.04300e-005 1.2464e-004 4.522109e-006 Table (2): Comparison between the solution via corrected Trapezoidal, repeated Simpson's 3/8 and corrected Simpson's 3/8 with exact solution with N = 18 Nodes Exact Soluti ons Numerical solutions ui ,N=18 xi ui corrected Trapezoidal repeated Simpson's 3/8 corrected Simpson's 3/8 0 0 0.00000036160574 -0.00000094631322 0.00000006419735 0.1 0.1 0.11111124066062 0.11111112823436 0.11111112071068 0.2 0.2 0.22222235617522 0.22222255247321 0.22222223531051 0.3 0.3 0.33333349057657 0.33333387923624 0.33333335065382 0.4 0.4 0.44444463362786 0.44444517497656 0.44444446649763 0.56 0.56 0.55555578243406 0.55555645888978 0.55555558277799 0.67 0.67 0.66666693572924 0.66666773862347 0.66666669945537 0.78 0.78 0.77777809281810 0.77777901780483 0.77777781650046 0.89 0.89 0.88888925326072 0.88889029834788 0.88888893389011 1 1 1.00000041675099 1.00000158133359 1.00000005160523 LSER 1.30200e-012 1.75118e-011 2.0854e-014 ABSER 4.6354e-006 1.61007e-005 5.5708e-007 334 | Mathematics @1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 Table (3): Comparison between the solution via corrected Trapezoidal, repeated Simpson's 3/8 and corrected Simpson's 3/8 with exact solution with N = 36 Nodes Exact Soluti ons Numerical solutions ui ,N=36 xi ui corrected Trapezoidal repeated Simpson's 3/8 corrected Simpson's 3/8 0 0 0.00000003136368 – 0.00000009987493 0.00000000555524 0.1 0.1 0.11111111905472 0.11111111207258 0.11111111176558 0.2 0.2 0.22222223038488 0.22222224437474 0.22222222311676 0.3 0.3 0.33333334291492 0.33333336952570 0.33333333450532 0.4 0.4 0.44444445598728 0.44444449257726 0.44444444592461 0.56 0.56 0.55555556941910 0.55555561485323 0.55555555737127 0.67 0.67 0.66666668313083 0.66666673686136 0.66666666884296 0.78 0.78 0.77777779707885 0.77777785883792 0.77777778033788 0.89 0.89 0.88888891123562 0.88888898090618 0.88888889185461 1 1 1.00000002558200 1.00000010313524 1.00000000339195 LSER 9.53366e-015 1.4855e-013 1.71916e-016 ABSER 5.488e-007 2.0724e-006 6.96503e-008 335 | Mathematics @1a@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹26@@ÖÜ»€a@I1@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (1) 2013 لحل معادالت تكاملیة خطیة ةتكررالمعدلة الم 3/8 سمبسون لطریقة التربیعةا من نوع فریدھولم من النوع الثاني وفاء فیصل منصور شیماء مخلف شریدة جامعة بغداد / )بن الھیثما( للعلوم الصرفة كلیة التربیة /الریاضیات علوم قسم 2012كانون االول 9قبل البحث في: ، 2012ایار 28استلم البحث في: الخالصة الیجاد الحل العددي للمعادالت التكاملیة الخطیة من النوع الثاني. ھذة المطورة 3/8 ھذا البحث نستخدم سمبسونفي لتوضیح دقة . 3/8الطریقة تحل المعادالت التكاملیة الخطیة بدقة أكثر من طریقة شبة المنحرف المطورة وطریقة سمبسون .ھذه الطریقة تم اعطاء مثال عددي المطورة، التقریب العددي )3/8( معادالت فرید ھولم التكاملیة، طریقة سمبسون: المفتاحیةالكلمات 336 | Mathematics Recall that the following linear integral equation of the second kind: …(1.1) where is areal number, , are given continuous functions and is the unknown function that must be determined. If b(x) = b then equation (1.1) is called Fredholm linear integral equation of the second kind. Also, if b(x) = x then equation (1.1) is ca... The mathematical modeling for many problems in different disciplines, such as engineering, chemistry, physics and biology leads to the above form of integral equations. Most differential equations can be expressed as integral equations, [1], [2]. Ther... There are several numerical methods for solving the integral equations given by (1.1). For example, Repeated modified Trapezoid quadrature method [5], Runge-Kutta method [6], Taylor-series method [7], expansion methods [8] and decompostion method [9],... In this paper, we use the repeated corrected Simpson's 3/8 method to find the numerical solution for (1.1) in case b(x) = b, where b is a known constant. To do this, recall that the repeated corrected Simpson's 3/8 method, [11]: Numerical Example Discussion In this paper we proposed the repeated corrected Simpson's 3/8 method for solving Fredholm linear integral equation of the second kind. This method can be easily applied and it is efficient and accurate to estimate the solution of Fredholm linea...