Mathematics - 404 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Design Feed Forward Neural Network to Determine Doses of the Decongestant for Cold Pills L. N. M. Tawfiq and Y. R. B. Al-Mayouf* Department of Mathematics, College of Education Ibn-Al-Haitham, University of Baghdad *Department of computer science, College of Education Ibn-Al-Haitham, University of Baghdad Received in: 30 May 2012 Accepted in: 24 September 2012 Abstract The aim of this paper is to design feed forward neural network to determine the effects of cold pills and cascades from simulation the problem to system of first order initial value problem. This problem is typical of the many models of the passage of medication throughout the body. Designer model is an important part of the process by which dosage levels are set. A critical factor is the need to keep the levels of medication high enough to be effective, but not so high that they are dangerous. Keyword: Ann, feed forward neural network, propagation training algorithm. Introduction The study of cold pills based on the work of the contemporary applied mathematician, Edward Spitznagel Professor of Mathematics at Washington University, St. Louis, Missouri [1]. In this paper we design feed forward neural network(FFNN) to determine the doses of decongestant since FFNNs are parallel computational models comprised of densely interconnected, simple, adaptive processing units, characterized by an inherent propensity for storing experiential knowledge and rendering it available for use, FFNNs resemble the human brain in two fundamental respects; Firstly, knowledge is acquired by the network from its environment through a learning process, and secondly, interneuron connection strengths, known as synaptic weights are employed to store the acquired knowledge[2]. In the proposed approach the model function is expressed as the sum of two terms: the first term satisfies the initial conditions (IC) and contains no adjustable parameters. The second term can be found by using feed forward neural network(FFNN) which is trained so as to satisfy the differential equation and such technique is called collocation neural network. Since it is known that a multilayer FFNN with one hidden layer can approximate any function to arbitrary accuracy [3],[4] thus our FFNN contains one hidden layer. Now, we illustrate how our approach can be used to find the approximate solution of the system of first order differential equation: yi׳(x) = Fi(x, y1, y2) , i =1,2 , (1) where a subject to certain IC’s and x ∈ R, D ⊂ Rn denotes the domain and y(x) is the solution to be computed. If yt(x, p) denotes a trial solution with adjustable parameters p, the problem is transformed to a discretize form: Minp i ˆx D∈ ∑  F(xi ,yt1(xi ,p), yt2(xi ,p) ) , (2) subject to the constraints imposed by the IC’s. In the proposed approach, the trial solution yt employs a FFNN and the parameters p correspond to the weights and biases of the neural architecture. We choose a form for the trial Mathematics - 405 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 function yt(x) such that it satisfies the IC’s. This is achieved by writing it as a sum of two terms: yt(xi , p) = A(x) + G( x, N(x, p) ) , (3) where N(x, p) is a single output FFNN with parameters p and n input units fed with the input vector x. The term A(x) contains no adjustable parameters and satisfies the IC’s. The second term G is constructed so as not to contribute to the IC’s, since yt(x) satisfy them. This term can be formed by using a FFNN whose weights and biases are to be adjusted in order to deal with the minimization problem. Computation of the Gradient An efficient minimization of (2) can be considered as a procedure of training the FFNN, where the error corresponding to each input vector xi is the value E (xi) which has to force near zero. Computation of this error value involves not only the FFNN output but also the derivatives of the output with respect to any of its inputs. Therefore, in computing the gradient of the error with respect to the network weights consider a multi layer FFNN with n input units (where n is the dimensions of the domain) one hidden layer with H sigmoid units and a linear output unit . For a given input vector x = ( x1, x2, …, xn ) the output of the FFNN is : N = H i i i 1 (z ) = ν σ∑ , where zi = n ij j i j 1 w x b = +∑ wij denotes the weight connecting the input unit j to the hidden unit i vi denotes the weight connecting the hidden unit i to the out put unit , bi denotes the bias of hidden unit i , and σ (z) is the sigmoid transfer function ( tanhsig. ). The gradient of FFNN, with respect to the parameters of the FFNN can be easily obtained as: i N∂ ∂ν = σ (zi) , (4) i N b ∂ ∂ = viσ′(zi) , (5) ij N w ∂ ∂ = viσ′(zi) xj , (6) Once the derivative of the error with respect to the network parameters has been defined, then it is a straight forward to employ any minimization technique. It must also be noted, the batch mode of weight updates may be employed. Cold Pills and Cascades At the first sign of a cold many of us start to take cold pills. These pills usually contain a decongestant to relieve stuffiness. The pill dissolves in the gastrointestinal tract, and the two medications diffuse into the bloodstream. The bloodstream takes the medications to the sites where they have therapeutic effect. Both medications are eventually removed from the blood by the kidneys and the liver. The dynamics of the rising and falling levels of the medications in the GI tract and in the bloodstream may be modeled by system of first-order linear differential equations. Pharmaceutical companies do extensive testing to determine the movement medications through the body. This process is modeled by treating various components of the human body as compartments and following the medication as it enters and leaves these compartments. Examples of body compartments are the GI tract, the bloodstream, the tissues and the excretory system. Testing has shown that a typical cold medication leaves one compartment (e.g., the GI tract) and moves into another (e.g., the bloodstream) at a rate proportional to the amount present in the first compartment. The Mathematics - 406 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 coefficient of proportionality depends upon the specific medication, the compartments involved, and the age and general health of the individual. In this section we look at three models based on different dosage strategies suppose that a single dose of a fast-dissolving cold pill is taken. The pill dissolves "instantaneously" in the GI tract and releases A milligrams of decongestant. Each medication independently diffuses into the bloodstream. One Inst ant l y Di ssol vi ng Dose: T he M od el IVP L et y 1 ( t ) b e t h e a mo u n t o f med i ci n e o f d eco n g est a n t i n t h e G I t r a ct a t t i me t a ft er t h e p i l l h a s d i sso l v ed . W e sh a l l u se t h e B a l a n ce L a w t o co mp u t e t h e r a t e o f ch a n g e o f t h e a mo u n t i n ea ch co mp a r t men t . B eca u se t h e med i ca t i o n mo v es o u t o f t h e G I t r a ct a n d i n t o t h e b l o o d -st r ea m a t a r a t e p r o p o r t i o n a l t o t h e a mo u n t i n t h e G I t r a ct , a n d b eca u se n o t h i n g i s co mi n g i n , we h a v e t h a t : ),( )( 11 1 tyk dt tdy −= Ay =)0(1 wh er e k 1 > 0 i s t h e co effi ci en t o f p r o p o r t i o n a l i t y , a n d A i s t h e i n i t i a l a mo u n t t h e u n i t s fo r t h e r a t e co n st a n t k 1 a r e r eci p r o ca l s o f t h e u n i t s ch o sen t o mea su r e t h e t i me t . F o r ex a mp l e t h e u n i t s o f k 1 a r e ( h o u r s) 1− i f t i me i s g i v en i n h o u r s. T h e l ev el o f med i ca t i o n i n t h e b l o o d st r ea m wi l l b u i l d u p fr o m zer o ( i n i t i a l l y , t h er e a r e n o co l d med i ca t i o n s i n t h e b l o o d ) , b u t t h en wi l l fa l l a s t h e k i d n ey s a n d l i v er d o t h ei r j o b o f r emo v i n g " fo r ei g n " su b st a n ces fr o m t h e b l o o d . I f y 2 ( t ) d en o t es t h e a mo u n t o f med i ca t i o n i n t h e b l o o d st r ea m a t t i me t , t h en t h e B a l a n ce L a w i mp l i es t h a t : ),()( )( 2211 2 tyktyk dt tdy −= 0)0(2 =y T h e fi r st t er m o n t h e r i g h t si d e o f t h e r a t e eq u a t i o n mo d el s t h e o b ser v ed fa ct t h a t t h e med i ca t i o n l ea v i n g t h e G I t r a ct g o es d i r ect l y i n t o t h e b l o o d st r ea m ; t h e seco n d r a t e t er m mo d el s t h e cl ea r a n ce o f med i ca t i o n fr o m t h e b l o o d a n d i n t o t h e ex cr et o r y sy st em. C o n seq u en t l y , t h e sy st em o f fi r st -o r d er O D E s a n d fl o w o f med i ca t i o n i s g i v en b y t h e I VP : 11 1 yk dt dy −= , Ay =)0(1 ,2211 2 ykyk dt dy −= 0)0(2 =y … … . … ( 7 ) wh er e t h e ( p o si t i v e) co effi ci en t k 2 i s t y p i ca l l y sma l l er t h a n k 1 . S y st em ( 7 ) mo d el s t h e fl o w o f d eco n g est a n t . H o wev er , t h e fl o w r a t es d i ffer b eca u se t h e ex p er i men t a l l y d et er mi n ed v a l u es o f t h e r a t e co n st a n t s k 1 a n d k 2 a r e q u i t e d i ffer en t fo r t h e t wo med i ca t i o n s ( see T a b l e 1 ) . T h ese d i ffer en ces l ea d t o v er y d i ffer en t l ev el s o f t h e t wo med i ca t i o n s i n t h e b l o o d st r ea m. Observe from table (1) how much smaller k2 is than k1. Consequently, the medication will stay in the bloodstream longer than in the GI tract. Solving The Model IVP Professor Edward Spitznagel in [1] solved this problem analytically and obtain the following solution for 21 kk ≠ : Mathematics - 407 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 tkAety 1)(1 −= , )()( 12 21 1 2 tktk ee kk Ak ty −− − − = ….. (8) where time t is measured forward from the instant the initial dose of A units of medication is released into the GI tract. From the solution set (8) see that, as expected, the levels of the medication in the GI tract and the bloodstream tend to zero as time increases. Since, the medication is initially at the zero level in the bloodstream, these levels reach a maximum value at some later time. Now, we solve system(7) for A=1 where k1 = 1.386, k2 = 0.1386 using three layers feed forward neural network with back propagation training algorithm having one input unit, five hidden units with tanhsig. transfer function and one linear output unit. Table (2) gives the analytic and neural solutions with different training algorithm such as : Levenberg – Marquardt ( trainlm ) [5], and quasi – Newton (trainbfg)[6] and its errors given in table (3), table(4) gives the weight and bias of the designer network and table(5) gives the performance of the train with epoch and time Figures (1) show the levels of decongestant in the GI tract and the blood over a six-hour period if the values of k1 and k2 given in Table (1) are used and A = 1. T h e cl ea r a n ce co e f fi ci en t k 2 o f m ed i ca t i o n fr o m t h e b l o o d -s t r ea m i s o ft e n mu ch l o w er f o r o l d a n d si ck p e o p l e t h a n i t i s fo r t h e y o u n g a n d h ea l t h y . T h i s mea n s t h a t fo r s o me p eo p l e t h e me d i ca t i o n l e v el s i n t h e b l o o d ma y b ec o m e d a n g er o u sl y h i g h ev en wi t h a " st a n d a r d " d o sa g e. F e w o f u s st o p wi t h t a k i n g o n e co l d p i l l . T h e m o d el s t h a t f o l l o w h ea t t h e mo r e r ea l i st i c s et t i n g o f t a k i n g me d i ca t i o n o v er a p er i o d o f t i m e. Cont i n u ous D oses I f a med i ca t i o n i s e m b e d d ed i n r e si n s t h a t d i s so l v e a t v a r y i n g r a t es, a fi x ed fl o w o f m ed i ca t i o n ca n b e a s su r ed . T i n y b ea d s o f t h e mi x t u r e a r e p a ck ed i n t o a ca p su l e, a n d t h e m ed i ca t i o n s a r e r el ea s ed a t a co n st a n t r a t e i n t o t h e C I I t r a ct o v er a p er i o d o f h o u r s. O n e ca p su l e o f c o n t i n u o u s -a ct i n g me d i ca t i o n su ch a s C O N T AC ( S mi t h - Kl i n e B ee ch a m) ma y n e ed t o b e t a k en o n l y t wi ce a d a y . T h e ma t h e ma t i ca l m o d el fo r t h i s si t u a t i o n i s sl i g h t l y d i f f er e n t fr o m I VP ( 7 ) . T h er e i s n o me d i ca t i o n i n t h e G I t r a ct a t t h e st a r t o f t h e co n t i n u o u s d o sa g e r eg i m en , b u t i n st ea d t h er e i s a co n st a n t i n fl o w r a t e I d u e t o t h e g r a d u a l l y d i s s o l v i n g b ea d s. Cont i n u ous- Act i ng Cap sul es: M od el IVP and i ts S ol u t i on T h e m o d el I VP fo r t h e a m o u n t s y 1 ( t ) a n d y 2 ( t ) o f c o n t i n u o u s -a ct i n g me d i ca t i o n i n t h e GI tract and bloodstream, respectively, is : 11 1 ykI dt dy −= , 0)0(1 =y 2211 2 ykyk dt dy −= , 0)0(2 =y ….… (9) Where I is a positive constant modeling the rate of release of each medication into the GI tract . The system of IVP (9) solved analytically by Professor Edward Spitznagel in [1] and he found the following solution : )1()( 1 1 1 tke k I ty −−= ])(11)( 21 12 212 2 tktk ekek kkk I ty −− −   − += ……… (10) Mathematics - 408 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Observe that as time increases, the level of medication in the GI tract tends to I / k1 and that in the bloodstream to I / k2 . The solution formulas (10) are valid for any positive values of the coefficients k1 and k2 , k1 ≠ k2. Now, we solve system (9) where k1 = 1.386 , k2 = 0.1386 and I = 12 , using FFNN . Table (6) gives the analytic and neural solutions with different training algorithm such as: Levenberg–Marquardt (trainlm), and quasi–Newton (trainbfg) and its errors given in table (7), table(8) gives the weight and bias of the designer network and table(9) gives the performance of the train with epoch and time . Suppose that the input rate I is taken to be one unit of each medication per hour. Thus, a total dose of twenty-four units is administered continuously over a period of one day. Figures (2) show that, if the values of k1 and k2 from Table (1) are used, the decongestant builds up quite rapidly to its equilibrium level in the blood. Repeated Doses of Fast-Dissolving Pills Many cold pills dissolve fairly quickly in the GI tract, releasing their medications over a period of no more than half an hour. Repeated doses must then be taken every four to six hours in order to keep up the medication levels in the blood. In this case, the input rate I into the GI tract is not constant, but operates at a high level for a short time, then cuts off entirely until the next dose is taken four to six hours later. One Dose livery Six Hours: The Model IVP In contrast to a continuous acting medication, other forms of medications dissolve very rapidly in the GI tract. This means that the medication is delivered at a high constant rate but only over a short time. Suppose that the rate is 12 units / hour, but delivered in half an hour and then repeated at six-hour intervals. The model IVP is given below: ,)( 11 1 yktI dt dy −= 0)0(1 =y ,2211 2 ykyk dt dy −= 0)0(2 =y I(t) = 12 sqw ( t , 12 / 100 , 6 ) where sqw ( t , 12/100, 6 ) denotes the pulse function with period 6 hours, which is "on" for half an hour at the start of each period and " off " otherwise ( 1/2 hour = 12/100 % of the 6- hour period ). See [7] for a description of sqw and other piecewise continuous functions. The total dosage of 24 units in one day is the same as in the continuous- acting model .Figures 2 display the medication levels corresponding to this repeated on-off dosage pattern over a forty – eight hour period if values of k1 and k2 are taken from Table 1, using FFNN. Medication levels rise during the half hour the cold pill is dissolving in the GI tract, but then fall until the next dose. The amount of decongestant in the blood quickly reaches and then oscillates around an equilibrium level. References 1. Robert L. B. and Courtney, S. C. (1996) Differential Equations A Modeling perspective; United States of America. 2. Galushkin I. A.( 2007) "Neural Networks Theory", Berlin Heidelberg. Mathematics - 409 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 3. Tawfiq, L.N.M. and Naoum, R.S. (2007) " Density and approximation by using feed forward Artificial neural networks ", Ibn Al-Haitham Journal for Pure & Applied Sciences, Vol. 20 (1). 4. Jabber A. K. (2009)," On Training Feed Forward Neural Networks for Approximation Problem ", MSc Thesis, Baghdad University, College of Education (Ibn Al-Haitham). 5. Tawfiq, L. N. M. and Oraibi, Y. A.( 2012) Improve Levenberg-Marquardt Training Algorithm For Feed Forward Neural Networks, Second Conference on Computer and Information Technology/College of Computer – University of Anbar. 6. Stanevski, N. and Tsvetkov, D. (2004) "On the Quasi-Newton Training Method for Feed- Forward Neural Networks", International Conference on Computer System and Technologies. 7. Abd-Al-Razak H. A. (2010) Solution of a System of Ordinary Initial Value Problems using Semi-Analytic Method, MSc Thesis, Baghdad University, College of Education ( Ibn Al - Haitham ). Tabel (1) : Rate Coefficients of D e c o n g e s t a n t for Cold Medications k 1 1 . 3 8 6 h o u r 1− k 2 0 . 1 3 8 6 h o u r 1− Table (2):The analytic & neural result of the problem (7) Neural solution (Trainbfg )(y1t2) Neural solution (Trainlm) (y1t1) )y1a ( Analytic solution x 0.999837751002654 1 1 0 0.870576189297933 0.870645179547517 0.870576189297161 0.1 0.757902901371998 0.757902901371166 0.757902901371166 0.2 0.659810076684370 0.659812219732971 0.659812219732971 0.3 0.574416254623237 0.574424576246922 0.574416807906831 0.4 0.500073595698388 0.500073595695768 0.500073595695768 0.5 0.435352165307395 0.435344727835639 0.435352165308950 0.6 0.379007285987416 0.379002100324034 0.379007229076934 0.7 0.329954669210264 0.329954669205873 0.329954669205873 0.8 0.287250678555912 0.287250678558054 0.287250678558054 0.9 0.250073601113749 0.250073601112094 0.250073601112094 1 Neural solution (Trainbfg) (y2t2) Neural solution (Trainlm) (y2t1) )y2a( Analytic solution x -3.059617923823967e-12 1.530880578316805e- 16 0 0 0.128510464758401 0.128419804302230 0.128510464762339 0.1 0.238627462671385 0.238604066374236 0.238619746993297 0.2 0.332737486328395 0.332733745257234 0.332733745257234 0.3 0.412946642432535 0.412945914088550 0.412946642430978 0.4 0.481081253754288 0.481081253748791 0.481081253748791 0.5 0.538724152783951 0.538724152786095 0.538724152786095 0.6 0.587254349184960 0.587256251241918 0.587256251241918 0.7 0.627876612156372 0.627880263180820 0.627879420907607 0.8 0.661639670057443 0.661639670057993 0.661639670057994 0.9 0.689447320203182 0.689447320205629 0.689447320205629 1 Mathematics - 410 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Table (3) : A comparison between analytic and neural solutions | y1a – y1t1 | | y2a – y2t1 | | y1a – y1t2 | | y2a – y2t2 | 0 1.530880578316805e-16 1.622489973456265e-04 3.059617923823967e-12 6.899025035600470e-05 9.066046010927642e-05 7.728262474415715e-13 3.937739023740505e-12 0 1.568061906176421e-05 8.324452238639424e-13 7.715678088132671e-06 0 5.551115123125783e-17 2.143048601244146e-06 3.741071161966758e-06 7.768340090974490e-06 7.283424278692330e-07 5.532835937183123e-07 1.557254325490476e-12 1.110223024625157e-16 0 2.620459405022757e-12 5.497102772977769e-12 7.437473311000531e-06 1.110223024625157e-16 1.555866546709694e-12 2.144506794365952e-12 5.128752899485889e-06 2.220446049250313e-16 5.691048232669971e-08 1.902056958269505e-06 0 8.422732126200927e-07 4.391098595846188e-12 2.808751235261475e-06 0 1.110223024625157e-16 2.141509192199465e-12 5.505595979116151e-13 5.551115123125783e-17 1.110223024625157e-16 1.654731907052565e-12 2.447597680088620e-12 Table (4): Weight and bias of the network for different training algorithm Weight for trainlm of (y1) Weight for trainlm of (y1) Bias for trainlm of (y1) Net.IW{1,1} Net. LW{2,1} Net.B{1} 0.241569248284151 0.017611616453924 0.252859672695871 0.351195035228651 0.681708279346507 0.024385651630710 0.126738675949935 0.880833084532577 0.530723581584766 0.739408639260099 0.139821021807629 0.934854674058909 0.445679823858157 0.810853784598876 0.769328503579249 Weight for trainbfg of (y1) Weight for trainbfg of (y1) bias for trainbfg of (y1) Net.IW{1,1} Net. LW{2,1} Net.B{1} 0.715931252353248 0.670860771332138 0.413824842108441 0.248146352936429 0.982859184594668 0.180845024472233 0.531900325168972 0.936821328628590 0.995631187232624 0.382209682936579 0.576272354062037 0.520386194349656 0.801761242973036 0.080186187030087 0.885282695498373 Weight for trainbfg of (y2) Weight for trainbfg of (y2) Bias for trainbfg of (y2) Net.IW{1,1} Net. LW{2,1} Net.B{1} 0.869492229395656 0.688725578355128 0.431049305282942 0.947906559807061 0.596021891944303 0.190738233247638 0.254304842122024 0.214739790766330 0.327775459738820 0.048491632422091 0.535169282982425 0.937657078181142 0.831838695092381 0.055755557082901 0.847367010662909 bias for trainlm of (y2) Weight for trainlm of (y2) Weight for trainlm of (y2) Net.B{1} Net. LW{2,1} Net.IW{1,1} 0.241305720471971 0.618786526718974 0.101305687973029 0.594729968864710 0.699150113317535 0.468935089858187 0.868232914442518 0.314828670017582 0.710646362418379 0.818668373595483 0.804788645898101 0.601346407503426 0.590084132290161 0.178022430412338 0.204916976156494 Mathematics - 411 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Table(5) : The performance of the train with epoch and time Performance Epoch Time Performance for MSE Train code 2.20e-33 295 0:00:04 4.010417891598336e-10 Trainlm of y1 3.96e-33 468 0:00:06 6.927087884925925e-10 Trainlm of y2 5.07e-28 1268 0:00:28 2.154243203877806e-09 Trainbfg of y1 2.26e-25 543 0:00:12 6.957344125042582e-12 Trainbfg of y2 Table (6) : The analytic & neural result of the problem (9) Trainbfg )(y1t2)( Neural solution Trainlm) (y1t1)(Neural solution )ya1 ( Analytic solution x 0.008076966501195 0 0 0 1.121576309950494 1.119074768489855 1.120552473617658 0.1 2.096078776010794 2.096078776007224 2.096078776007225 0.2 2.945329004027621 2.945519665978265 2.945348746900685 0.3 3.684702961851884 3.684702961845623 3.684702961845622 0.4 4.328367136844937 4.328367136833180 4.328367136833180 0.5 4.888725841491276 4.888755428434839 4.888725841480949 0.6 5.376560787208372 5.376560787212696 5.376560787212696 0.7 5.801258275281827 5.801258275273830 5.801258275273828 0.8 6.170989796037555 6.171052575520006 6.170989796034165 0.9 6.492853256454569 6.492869254440744 6.492869254440744 1 Trainbfg) (y2t2)( Neural solution Trainlm) (y2t1)( Neural solution )2ya( Analytic solution x 6.970449786967482e-08 0 0 0 0.079077614840971 0.083579667139451 0.079077570606103 0.1 0.296617057945247 0.301069405674204 0.301069405674204 0.2 0.643383165800754 0.645370996519114 0.645370996519114 0.3 1.094073602030272 1.094073563826114 1.094073563826115 0.4 1.631757503744028 1.629619175798611 1.631614766704876 0.5 2.244474633309778 2.242721178439358 2.244474623805575 0.6 2.920910793699243 2.920910794904590 2.920910794904590 0.7 3.650728106463634 3.650322736313918 3.650728128703034 0.8 4.425158477200711 4.425078041900662 4.425078041900662 0.9 5.236283818105677 5.236283868595361 5.236283868595361 1 Table (7) : A comparison between analytic and neural solutions | y1a – y1t1 | | y2a – y2t1 | | y1a – y1t2 | | y2a – y2t2 | 0 0 0.008076966501195 6.970449786967482e-08 0.001477705127803 0.004502096533347 0.001023836332836 4.423486724136616e-08 4.440892098500626e-16 6.106226635438361e-16 3.569144979564953e-12 0.004452347728957 1.709190775800451e-04 0 1.974287306349964e-05 0.001987830718360 4.440892098500626e-16 6.661338147750939e-16 6.261213769676033e-12 3.820415694910651e-08 0 0.001995590906265 1.175681774157056e-11 1.427370391517968e-04 2.958695388954880e-05 0.001753445366216 1.032685048585336e-11 9.504203646315545e-09 8.881784197001252e-16 0 4.324540725519910e-12 1.205346933375040e-09 1.776356839400251e-15 4.053923891160771e-04 7.998046669399628e-12 2.223940009926650e-08 6.277948584099136e-05 0 3.389288849575678e-12 8.043530004897548e-05 0 0 1.599798617490933e-05 5.048968443333024e-08 Mathematics - 412 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Table( 8): Weight and bias of the network for different training algorithm Weight for trainlm of (y1) Weight for trainlm of (y1) Bias for trainlm of (y1) Net.IW{1,1} Net. LW{2,1} Net.B{1} 0.505692448683919 0.792456860497627 0.134776995255468 0.004625760582352 0.837900449095441 0.569914349014358 0.188468748383506 0.687358399403697 0.574691506274377 0.779639443833603 0.081434100056796 0.016102750791896 0.610825949687488 0.806140569013718 0.934828315776462 bias for trainlm of (y2) Weight for trainlm of (y2) Weight for trainlm of (y2) Net.B{1{ Net. LW{2,1} Net.IW{1,1} 0.912782147048597 0.922429224841606 0.478376283649921 0.534170292387813 0.934308461414860 0.124994240255344 0.451461598784967 0.824811938202454 0.064155985584096 0.285596533472468 0.183582125058882 0.386664880532908 0.622774097441083 0.393108093448545 0.558245691279696 Weight for trainbfg of (y2) Weight for trainbfg of (y2) Bias for trainbfg of (y2) Net.IW{1,1} Net. LW{2,1} Net.B{1} 0.018010467945131 0.002291815245818 0.612551084945355 0.503631782070622 0.772712775811915 0.133072433875949 0.126991991291519 0.661798871106240 0.283353859003173 0.305174566418702 0.397966331038198 0.837400333016416 0.256058502513567 0.501051178487892 0.865931228918039 Weight for trainbfg of (y1) Weight for trainbfg of (y1) Bias for trainbfg of (y1) Net.IW{1,1} Net. LW{2,1} Net.B{1} 0.735194614493405 0.100480242633400 0.828924078623420 0.879697065220770 0.522668514129408 0.724963349991644 0.851423388162803 0.058688252904172 0.337293776914633 0.672029350928386 0.813646068464573 0.211463983876867 0.798496214678467 0.345685331495202 0.339840122932540 Table (9) : The performance of the train with epoch and time Train code Performance Epoch Time Performance for MSE Trainlm of y1 2.82e-32 302 0:00:05 1.814434713408252e-07 Trainlm of y2 4.83e-32 102 0:00:02 2.249195719271235e-06 Trainbfg of y1 2.49e-26 1461 0:00:35 5.423422452091749e-06 Trainbfg of y2 2.20e-23 243 0:00:05 1.947413043462885e-06 Mathematics - 413 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 0 2 4 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t(hours) y1, y2( dec ong est ant ) y1:ex y2:ex 0 2 4 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t(hours) y1, y2( dec ong est ant ) y1:approx y2:approx Fig. (1): decongestant in GI tract(solid)and bloodstream(dashed):single unit dose ( k1 = 1.386, k2 = 0.1386 ) 0 20 40 60 0 10 20 30 40 50 60 70 80 90 t(hours) y1, y2( dec ong est ant ) y1:ex y2:ex 0 20 40 60 0 10 20 30 40 50 60 70 80 90 t(hours) y1, y2( dec ong est ant ) y1:approx y2:approx Fig. (2): Decongestant in GI tract (solid) and bloodstream (dashed) : continuous acting capsules ( k1 = 1.386, k2 = 0.1386 ) , I = 12 . 0 20 40 60 0 5 10 15 20 25 30 35 40 45 t(hours) y1, y2( dec ong est ant ) y1:ex y2:ex 0 20 40 60 0 5 10 15 20 25 30 35 40 45 t(hours) y1, y2( dec ong est ant ) y1:approx y2:approx Mathematics - 414 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 0 20 40 60 0 5 10 15 20 25 30 35 40 45 t(hours) y1, y2( dec ong est ant ) y1:ex y2:ex 0 20 40 60 0 5 10 15 20 25 30 35 40 45 t(hours) y1, y2( dec ong est ant ) y1:approx y2:approx Fig. (3): Decongestant in GI tract (solid) and bloodstream (dashed): continuous acting capsules ( k1 = 1.386 , k2 = 0.1386 ) , I = 6 Mathematics - 415 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 تصميم شبكة عصبية صناعية ذو تغذية تقدمية لتحديد جرعات دواء الديكونجيستد لمى ناجي محمد توفيق و يسر رافد بحر المعيوف ، جامعة بغدادابن الهيثم -كلية التربية قسم الرياضيات، 2012ايلول 24البحث في : بل ق 2012 ايار 30استلم البحث في: الخالصة الهدف من هذا البحث هو تصميم شبكة عصبية صناعية ذو تغذية تقدمية لتحديد تأثير حبوب البرد و تعاقبها من خالل استخدام النمذجة و تحويل المشكلة إلى منظومة معادالت مسائل القيم االبتدائية من الرتبة األولى .هذه المسألة مثال لعدد من سم. االنموذج المصمم هو جزء مهم في العالج والذي يحدد مستوى الجرعات و االج النماذج التي تمثل مرور العالج خالل خطر معدلها حيث ان التحليل الحرج هو الحاجة لبقاء مستوى العالج عال و فعال لكن ليس العلو الذي يجعله الشبكة العصبية، الشبكة العصبية التقدمية،استخدام النمذجة .الكلمات المفتاحية:. Received in: 30 May 2012 Accepted in: 24 September 2012