Microsoft Word - 166-180 166 | Chemistry 2016) عام 1العدد ( 29مجلة إبن الهيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins Basma J. Ahmed Fadhel S. Matty Jumbad H. Tomma Dept. of Chemistry/Collage of Education for Pure Science (Ibn Al-Haitham)/ University of Baghdad Received in:27/May/2015, Accepted in:12/July/2015 Abstract    This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of blends nanocomposites are significantly lower compared to that of the(UPR and 3% TiO2), semi-interpenetrating UPR/Epoxy blends (semi-IPNs) for one type of new epoxy [P2]was prepared and noticed the blend nanocomposites show higher dielectric breakdown strength than the semi- IPNs (UPR/Epoxy) at low loading of new epoxies but the thermal conductivity is a higher than the semi- IPNs UPR/Epoxy at all loading. Thermogravimetric analysis (TGA) was employed to study the thermal properties of the blended nanocomposites. Key word: blened nanocomposite: unsaturated polyester resin: epoxy resin: dielectric breakdown strength. 167 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 Introduction With the rapid development of the electronic information industry, better properties are required for substrate and packaging materials such as low coefficient of thermal expansion (CTE), low dielectric constant, high electric insulation, and high thermal stability. Therefore, many studies have been focused on developing new materials with superior strength and attributes[1].. In the nano studies with notable researches advances that revealed new physical phenomena and improved material properties in the nano-sized since ,the introduction of nanofillers demonstrate several advantages in their properties when compared with the similar properties obtained for epoxy systems with micrometer sized fillers [2-5] polymer nanocomposites have attracted considerable attention from both fundamental research and application points of view, because it exhibited much better mechanical, thermal, and multifunctional properties in comparison with the polymer matrices and their conventional microcomposite and macrocomposite counterparts.[1]. Epoxy resins are well-known materials in the field of insulation systems for heavy electric equipment such as mold-type transformers, potential transformers (PT), current transformers (CT), and metering out-fit (MOF) because the epoxy resin provides essential electrical, thermal, and mechanical properties. In the last two decades, rapid development of epoxy-based composites in electric applications has been achieved to give the epoxy resins much higher electrical performance with lower cost [6,7]. Unsaturated polyester resins (UPR) are comparatively hard and brittle materials and one of the important thermosetting materials used for the manufacture of glass-reinforced plastics and polymeric composites. These resins have wide spread use which is due to their relatively low cost, comfortable of processing, high wetting properties with reinforcements[8] .There are many reports that the technique of polymer blending is a useful method to obtain a new insulating material[9]. For the design of these insulating materials the most important parameter is dielectric voltage breakdown strength. This is used to measure the failure strength of the insulation against the applied electric field. It is to be noted that, when electrical breakdown occurs due to high applied voltage it results in a fracture due to breaking of insulation barrier as well generation of electrical sparks. Li et al[10] observed that hybrid nano/micro Al2O3 epoxy composite exhibits higher partial discharge resistance as compared to micro Al2O3/epoxy composite. In addition,epoxy/nano-TiO2 composite show improved alternating current AC voltage endurance, and dielectric strengths compared to its micro size TiO2 filled epoxy composite[11] With respect to the electrical breakdown characteristics in polymer nanocomposites, several reports are available on different polymeric systems. In epoxy nanocomposites filled with TiO2 fillers, the voltage endurance (AC), short-term direct current and alternating (DC , AC) dielectric strengths and impulse breakdown strengths are found to be higher as compared to microcomposites [5] Thermal conductivity of polymers is an important thermal property for both polymer applications and processing. Polymers typically have intrinsic thermal conductivity much lower than those for metals or ceramic materials, and therefore are good thermal insulators. In other applications which require higher thermal conductivity, such as in electronic packaging and encapsulations, satellite devices, and in areas where good heat dissipation, low thermal expansion and light weight are needed, polymers reinforced with fillers, organic or inorganic, are becoming more and more common in producing advanced polymer composites for these applications[12].  In a solid material, there are two main mechanisms of heat conduction: through elastic waves, which are called phonons, and through free electrons. Polymer materials generally do not have freely moving electrons. So, 168 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 heat transfer has effected only via elastic waves. The electron conductivity is dominant in metals and absent in insulators [13].   Thermal conductivities of polymer materials depend on many factors, such as chemical constituents, strength of bonding, structure type, molecular weight of side groups, molecular density distribution, type and strength of defects or structural faults, size of intermediate range order, processing conditions and temperature, etc [14]. Commonly used polymer materials are materials of low thermal conductivity. The typical range of polymers is from 0.17 to 0.35 W/mK [15]. Epoxy resin is one of the common materials that is used for electrical insulation In spite of the excellent performance of epoxy, its relatively low thermal conductivity cannot satisfy the increased demands of new electronic devices. Improved thermal conductivity in polymers may be achieved either by changing the molecular orientation, by the addition of conductive fillers [16] or by synthesizing the polymer materials with enhanced thermal conductivity [17]. In this study, an epoxy/ UPR /TiO2 composites were prepared, with particle sizes of 10- 15nm; an electrical insulation breakdown test and thermal conductivity were then carried out. 2. Experimental Materials All the raw materials were supplied from Merck,GCC and Aldrich Chemicals Co. and used as received. Testing The FTIR spectrum of UPR/TiO2 and blended nanocomposites were taken using bromide discs on a Shimadzo(Ir prestige-21) FTIRspectrophotometer .1HNMR spectra were carried out by company:Bruker,model:ultra-shield 300MHz origin:Switzerland,and Bruker model: ER-av-400MHZ,origin: Switzerland are reported in ppm( δ),DMSO was used as solvents. The dielectric voltage breakdown strength and thermal conductivity testing were taken for UPR/TiO2 and blended nanocomposites. The dielectric breakdown strength properties were tested using the device (Rang HV-50Hz 300 KV). The time rate to increase voltages in electrical breackdown (0.5KeV/ s) and thermal conductivity properties was tested by using A Lee's disc instrument manufactured by the Griffen and George Company, England. Methods Preparation of monomers [ M1-M10] The monomer;Bis-[4,4'hydroxybenzylideneamino)phenol[M1],quinoxaline-2,3-diol[M2] ,[2,5-di-(p-hydroxylphenyl)-1,3,4-thiadiazole][M3],4,4_diphenylenebis[(azo)-2,4-dihydroxy phen -yl][M4],4-(4--hydroxybenzyliodeneamino)phenol[M5],4,4-diphen-ylenebis[(azo)phenol l] [M6] were prepared according to reference [18],2-amino-4-(4-aminophenyl)-1,3- thiazole[M7] and 2-amino-4-(4_hydroxyphenyl)-1,3thiazole [M8] were prepared according to reference [19],methylene-bis-(2,4-dihydroxyphenl) [M9] was prepared according to the reference[20],and the monomer 1,4-bis(5,5-2-amino-1,3,4-thiadiazol)phenol[M10] was prepared according to the reference [21]. Preperation of polymers [P1-P10] A suitable monomer [M1-M10](0.01 mol) was dissolved in 10 % aq. NaOH solution (0.0188 mol) in a three neck round bottom flask which is balanced in an oil bath set at 50oC. A homogeneous solution was obtained after vigorous stirring under reflux followed by 169 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 addition of freshly distilled epichlorohydrin (0.0157 mol) in one batch. The temperature was raised to 90 oC and the reaction proceed for another 2 hrs. Then the reaction mixture was allowed to settle and the aqueous layer decanted to give a big gel like mass product. After washing the product for many times with distilled water and neutralized with 38 % HCl, vacuum distillation was performed to remove any unreacted epichlorohydrin. [22].The structure and melting point of polymer are listed in Table(1). The reaction pathway for the synthesis of epoxy prepolymer was illustrated in the following scheme. + CH2CHH2C O CLX R X NaOH(aq) O H2 CH2CH2C O R CH2 CH CH2 O Y                                                                  NaOH(aq) X R X   H2C O CH H2 C O R Y H2 C CH CH2 OH O R Y H2 C CH O CH2 n N N H CC HR= , N N C C N N S , N N NN OH HO , NC H , N NNN , N S , H2 C OH HO N N S N N S , X= OH, NH2 Y= O, NH Scheme Preparation of semi-interpenetrating blend (S-IPNs) For one type of new epoxy P2 preparation semi-interpenetrating blends (UPR/Epoxy).Testing dielectric breakdown and thermal conductivity properties have been carried out for (semi-IPNs) the data are listed in Table( 2). The optimum quantity from Titanium dioxide The optimum quantity from titanium dioxide (TiO2) was determined by means of measurement properties when mixing different percentage (1,3,5,7%) from nano material with unsaturated polyester were mixed together by ultrasonic for 2 hour at room temperature, then 170 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 add methyl ethyl ketone peroxide 2% to the mixture and mixed mechanical stirrer for 5 min., its found that 3% is optimum quantity. Table 3 illustrated the results of dielectric breakdown and thermal conductivity on respectively for UPR/TiO2. Preparation of polymer blend and composite Unsaturated poly ester, epoxy resin in varying amounts (1,3,5,7%) and optimum quantity from titanium dioxide (TiO2) (3%) were mixed together in a suitable beaker, and a mixture was placed in a high intensity ultrasonic bath for 2 hrs at ambient temperature conditions ,used ice bath to avoid temperature rise during the sonication process . Then curing agent methyl ethyl ketone peroxide (2% ) part by weight was added to mixture, the mixture was stirred well with mechanical stirring to give a homogeneous mixture, the mixture poured into mold of iron with dimension (15×5×0.4) cm and left overnight. The first curing was done at room temperature followed by a second curing step at 120º C for 2 hrs. When the solidification process is finished the sample was cut down into standard dimensions. 3. Results & discussion Spectroscopic identification Polycondensation was successfully conducted between epichlorohydrin and M1,M3,M4,M5,M6,M7,M8,M9 and M10 using aq. NaOH incentive as shown in Scheme1.  The pure polymer and blended nanocomposite after post curing were studied by FTIR spectrum. The FTIR spectra of the purified epoxy prepolymer of polymer [P1-P10] showed the characteristic C-O band in oxirane ring and ether linkages formed which can be seen in Table 4 presents the principal FTIR stretching vibrations for the epoxy resins. Comparing the FTIR spectrum of UPR/TiO2, blended nanocomposites [B1] and polymer P1 can be seen in Figure 1 the FTIR of blend polymer [ B1] showed the appearance of good peak for C=O stretching band at 1722 cm-1 besides to other characteristic bands of polymer[ P1] .The 1HMNR spectrum (in DMSO as a solvent) for polymer P2, showed the following signals: signals in the region δ(7.23-7.60 )ppm for aromatic protons and OH proton. Many signals in the range δ (3.91-5.35) ppm for aliphatic protons of CH2 methylene groups. the 1HMNR spectrum (in DMSO as a solvent) for P3 showed: a singlet signal at δ 8.87 ppm for proton of OH group, double of doublet signals at δ ( 7.32-8.06)ppm that could be attributed to aromatic protons and a signal at δ5.76 ppm for one proton of CH group. Another signal at δ (4.312-4.44)ppm due to four protons of 2CH2O groups. The 1HMNR spectrum (in DMSO as a solvent) for polymer P5, showed the following signals: a singlet signal at δ 9.96 ppm for one proton of OH, a singlet signal at δ 8.56 ppm that could be attributed to proton of imine group (CH=N).Many signals in the region δ(6.59-7.83) ppm are due to aromatic protons. Also, multiplet signal between δ (4.70-5.59) ppm for protons of CH2CH in oxarine ring and CH-OH group. while the protons of (2OCH2) group appeared in region δ (3.70-4.20) ppm, the 1HNMR can be seen in Figure (2). Dielectric breakdown properties Dielectric breakdown properties of the composites are mostly affected by the insulating structures, defects and impurities, such as the external factors form, type and the nature of the polar used and outer surface and measurement conditions such as the pressure, temperature, moisture, frequency the source, the time period in the application of voltages, the type and ratio of reinforced used in it. Dielectric breakdown strength values of blends nanocomposites with different weight percentage are significantly higher compared to that of the UPR/TiO2.Figure 2 shows that the strength decreases with further increase in weight 171 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 percentages of epoxy in some structure. Found where the chain conjugation was interrupted by aliphatic moiety, which led to increase flexibility due to a large volume and increase the conductivity and that led to decrease dielectric breakdown, On the other hand the conductivity was decreased where the chain was interrupted by long aliphatic group which weaken the conjugation in the main chain, so the flexibility effect on conductivity is dominate and dielectric breakdown. Illustrated the results of dielectric breakdown tests of the blended nanocomposite at different weight percentages of epoxy resins, at room temperature were shown in Figure 3 and Table 5. Thermal conductivity properties The blend nanocomposites show higher thermal conductivity than the sime-IPNs UPR/Epoxy for P2 , the results showed that the thermal conductivity increases with presence of nanoparticles. When comparing the thermal conductivity for UPR/TiO2, blended nanocomposites the results showed that the thermal conductivity decreases with the increase of wt% of epoxy resin , the thermal conductivity of TiO2/ UPR/Epoxy nanocomposites attains an optimum value of 0.307933 W/m.K for B2 at loading 1% wt Epoxy. But when increase %wt of Epoxy with existence percentage a fixed of the TiO2 led B2 show minimum value of thermal conductivity. The high density of functional end groups thermosetting hyperbranched epoxy resin is conducive to well dispersion of nanoparticles and improve the compatibilities and interaction between the particles and matrix, thus compromise the comprehensive properties of the thermally conductive. Illustrated the results of thermal conductivity tests of the composite at different weight percentages of epoxy resins, at room temperature were shown in Figure (4) and Table (6). Thermal studies TGA analyses for the blended nanocomposites after curing are shown in Figure (5), the blended nanocomposites has thermal stability as shown in Table (7). Illustrated the onset temperature(°C), temperature of maximum (°C) and Temperature of half loss (°C) . Conclusion Epoxy prepolymer was successfully prepared, epoxy resins are highly miscible with UPR. Dielectric breakdown property for blended nanocomposites show maximum improvement at about 3% by wt epoxy concentration, for B9 was 13.57KV/mm. Thermal conductivity lower with the increase of the percentage of epoxy for all blended nanocomposites. The thermal conductivity was increased from K=0.2205 W/mK for S-INPs (UPR/Epoxy P2) to 0.255970 by for the B2 with 3 wt% of epoxy resin. High electrical insulation and thermal conductivity will make TiO2/UPR/epoxy nanocomposites promising in the electrical package field. In blended nanocomposites show substantial improvement in thermal stability. 172 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 References 1. Fu-J..; Shi-L., Zhong, Q.; Chen, Y. and Chen, L.(2010)"Thermally conductive and electrically insulative nanocomposites based on hyperbranched epoxy and nano-Al2O3 particles modified epoxy resin", Polymers Advanced Technologies, Research Article, (www.interscience.wiley.com) DOI: 10.1002/pat.1638. 2. Tanaka, T;(2005)“Dielectric nanocomposites with insulating properties”, IEEE Trans. Dielectr. Electr. Insul.,12( 5):914-928. 3. Tanaka, T.; Montanari, G. and Mulhaupt, R.(2004)“Polymer nanocomposites as dielectrics and electrical insulation – perspectives for processing technologies, material characterization and future applications”, IEEE Trans. Dielectr. Electr. Insul., 11(5):763-784. 4. Cao, Y.; Irwin, P. and Younsi, K.(2004) “The Future of nanodielectrics in the electrical power industry”, IEEE Trans. Dielectr. Electr. Insul., 11 ( 5):797-807, 5. Singha, S. and Thomas, M. (2008)"Dielectric properties of epoxy nanocomposites", IEEE Transactions on Dielectrics and Electrical Insulation, 15(1). 6. Park, J. (2013) "Electrical insulation breakdown strength in epoxy/ spherical alumina composites for HV insulation", Trans. Electr. Electron. Mater., 14( 2):105-109. 7.Cho, S.; Kim, Y.; Kwon, J., and Lim, K.(2011)" Improvement of electrical and thermal characteristics of nano-micro epoxy composite" Trans. Electr. Electron. Mater. 12(4):160. 8. Cherian, A.; Varghese, L.and Thachil, A.(2007)"Epoxy-modified, unsaturated polyester hybrid networks", European Polymer Journal 43 :1460–1469. 9. Cho, D.; Tatsuo, M.; Mizutani, T. and Ishioka, M.(1999)"Effect of blend and extrusion on breakdown for low-density polyethylene", IEEE Xplore Digital Library, 1: 285 – 288. 10. Li., Z; Okamoto, K.; Ohki, Y.and Tanaka, T. (2010)"Effects of nano-filler addition on partial discharge resistance and dielectrical breackdown strength of micro-Al2O3/epoxy composite", JIEEE Trance Dielect. Elect Insul, 17(3):653-61. 11. Mohanty, A. and Srivastava, V. (2013)" Dielectric breackdown performance alumina/epoxy resin nanocomposites under high voltage application",Mterial and design, 47:711-716. 12. Dehaghani, H. and Nazempour, M.(2012)"Thermal conductivity of nanoparticles filled polymers", Smart Nanoparticles Technology, www.intechopen.com book edited by Abbass Hashim, ISBN 978-953-51-0500-8, Published: under CC BY 3.0 license. 13. Wierzbicki, L. and Pusz, A. (2013)" Thermal conductivity of the epoxy resin filled by low melting point alloy", Archives of Materials Science and Engineering , 61 ,Issue 1 : 22- 29. 14. Han, Z.and Fina, A. (2011)"Thermal conductivity of carbon nanotubes and their polymer nanocomposites", Progress in Polymer Science 36 : 914-944. 15. Lasance, C.(2009) "Thermal conductivity of filled plastics", Electronics Cooling Magazine, 15(2) : 1887–1897. 16. Rajpal, S.; Pradeep, K.; Sharma, R.S.and Sajjan, K.(2013)"Effective thermal conductivity of polymer composites using local fractal techniques", International Journal of Innovative Technology and Exploring Engineering, 2(3):95-100. 17. Zhang, L. and Dai, G.(2007)" Effect of interfacial treatment on the thermal properties of thermal conductive plastics", eXPRESS Polymer Letters,1(9):608-615. 18..Huda AL-Khazaaly (2012)"Synthesis,spectroscopic and physical studies of new polyesters and polymides"Ph.D Thesis University of Baghdad,Colloge of Education for pure sience. 19. Singh, I.; Kaur, H.; Kumar, S.; Lata, S. and Kumar, A. (2010)"Synthesis and antiba cterial activity of 3-Chloro 4-(Substituted Phenyl)azetidinony /thiazolidinony l-4-(3- acetanilido)oxa/thiazoles",Inter. J. of Pharma Sciences and Resear ch (IJPSR) , 1(2):148-168. 20. Rahimi, A. and Farhangzadeh, S.(2001)"Kinetics study of bisphenol A synthesis by condensation reaction", Iranian Polymer Journal , 10 ( 1 ):1026-1265. 173 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 21. Ali, Kh.; AL-Aliawi, K. and Tomma, J.(2014)"Synthesis, characterization and study the biological behaviour of new -1,3,4- thiadiazol and pyrazolone containing indol ring "Ibn Al- Haitham for pure&appl.sci.,27(3). 22. Mustafa, R.; Othman, M.; Ismail, H. and Ahmad, Z.(2009)"Synthesis and characterization of rigid aromatic-based epoxy resin", Malaysian Polymer Journal, 4 (2): 68-75. 174 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 Table (1): Summary of compound structure, melting point symbol of polymer Structure of polymer M.P. P1 N N H CC H OCH2CHH2C O H C C H2 O H2 C OH n >300 P2 N N C CO OC H2 O H2 C H C C H2 C H H2C OH n 250 P3 CH2 H C H2 CO N N S OCH2CHH2C O HO n >300 P4 N N NNOH2CHCH2C O H C H2 CO H2 C O O H2C HC CH2 O H2C C H H2 C OH OH n >300 P5 NCH OCH2CHH2C O O CH2 H C H2 C OH n 128 P6 N N H C C H2 O H2 CNNOCH2CHH2C O OH n >300 P7 N S N N H2 C H2 C CH CH2 O CH2 H C H2 C C H H2 C CH2CHH2C O OH OH n >300 P8 N S N O H2 C H2 C CH CH2 O CH2 H C C H2 C H H2 C OH OH n >300 P9 H2 C O CH2 H C H2 CO H2 C H CH2C O O CH2 H C H2 C CH2C H H2 C OH OH OH n O >300 P10 N N S N N S N H2 CC H H2 C CH2CHH2C O N H2 C CH CH2 O CH2 H C H2 C OH HO n >300 175 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 Table (2): Dielectric breakdown and thermal conductivity properties of S-IPNs UPR with (1, 3,5,7) wt% epoxy resin [P2]. Table (3): Dielectric breakdown and Thermal conductivity of properties of UPR+ (1,3,5,7)%TiO2 modified Property UPR/TiO2(1%) UPR/ TiO2(3%) UPR/TiO2(5%) UPR/TiO2(7%) Dielectric breakdown 5.87 9.24 8.27 7.28 Thermal conductivity 0.29287 0.38438 0.29585 0.2860 Table ( 4): Summary of identification of infrared bands for epoxy resins[ P1-P10] Polymer No. OH cm-1 C-Hcm-1 aromatic C-H cm-1 aliphatic C=N cm-1 C=C cm-1 C-O-C cm-1 C-O ring cm-1 others P 1 3369.64 3060 2927.94 1676.14 1512.19 1217 914.26 — P 2 3419.79 3070 2935.66 1649.14 1595.13 1269.16 918.12 — P 3 3400.50 3060 2931.80 1602.85 1504.48 1238.30 952.84 — P4 3400.50 3060 2935.66 — 1597.06 1246.02 914.26 N=N1460.11 P5 3388.93 3076.46 2931.80 1678.07 1575.84 1240 914.26 — P 6 3409.33 3054.41 2930.96 — 1495.86 1234.18 943.23 N=N1460.18 P 7 3325.28 3030 2918.30 1606.70 1515.5 1257.59 929.69 — P8 3315.63 3010 2924.09 1604.77 1533.34 1240.23 939.33 — P 9 3394.72 3000 2939.52 — 1510 1246.02 941.61 — P10 3377.36 3001 2945.30 1608.63 1552.70 1265.3 939.33 — Table (5): Summary of dielectric breakdown properties of blended nanocomposites (B1- B10)with (1,3,5,7) wt% epoxy resins in the present 3%TiO2. Compound No. Dielectric breakdown Strength KV/mm UPR+1%epoxy UPR+3%epoxy UPR+5%epoxy UPR+7%epoxy B 1 10.24 11.07 10.27 9.6 B 2 10.22 11.97 9.87 9.8 B 3 12.9 11.17 10.9 10.5 B 4 12.18 12.9 12.3 11.78 B5 11.2 12.8 12.07 11.78 B6 12.15 11.42 10.97 11.87 B 7 12.18 12.57 12.97 11.96 B8 11.5 12.45 12.01 11.32 B9 12.48 13.67 13.64 11.7 B 10 10.16 10.61 11.74 10.8 Property UPR/(1%)wt Epoxy UPR/(3%)wt Epoxy UPR/(5%)wt Epoxy UPR/(7%)wt Epoxy Dielectric breakdown 9.71 9.91 10.56 11.97 Thermal conductivity 0.235 0.2205 0.2192 0.2102 176 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 Table (6): Summary of thermal contuctivity properties of blended nanocompos -ites[B1- B10] with (1,3,5,7) wt% epoxy resins in the present 3%TiO2. Compound No. Thermal conductivity Strength W/mK UPR+1%epoxy UPR+3%epoxy UPR+5%epoxy UPR+7%epoxy B1 0.414000 0.300665 0.239722 0.274821 B 2 0.307933 0.255970 0.234000 0.232596 B3 0.309000 0.257000 0.244063 0.239500 B4 0300007 0.327208 0.321062 0.272081 B5 0.32162 0.301871 0.275231 0.231677 B6 0.289663 0.271310 0.277302 0.225242 B7 0.248258 0.234637 0.231171 0.215556 B 8 0.295200 0.280180 0.273146 0.268891 B9 0.243371 0.267000 0.23783 0.27851 B10 0.158733 0.196705 0.187540 0.18324 Table (7): Thermal properties-TGA blended nanocomposites in the present 3%TiO2. Blend NO. Onset temperature (°C) Temperature of maximum (°C) Temperature of half loss (°C) Temperature of melt(°C) UPR/TiO2 281.1 409.1 389.2 556.7 B1 268.9 404 386.5 552 B2 263.5 379.7 405.3 540.5 B3 197 405.8 371.6 537.4 B4 192 406.2 365 547.3 B8 264.9 395.6 372 552.7 177 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 Figure (1) A: The FTIR –spectrum of [ P1] , B: The FTIR –spectrum of blended nanocomposite [ B1], C: The FTIR –spectrum of UPR/TiO2. Figure (2) A: The 1HNMR –spectrum of [ P2] 178 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016   Figure (3): Dielectric breakdown properties strength of blended nanocomposites versus epoxy concentration   Figure (4): Thermal conductivity properties strength of blended nanocomposites versus epoxy concentration Dielectric breackdown strength 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Epoxy concentration D ie le ct ri c b re a ck d o w n (K V /m m ) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Thermal conductivity 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Epoxy concentration T h er m a l co n d u ct iv it y W /m .K B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 179 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016       Figure (5 ): TGA of UPR and blended nanocomposites, A:UPR, B:blend 1,C: blend2, D: blend 3, E:blend 4,F: blend 8. 180 | Chemistry 2016) عام 1العدد ( 29لمجلد ا مجلة إبن الهيثم للعلوم الصرفة و التطبيقية Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 29 (1) 2016 قوة انهيار العزل الكهربائي والتوصيل الحراري لمختلف السبائك النانوية االيبوكسي الجديدالمتراكبة لراتنج بسمة جعفر احمد فاضل سليم متي جمبد هرمز توما جامعة بغداد (ابن الهيثم) / الصرفةكلية التربية ابن الهيثم للعلوم /قسم الكيمياء 2015تموز//12 في:قبل ،2015أيار//27استلم في: الخالصة كسيد التيتانيوم وومليئة بجسيمات نانويه وهي ثاني أيكشف هذا البحث عن تحضيروتطوير عشرة مخاليط متراكبة )2TiO .( على أساس راتنج البوليستر غير المشبعة تراكبة النانويهلماتم تحضير شبكات البوليمر)UPR ( وراتنجات تيتانيوم كسيد الوثاني ألالمثلى من الجسيمات النانويه أذ تم اختيار النسبه.عن طريق مزج فعال مختلفه جديدة ايبوكسي النسبة المثلى ومن ثم مزجت .من نتائج مزجها بنسب مختلفة مع راتنج البولي استر غير مشبع وهي نسبة مختارة %)3( ٪ من 7٪ و 5, ٪ 3, ٪ 1جديدة االيبوكسي ال مركبات نسب مختلفه من بولي استرالغير مشبع معمع )2TiO(من%) 3( وتمت مقارنة خصائص قوة انهيار العزل الكهربائي والتوصيل الحراري للمتراكبات . وزن راتنج البولي استر غير مشبع تظهر االولى قوة انهيار العزل الكهربائي اعلى في حين ). TiO2٪ 3و UPR(النانويه المقساة مع تلك المواد األساس و UPR(نفسها المذكورة وبالنسب )2( رقم التوصيل الحراري هي اقل وكما تم تحضيرمخاليط الحد تراكيب االيبوكسي (Epoxy و مقارنتها مع مخلوط المتراكبة النانويه لوحظه ان قوة انهيار العزل الكهربائي للمخلوط المتراكبة النانويه هو االعلى عند نسب التحميل الواطئة لإليبوكسي رزن وكما اظهرت التوصيلية الحرارية عالية مقارنة بما اظهرته مخاليط من )UPR Epoxy/( . اجري التحليل الحراري الوزني)TGA ( لدراسة الخواص الحرارية للمخاليط المتراكبة النانويه . السبائك النانويه المتراكبة,البولي استر الغير مشبع,قوة انهيار العزل الكهربائي,االيبوكسي رزن.:الكلمات المفتاحية