Chemistry - 264 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Synthesis, Characterization Of New Schiff Base And Some Metal Complexes Derived From Glyoxylic Acid And O-Phenylenediamine J. Sh. Sultan Department of Chemistry, College of Education, Ibn-Al-Haitham, University of Baghdad Email: ja.sultan@yahoo.com. Received in : 27 May 2012 Accepted in : 7 August 2012 Abstract The new Schiff base, namely (2-Amino-phenylimino)-acetic acid (L) was prepared from condensation of glyoxylic acid with o-phenylene diamine. The structure (L) was characterized by, IR, 1H, 13C-NMR and CHN analysis. Metal complexes of the ligand (L) were synthesized and their structures were characterized by Atomic absorption, IR and UV- Visible spectra, molar conductivity, magnetic moment and molar ratio determination (Co+2, Cd+2) complexes. All complexes showed octahedral geometries. Key words: Synthesis, Characterization, Schiff base, glyoxylic acid, O-phenylenediamine and metal ions Introduction Glyoxilic acid and its derivatives play important roles in natural processes, participating in glyoxylate cycle which functions in plants and in some microorganism[1-4]. The presence of aldehyde in the glyoxilic acid allows numerous a cyclic derivatives containing C=N bond- azomethines and hydrazones[5-8]. The aim of this work is to synthesize and study the coordination behaviour of the new ligand (2-Amino-phenylimino)-acetic acid (L) and its complexes with Co+2, Ni+2, Cu+2, Cd+2, Hg+2 and Pb+2. Experimental All chemicals were purchased from BDH, and used without further purifications. Instrumentation 1. FTIR spectra were recorded in KBr on Shimadzu- 8300 Spectrophotometer in the range of (4000-400 cm–1). 2. The electronic spectra in H2O were recorded using the UV-Visible spectrophotometer type (spectra 190-900 nm) CECIL, England, with quartz cell of (1 cm) path length. 3. The melting point was recorded on "Gallen kamp Melting point Apparatus". 4. The Conductance Measurements were recorded on W. T. W. conductivity Meter. 5. Metal analysis. The metal contents of the complexes were determined by atomic absorption (A. A.) technique. Using a shimadzu PR-5. ORAPHIC PRINTER atomic obsorption spectrophotometer. Chemistry - 265 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 6. Balance Magnetic Susceptibility model MSB-MLI Al-Nahrain University 7. The characterize of new ligand (L) is achieved by: A: 1H and 13C-NMR spectra were recorded by using a bruker 300 MHZ (Switzerland). Chemical Shift of all 1H and 13C-NMR spectra were recorded in δ(ppm) unit downfield from internal reference tetramethylsilane (TMS), using D2O as a solvent. B: Elemental analysis for carbon, hydrogen was using a Euro Vector EA 3000 A Elemental Analysis (Italy). C: These analysis (A and B) were done in at AL-al-Bayt University, Al- Mafrag, Jordan. Synthesis 1. Synthesis of (2-Amino-phenylimino)-acetic acid (L) To a hot solution of O-phenylenediamine (0.074g. 1m mole) in (5ml) of ethanol, a hot solution of glyoxylic acid (0.108 g. 1 m mole) in (5ml) of ethanol was added. The solution was refluxed for 3.5 hrs. Upon cooling a dark brown precipitate formed, was filtered off and recrystallized from a hot mixture of [(5ml) methanol, (5ml) acetone and (2ml) distilled water]. A dark brown precipitate, yield 85%, melting point 98- 100C°, CHN, C= 58.53 (58.51), H = 4.87 (4.69). 2. Synthesis of complexes The complex LCoCl.2H2O has been synthesized as follows: To a hot solution of ligand (L) (0.164g. 1m mole) in (5ml) of ethanol, a hot solution of cobalt(II) Chloride. hexa hydrate (0.238g. 1m mole) in (5 ml) of ethanol was added. The precipitate immediately formed, the mixture was boiled and stirring for 10-15 min., filtered off. Recrestallized from a hot of (10ml) methanol, a dark green precipitate, yield 80%, decomposed at 110 D°. The physical properties for synthesized ligand (L) and its complexes are shown in Table (1). A similar method was used to prepare other complexes: LNiCl.2H2O, L(0.164g 1m mole), NiCl2.6H2O (0.238g, 1m mole), (10ml) ethanol, (10ml) methanol, yield 90% decomposed at 200 D°, LCuCl.2H2O, L(0.164g, lm mole), CuCl2.2H2O (0.170g, 1m mole), (10ml) ethanol, (10ml) methanol, yield 82% decomposed at 180 D°, LCdCl.2H2O, L(0.164g, lm mole), CdCl2.H2O (0.202g, 1m mole), (10ml) ethanol, (10ml) methanol, yield 95% decomposed at 160 D°, LHgCl.2H2O, L(0.164g, lm mole), HgCl2 (0.271g, 1m mole), (10ml) ethanol, (10ml) methanol, yield 78% decomposed at 190 D°, LPb(NO3)2.2H2O, L(0.164g, lm mole), Pb(NO3)2 (0.331g, 1m mole), (10ml) ethanol, (10ml) methanol yield 82% decomposed at 210 D°. IR spectrum of the ligand (L) The IR spectrum of the (L) Fig. (1) shows new strong bands at (1737, 1668) cm–1 are due to υ(C=O) of carboxylic group and HC=N imine[8-9] compared with the precursors Figs. (2–3), Table (4), which indicate the ligand (L) has been obtained. Bands corresponding to C–H aromatic stretching at (3061) cm–1[1,5], υNH2 at (3385, 3363) cm–1 are observed[1,3]. Absorption occurs as a sharp peak in the 3466 cm–1 is attributed to free (unassociated) hydroxyl–CH2COOH group[5,7,9]. Chemistry - 266 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 UV- spectrum of the ligand (L) The UV- spectrum of (L) Fig. (4), Table (5) was recorded in distilled water with the range (210– 400) nm. The molar absorption at (261) nm may be assigned to an π–π* transition[10]. NMR spectrum for the ligand (L) 1H- NMR spectrum of the ligand (L) in DMSO–d6 Table (2), Fig. (5) is characterized by the appearance of chemical shift related to the NH2 protons- aromatic δ–NH2 at 5.10 ppm., Chemical shift of aromatic protons showed at δ 6.77–7.539 ppm. The characteristic signals at 8.21 ppm. is assigned to HC=N. The COOH signal is found at 10.354 ppm. 13C–NMR of the free ligand Table (3), Fig. (6) shows the HC=N peak at 143.50 ppm., the COOH peak at 170 ppm. and carbon peaks for aromatic are detected at 110-125 ppm.[5,11,12]. The IR spectra for the complexes The free ligand exhibits a strong absorption band at (1737) cm–1 due to the stretching vibration of υ(C=O) of the carboxylic group. This band is disappeared in the spectra of its complexes accompanied by the appearance of two bands one in the (1569-1514)cm–1 range due to υasymm. (COO–) and another bands in the (1398-1375) cm-1 range assigned to υsymm. (COO–), ∆υ= (171-139) cm-1. Fig. (7), Table (4). This indicates that the carboxylic group is monodentate coordinate[13-14]. The appearance of stretching modes assigned to NH2 and HC=N of –C=NH groups was observed at (3375–3456) cm-1 and (1660–1620) cm-1 respectively in free ligand[1-3]. The stretching vibration of azomethine group of the ligand was shifted to lower frequencies in all spectra, whereas stretching vibrations of NH2 getting broad indicating additional coordination of metal ions to NH2 and (C=N) group[1-5]. Bands related to coordinate water were observed in all spectra; Cd+2 (704) cm-1, Ni+2 (713) cm-1, Hg+2 (621) cm-1, Cu+2 (669) cm-1, Co+2 (775) cm-1 and Pb+2 (806) cm-1. Additional bands were observed at lower frequencies (600–400) cm-1 and were attributed to M–N, M–O stretching modes[1-2,5,8]. Lead complex shows band at 1660 cm–1 due to the NO–3 group. The electronic absorption spectral and magnetic studies The Co(II) complex exhibited band around (490) nm (20408) cm-1 (εmax=300 molar–1 cm–1) Table (5), which was assigned to 4T1g(F) → 4T1g(P), for high– spin octahedral geometry. The magnetic susceptibility measurements (4.50) BM Table (1), for the solid Co(II) complex is indicated of three unpaired electrons per Co(II) ion consistent with its odctahedral environment[9,16-17]. The electronic absorption spectrum of the Ni(II) complex showed broad band center at (460)nm (21739cm–1) (εmax=400molar–1 cm–1) assigned to the spin-allowed transition 3A2g(F)→3T1g(P) consistent with octahedral configuration[19,22]. The magnetic moment (2.90) BM suggested two unpaired electrons per Ni(II) also consistent with octahedral geometry. The electronic absorption spectrum of Cu(II) complex Fig. (8) showed broad band at (800) nm (12500) cm–1 (εmax=224 molar–1 cm–1), which was assigned to 2Eg→2T2g transition, typical for an octahedral Chemistry - 267 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 configuration. The magnetic moment (1.80) BM suggested one unpaired electron for Cu(II) consistent with its octahedral environment[18-19]. The spectra of Cd+2, Pb+2 and Hg+2 complexes exhibited charge transfer bands, which were assigned to a ligand to metal charge transfer[12,20]. Solutions chemistry Molar ratio The complexes of the ligand (L) with selected ions (Co+2, Cd+2) were studied in solution using water as solvents, in order to determine (M:L) ratio in the prepared complexes, following molar ratio method[21]. A series of solutions were prepared having a constant concentration (C) 10–3 M of the hydrated metal salts and the ligand (L). The (M:L) ratio was determined from the relationship between the absorption of the observed light and mole ratio (M:L) found to be (1:1). The result of complexes formation in solution are shown in Table (6–9), Fig. (9–10). To determined ∆G[15]: k = ML/[M][L] (1) α = (Am – As)/ Am (2) k = The equation (1) is written to mole ratio (1:1) as the following kf = (1 – α)/ α2C (3) Λ = εmax.b.c. (4) kf = stability constant α = decomposition Degree M = metal ion L = The ligand [ ] = concentration As = The absorption of the equivalent point of mole ratio Am = The maximum absorption of the mole ratio C = The complex concentration (mole. L–1). Δ G = - 2.303 RT Log K. R = 8.303 T = 273 + 25 = 298 Molar conductivity for the complexes of the ligand (L) The molar conductance of the complexes in water Table (10) lies in the (3.40– 0.61) S. cm2 molar–1 range, indicating their non– electrolyte nature, except for the Cu complex which its molar conductance lies in the (119) S. cm2 molar–1 range, indicating its electrolytic nature with (1:1) ratio[22]. Chemistry - 268 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Conclusion The Schiff base ligand (L) is prepared and charcterised by C, H, N and 1H, 13C–NMR. The ligand (L) is behaved as tridentate mode: NH2, CH=N and forming octahedral complexes with M+2, where M+2 = Co, Ni, Cu, Cd, Hg and Pb Scheme below: References 1. Mishchenco, A. V.; Lukov, V. V. and Popov, L. D. (2011) synthesis and physico- chemical study of complexation of glyoxylic acid arolhydrazone, with Cu(II) in solution and solid phale, Joural of coordination chemistry, 64(11):1963- 1976. 2. Arif, M.; Qurashi, M. M. R. and Shad, M. A. (2001) metal- based antibacterial agents; synthesis, characterization, and in vitro biological evaluation of cefixime- derived Schiff bases and their complexes with Zn(II), Cu(II), Ni(II) and Co(II), Journal of coordination chemistry, 64(11):1914-1930. 3. Dominik, C. and Branko, K. (2011) schiff base derived from 2-hydroxyl-1- naphthaldehyde and liquid- assisted mechanochemical synthesis of its isostructural Cu(II) and Co(II) complexes, crystengcomm, 13: 4351-4357. 4. Abdulghani, A. J. and Abbas, N. M. (2011) synthesis characterization and biological Activity study of New Schiff and mannich bases and some metal complexes derived from isatin and dithiooxamide, Hindawi publishing corporation bioinorganic chemistry and applications, p. 1-15. 5. Cemal, S.; Zeliha, H. and Hakan, D. (2011) synthesis, characterizations and structure of NO doner Schiff base ligands and nickel(II) and copper(II) complexes, Journal of Molecular structure, 977: 53- 59. 6. Anant, P. and Singh, K. K. (2011) synthesis, spectroscopy and biological studies of Nickel(II) complexes with tetradentate shicff basce having N2O2 donor group, J. Dev. Biol. Tissue. Engineering, 3 (2):13-19. 7. Kamellia, N. and Razie, S. (2011) synthesis and mesomorphic of symmetric tetradentate shicff bases based on azo-containing salicylaldimines and their copper (II) complexes, Journal of coordination chemistry, 64(11): 1859-1870. 8. Sajjad, M.; Shokoh, B. and Asad, Sh. (2011) Hetero trinuclear manganese (II) and Vanadium (IV) Schiff base complexes, as epoxidation catalysts, transition met chem.., 36: 425-431. C–O– O M = Co+2, Ni+2, Cu+2, Cd+2, Hg+2 and Pb+2 X = Cl in all complexes except in lead complex X = –ONO–2 OH N NH2 C H C OH O NH2 N C M H O H2O H2O X C O + HX O MX 2 H2N H2N H O Chemistry - 269 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 9. Raj, K. D. and Sharad, K. M. (2011) synthesis, spectroscopic and antimicrobial studies of new iron (III) complexes, containing Schiff bases and substituted benzoxazole ligands, Journal of coordination chemistry, 64(13):2292-2301. 10. Fleming, I. and William, D. H. (1966) "Spectroscopic methods in organic chemistry", Ed. McGraw Hill publishing company ltd, London. 11. Tajmir, R. (1990) coordination chemistry of vitamin c. part I. Interaction of L-Ascorbic Acid with Alkaline Earth Metal Ions in the Crystalline Solid and Aqueous Solution, J. Inorg. Biochem, 40:181-188. 12. Tajmir, R. (1991) Coordination chemistry of vitamin C. part (II). Interaction of L- Ascorbic Acid with Zn(II), cd(II), Hg(II), and Mn(II) Ions in the solid state and in Aqueous solution, Int. J. Inorg. Biochem, 42: 47-55. 13. Geeta, B. and Ravinder, V. (2011) synthesis, characterization and biological evaluation of mononuclear Co(II)m Ni(II) and Pd(II) complexes, with New N2O2 schiff base ligand, chem.., pharm. Bull., 95 (2):166-171. 14. Washed, M. G.; Refat, M. S. and Megharbel, S. M. (2009) "Synthesis spectroscopic and thermal characterization of some transition metal complexes of folic acid", spectrochimia acta A, 70(4): 916–922. 15. Sutton, D. (1968) Electronic spectra of Transition Metal complexes Mc GRAW-HILL., London. 16. Malcolm, J. A.; Gordonk, A. and Nigam, P. R. (1999) Synthesis and characterization of platinum (II) complexes of L- Ascorbic Acid, Inorg. Chem., 38:5864-5869. 17. Orgel, L. (1966) "An Introduction to transition metal Chemistry", 2nd ed, Wiley, New York. 18. Rakesh, K. Sh.; Munirathnam, N. and Ashoka, G. S. (2008) Asymmetric allylic alkylation by palladium- bisphosphinites, Tetrahedron; Asymmetry, 19:555–663. 19. Lever, P. A. B. (1968) "In organic electronic spectroscopy", Elsevier publishing company, New York, 6:121. 20. Choi, K. Y.; Jeon, Y. M.; Lee, K. C.; Ryu, H.; Suh, M.; Park, H. S.; Kim, M. J. and Song, Y. H. (2004) Preparation and characterization of a bidentate carboxylate bridged dinuclear cadimium(II) complex with bis(2-pyridyl methyl) amino-3-propionic acid, Journal of Chemical Crystollography, 34:591-596. 21. Skoog, D. A. and Donald, M. (1974) Fundamentals of Analytical chemistry Altoit London Edition. 22. Kettle, S. F. (1975) "Coordination Compounds", Thomas Nelson and Sons, London, P. 165. Chemistry - 270 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Table (1): The physical properties for synthesized lignad (L) and its complexes Empirical formula Yield % M.P. C° Colour µeffect Found (Calc.) % metal Solubility L 85 98-100C° Dark brown - Watar, methanol, ethanol, ether, DMF, DMSO LCoCl.2H2O 80 110 D° Dark green 4.50 (20.00) 19.66 Watar, methanol, ethanol, DMF, DMSO LNiCl.2H2O 90 200 D° Brown 2.90 (20.00) 19.31 = LCuCl.2H2O 82 180 D° Dark brown 1.80 (21.07) 21.80 = LCdCl.2H2O 95 160 D° brown - (32.18) 32.45 = LHgCl.2H2O 78 190 D° pale brown - (45.93) 45.46 = LPbNO3.2H2O 82 210 D° brown - (44.13) 44.50 = L=C8H8O2N2, DMF = dimethyl formamide, DMSO = dimethyl sulfoxide, °D = Decomposition Table (2): 1H-NMR Chemical shifts for L (ppm in D2O) NH2 Aromatic proton HC=N COOH 5.10 ppm. 6.77-7.539 8.221 ppm 10.354 ppm Table (3): 13C-NMR Chemical shifts for L (ppm in D2O) HC=N COOH Aromatic carbons 143.50 ppm. 170 ppm 110-125 ppm. Table (4): Infrared spectral data (wave number υ–) cm–1 for the ligand (L), precursors and its complexes Compound υ(OH) υ(C=O) υ(NH2) υ(C=N) υ(C-H) Aromatic υassm. COO– υsymm. COO– ∆cm–1 Coordinate water M–N M–O Glyoxylic acid 3361 1745 - - - - - - - - O-phenylene diamine - - 3387 3363 - 3057 - - - - - L 3466 1737 3385 3363 1668 3061 - - - - - LCoCl.2H2O - - 3408 3375 1640 1624 3080 1558 1516 1398 1380 170 136 775 594 468 LNiCl.2H2O - - 3404 3375 1660 1614 3060 1560 1520 1396 1380 164 140 713 572 430 LCuCl.2H2O - - 3448 3376 1653 1622 3134 1565 1825 1394 1385 171 140 669 549 457 LCdCl.2H2O - - 3456 3379 1640 1620 3080 1550 1514 1386 1375 164 139 704 599 424 LHgCl.2H2O - - 3450 3380 1650 1620 3064 1541 1516 1398 1375 143 141 621 580 420 LPbNO3.2H2O - - 3450 3376 1650 1630 3065 1569 1520 1384 1375 185 145 806 580 450 Chemistry - 271 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Table (5): Electronic spectral data of the ligand (L) and its metal complexes Compound λnm υ – wave number cm–1 (εmax molar–1 cm–1) Assignments Proposed structure L 261 38314 325 π→π* LCoCl.2H2O 490 20408 300 4T1g(F)→4T1g(P) Octahedral LNiCl.2H2O 460 21739 400 4A2g(F)→4T1g(P) = LCuCl.2H2O 800 12500 224 2Eg→2T2g = LCdCl.2H2O 267 37453 463 C. T. = LHgCl.2H2O 268 37313 398 C. T. = LPbNO3.2H2O 268 37313 398 C. T. = Where L=C8H8O2N2, C.T.= Charge Transfer Table (6): VM, VL and Absorption of ligand (L), VM = volume of metal in ml, VL= volume of ligand in ml [LCoCl.2H2O] [LCdCl.2H2O] VM VL Abs VM VL Abs 1 ml 0.25 0.772 1 ml 0.25 0.783 1 0.50 1.251 1 0.50 1.092 1 0.75 1.624 1 0.75 1.455 1 1.00 1.950 1 1.00 1.755 1 1.25 2.050 1 1.25 1.964 1 1.50 2.174 1 1.50 2.084 1 1.75 2.289 1 1.75 2.250 1 2.00 2.404 1 2.00 2.403 1 2.25 2.500 1 2.25 2.558 1 2.50 2.601 1 2.50 2.695 Table (7): The absorbance values against mole– ratio values of complex [LCoCl.2H2O] in solution (1×10–3 mole. L–1) in water at λ (272.8) nm No. L: M absorbance 1 0.5:1 1.251 2 1:1 1.950 3 2:1 2.404 Table (8): The absorbance values against mole- ratio values of complex [LCdCl.2H2O] in solution (1×10–3 mole. L–1) in water at λ 272.8 nm No. L: M absorbance 1 0.5:1 1.092 2 1:1 1.775 3 2:1 2.403 Table (9): Stability constant and ∆G for the ligand (L) complexes Compounds As Am α K Log K ∆G [LCoCl.2H2O] 1.950 2.404 0.19 22×109 10.43 –58.9 [LCdCl.2H2O] 1.755 2.403 0.27 1×104 4 –22.7 [LCoCl.2H2O] > [LCdCl.2H2O] Chemistry - 272 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Table (10): The molar conductance of the complexes* Compound fragment ions Λm S.cm2 molar–1 ratio LCoCl.2H2O 1.71 Neutral LNiCl.2H2O 0.61 Neutral LCuCl.2H2O 119 1:1 LCdCl.2H2O 1.5 Neutral LHgCl.2H2O 3.40 Neutral LPbNO3.2H2O 0.71 Neutral * Recorded in (water) solvent, where L=C8H8O2N2 Fig. (1): The IR spectrum of the ligand (L) Fig. (2): The IR spectrum of glyoxylic acid Fig. (3): The IR spectrum of O-phenylene diamine Chemistry - 273 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 Fig. (4): Electronic spectrum of the ligand (L) Fig. (5): The 1H-NMR spectrum of the ligand (L) Fig. (6): The 13C-NMR spectrum of the ligand (L) Chemistry - 274 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 0.0 0.5 1.0 1.5 2.0 2.5 Mole Ratio 0.0 1.0 2.0 3.0 Abs orb tion 0.0 0.5 1.0 1.5 2.0 2.5 Mole Ratio 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Ab so rbt ion Fig. (7): The IR spectrum of the (NiCl.2H2O) complex Fig. (8): Electronic spectrum of the (CuCl.2H2O) complex Fig. (9): The mole ratio curve of complex [CoCl.2H2O] in solution (1×10-3 mole. l-1) at (λ=272.8 nm) Fig. (10): The mole ratio curve of complex [CdCl.2H2O] in solution (1×10-3 mole. l-1) at (λ=272.8 nm) Chemistry - 275 مجلة إبن الهيثم للعلوم الصرفة و التطبيقية 2012 السنة 25 المجلد 3 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 3 Vol. 25 Year 2012 تحضير، تشخيص قاعدة شف جديدة وبعض المعقدات الفلزية المشتقة فنيلين داي امين -من حامض الكاليوكسيلك واورثو جاسم شهاب سلطان ، جامعة بغداد ، ابن الهيثم قسم الكيمياء، كلية التربية 2012آب 7قبل البحث في : 2012آيار 27استلم البحث في : الخالصة ) Lحامض الخليك ( -فنيل إمينو)-أمينو-2قاعدة شف جديدة، ( فنيلـــين داي امـــين، وتـــم تشخيصـــها بواســـطة اطيـــاف األشـــعة تحـــت -حضـــرت مـــن تكـــاثف حـــامض الكاليوكســـيلك مـــع اورثـــو ).C.H.Nوتحليل العناصر كاربون، هيدروجين ونتروجين ( 1H, 13C–NMRالحمراء، وطيف الرنين النووي المغناطيسي ) بواســطة االمتصــاص الـذري، طيــف االشــعة تحـت الحمــراء، طيــف األشــعة Lحضـرت وشخصــت معقــدات الليكانـد ( المرئية، التوصيلية الموالرية، الحساسية المغناطيسية والنسبة المولية لمعقدي الكوبلت والكادميوم الثنائية التكافؤ. كل المعقدات أعطت شكل ثماني السطوح. ــــــــــة: ــــــــــات المفتاحي فنيلــــــــــين داي أمــــــــــين -ضــــــــــير، تشــــــــــخيص، قاعــــــــــدة شــــــــــف، حــــــــــامض الكاليوكســــــــــيلك، ارثــــــــــوتح الكلم وايونات الفلزات.