316 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 تحضير وتشخيص بعض المعقدات الفلزية الجديدة لليكاند (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3- enedibenzoate) عبد الجبار عبد القادر مخلص ، باسمة محسن سرحان ، رسمية محمود رميز ابن الهيثم ، جامعة بغداد -قسم الكيمياء، كلية التربية 2012كانون األول 11قبل البحث في 2011الثاني تشرين 14استلم البحث في : الخالصة تم تحضير بعض المعقدات الفلزية الجديدة من الليكاند (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-enedibenzoate) (L) نائيـة التكـافؤ وشخصـت بـالطرائق الطيفيـة المتـوافرة مع ايونات (الكالسيوم، الكوبلت، النيكل، النحاس، الخارصـين، الكـادميوم والزئبـق) الث وطيـف االشـعة تحـت الحمـراء وطيـف االشـعة فـوق البنفسـجية والمرئيـة (1H and 13CNMR)ومنها طيف الـرنين النـووي المغناطيسـي لمعقـدات فـي مـذيب فضال" عن تعيين نسبة الفلز في المعقدات بوساطة طيف االمتصـاص الـذري وقيـاس التوصـيلية الموالريـة لمحاليـل ا وقياس العزم المغناطيسي المؤثر في المعقدات الصلبة. ومن نتـائج هـذه الدراسـات التشخيصـية امكـن DMSO)ثنائي مثيل سلفوكسايد ( Ca+2 ،Co+2 ،Ni+2،Cu+2 ،Zn+2 ،Cd+2= االيـون الفلـزي ( M، إذ [M(L)Cl2]اعطـاء الصـيغة العامـة لهـذه المعقـدات وكمايـأتي ، Hg+2)و .(5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-enedibenzoate) = L ثنائي مثيل المالونيل، الكتون، بنزويت، معقدات. الكلمات المفتاحية: 317 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 Synthesis and Characterization of Some New Metal Complexes of (5-C-Dimethyl Malonyl-Pentulose-γ- Lactone-2,3-Enedibenzoate) A-J. A. Mukhlis, B. M. Sarhan and R. M. Rumez Department of Chemistry, College of Education - Ibn-Al-Haitham, University of Baghdad Received in : 14 November 2011 Accepted in : 11 January 2012 Abstract The synthesis of complexes for (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) with new ligand (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-enedibenzoate) (L) have been successfully prepared and characterized by (1H and 13CNMR, FTIR, (U.V-Vis) spectroscopy, Atomic absorption spectrophotometer (A.A.s), Molar conductivity measurements and Magnetic moment measurements, and the following general formula has been given for the prepared complexes [M(L)Cl2] where M = (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2, Hg+2), L = (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-enedibenzoate). Key words: dimethyl malonyl, lactone, benzoate, complexes. Introduction Numbers of transition metals with malonic esters have been isolated and characterized and tested for their antifungal, antibacterial and anti-inflammatory activities[1-4]. Nasman[5] reported the synthesis a novel series of 15-membered diaza-dithiamacrocyclic complexes [ML1Cl2] and [ML2Cl2] (M+2 = Fe, Co, Ni, Cu and Zn) by the template condensation reaction of o-thiosalicylic acid with aliphatic or aromatic diamines and diethyl malonate in the presence of transition metals. Also Pothiraja and co-workers[6] reported the synthesis new Hf and Zr malonate from reaction of metal amides with different malonate ligands as dimethyl malonate, diethyl malonate, di-tert-butyl malonate and bis(trimethylsilyl) malonate. We have investigated in this paper, the preparation and properties of some new metal ion complexes with (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-enedibenzoate) (L). Experimental Materials and Measurements Metal salts (CaCl2.6H2O, CoCl2.6H2O, NiCl2.6H2O, CuCl2.2H2O, ZnCl2, CdCl2.H2O and HgCl2) were obtained from Fluka, Merck in high purity, Dimethyl malonate, KOH (BDH). (1H and 13CNMR) spectra were recorded using Ultra Shield 300 MHz, Bruker, Switzerland, at University of Al al-Bayt, Jordan. IR spectra (in KBr discs) were recorded on Shimadzu FT 318 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 infrared spectrophotometer. The (U.V-Vis) were recorded using (Shimadzu U.V- Vis 160A), (U.V-Vis) spectrophotometer in dimethyl sulphoxide solution (10-3 M). Metal contents of the complexes were determined by Atomic absorption technique by using Shimadzu (AA680G), Atomic absorption spectrophotometer. The magnetic moments (μeff B.M) were calculated on Faraday method by using (Balance Magnetic Susceptibility Model MSBMKT). Melting points were determined by using (Stuart-melting point apparatus). Conductivity measurements were carried out using Philips PW.Digital. The Thin Layer Chromatography was performed on aluminum plates coated with layer of silica gel, supplied by Merck. Synthesis of ligand, (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-enedibenzoate) (L) The mixture of potassium hydroxide (1.9g, 34mmol) and dimethyl malonate (3.9ml, 34mmol) was stirred for 30 minutes, a solution of (pentulosono-γ-lactone-2,3- enedibenzoate)[7] (10g, 28.4mmol) in absolute ethanol (60ml) was added. After stirring for 24 hours at room temperature, monitored by TLC showed that the reaction was complete eluted by (benzene: methanol, 4:6) and the resulting mixture was filtered then the solvent was evaporated, the combined residue was washed with chloroform and then petroleum ether (60-80˚C) to give (72.7%) as a white crystals (scheme 1), m.p (dec.240˚C), Rf (0.65). O O OBZBZO KOH O O OBZBZO HO HC CO2CH3 CO2CH3 CH2(CO2CH3)2 C H O (L) Scheme (1): Synthesis route for ligand (L) Synthesis of complexes Ethanolic solution of the metal salts (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2), ethanolic solution of (L) in (1:1) (Ligand:Metal) molar ratios was mixed. After stirring 6 hours, precipitates formed at room temperature, the solids were filtered, washed with (1:1) mixture of water:ethanol. Recrystallized from ethanol and dried at (50 ˚C). Results and Discussion The isolated complexes were crystalline solids, soluble in some of common solvents like dimethyl formamide (DMF), dimethyl sulphoxide (DMSO). The conductivity measurements in DMSO indicated the non-electrolyte behavior; Table (1) includes the physical properties. The analytical data confirmed the (1:1) (Metal:Ligand) composition of the complexes. The magnetic measurements (μeff B.M) for the complexes are also listed in Table (1). 319 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 Spectral studies 1H and 13CNMR spectra of the ligand (L). The 1H and 13CNMR spectra were recorded in DMSO and CDCl3. A) 1HNMR spectrum for the ligand (L) The 1HNMR spectrum of (L), Fig. (1) showed the following signals: singlet (s) at δ(2.50) ppm for (DMSO), doublet (d) at δ(2.72) ppm for (1H, CH malonate), singlet (s) at δ(3.16) ppm for (1H, OH), singlet (s) at δ(3.56-3.58) ppm for (6H, 2CH3 malonate) and multiplet (m) at δ(7.14-8.86) ppm for aromatic protons. B) 13CNMR spectrum for the ligand (L) The 13CNMR spectrum of (L), Fig. (2) showed the following signals: signal at δ(168.82) ppm for carbon (C=O) of the ester, lactone ring, signal at δ(135.26) ppm for C-3, signal at δ(131.55) ppm for C-2, signals at δ(129.58,128.40) ppm for aromatic carbons, signal at δ(51.63) ppm for C-4, signal at δ(44.67) ppm for C-5 and signals at δ(40.78-39.11) ppm for C-6, and carbon (2CH3 malonate)[8]. Infrared spectra The infrared spectra of ligand (L) and its complexes are given in Table (2). The strong absorption band at (1720) cm-1 in the free ligand due to υ(C=O) ester,[9,10] in the complexes spectra this band have been found in the range between (1712-1604) cm-1 shifted to lower frequencies by (8-16) cm- 1,[11,12] which indicates the coordination of the oxygen atom at the υ(C=O) group[11]. New bands appeared in the spectra of metal complexes at (524-432) cm-1 and (439-405) cm-1 which attributed to the (M-O) and (M-Cl) respectively. The FTIR spectra for the ligand and its copper complex were shown in the Figures (3) and (4). Electronic spectra The absorptions and assignments related to the ligand and their complexes are listed in Table (3). The ligand, Fig. (5) exhibited an absorption band in (U.V) region at (297) nm (33670) cm-1 could be attributed to (n π*) and (π π*) transitions[13,14]. The spectra of the complexes - [CoLCl2] complex The spectrum of the deep-blue complex of Co(II), Fig. (6) show the following bands at (33444) cm- 1, (23803) cm-1, (16743) cm-1 and (11494) cm-1 which have been assigned to (C.T), 4A2 V3 4T1(p), 4A2 V2 4T1(F) and 4A2 V1 4T2 respectively. The Racah interelectronic repulsion parameter (B́ ) found to be (404) cm-1, the ratio β = B́ / Bº comes out to be (0.416) (Bº is equal 971cm -1)[15]. These parameters are accepted for cobalt(II) tetrahedral complexes[16,17]. - [NiLCl2] complex The spectrum of the green complex exhibited the following absorptions at (33898) cm-1, (28571) cm-1, (16891) cm-1 and (12787) cm-1, these bands[17] are characteristic of tetrahedral nickel(II) 320 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 complex and were assigned to the transitions (C.T), 3T1(F) V3 3T1(P), 3T1(F) V2 3A2 and 3T1(F) V1 3T2 respectively. The Racah interelectronic repulsion parameter (B́ ) found to be (473.4) cm-1, the ratio β = B́ / Bº comes out to be (0.454) (Bº is equal 1030 cm -1)[15]. - [CuLCl2] complex The spectrum of the green complex of Cu(II) gave two bands at (32894) cm-1 caused by (C.T) transition and weak band appeared at (12820) cm-1 may be 2B1g 2B2g transition in square planar geometry[19-21]. - [CaLCl2], [ZnLCl2], [CdLCl2] and [HgLCl2] complexes The white complexes [CaLCl2], [ZnLCl2], [CdLCl2] and [HgLCl2] showed absorption bands at (34364) cm-1, (34722) cm-1, (34602) cm-1 and (33898) cm-1 respectively attributed to charge transfer because the electronic configuration of (Ca+2, Zn+2, Cd+2 and Hg+2) which confirms absence of any (d- d) transition[22,23]. According to spectral data as well as those obtained from elemental analysis, the chemical structure of the complexes suggested as: 1- Tetrahedral for [M(L)Cl2], where M = (Ca +2, Co+2, Ni+2, Zn+2, Cd+2 and Hg+2), Fig. (7). 2- Square planar for [Cu(L)Cl2], Fig. (8). References 1. Baba, S.; Ogura, T.;Kawaguchi, S. (1980) Bull. Chem. Soc., 53: 665 2. Kawato, T.; Uechi, T.; Kayama, H.; Kanatomi, H. and Kawanami, Y. (1984) “Preparation, structure, and properties of central-carbon-bonded diethyl malonato complexes of palladium(II) with bis-(μ-chloro) and μ-oxalato bridges” Inorg. Chem., 23: 764-769. 3. Singh, B. and Singh, V. L. (1999) “Mono and trinuclear lanthanide complexes of 13- membered tetraaza macrocycle: Synthesis and characterization”, Journal of Chemical Sciences, 111: 639-650. 4. He, H.S.; Zhao, Z.X.; Wong, W.K.; Li, K.F.; Meng, J.X. and Cheah, K.W. (2003) “Synthesis, characterization and near-infrared photoluminescent studies of diethyl malonate appended mono-porphyrinate lanthanide complexes”, Dalton Trans. 980-986. 5. Nasman, O. S. M. (2008) “N2S2-Donor macrocycles with some transition metal ions: Synthesis and characterization”, Phosphorus, Sulfur and Related Elements, 183: 1541-1551. 6. Pothiraja, R.; Milanov, A.; Parala, H.; Winter, M.; Fischer, R. A. and Devi, A. (2009) “Monomeric malonate precursors for the MOCVD of HfO2 and ZrO2 thin films”, Dalton Trans., 4: 654-663. 7. Al-Ogiady, R. M. R. (2010) Ph. D. Thesis, “Synthesis of New Malonate and Barbiturate Derivatives of D-Erythroascorbic Acid and their Metal Complexes”, College of Education / Ibn-Al-Haitham, University of Baghdad. 8. Carey, F. A. (2006) “Organic Chemistry”, 6th Ed., the McGraw-Hill Companies, Inc., New York. 321 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 9. Lappert, M. F. (1962) “Coordination compounds having carboxylic esters as ligands. Part II. Relative acceptor strengths of some Group III and IV halides”, J. Chem. Soc., 542. 10. Dalton, F. et al. (1960) “The infrared spectra of deuterium compounds. Part I. The C–H stretching bands of OMe and NMe groups”, J. Chem. Soc., 2927-2929. 11. Nakamoto, K. (1996) “Infrared Spectra of Inorganic and Coordination Compound”, 4th Ed., John Wiley and Sons, New York. 12. Veit, R.; Girerd, J. J.;Kahn, O.; Robert, F.; Jeannin, Y. and ElMurr, N. (1984) “Amino acid amides of dithiooxalic acid: Spectroscopic, electrochemical, and magnetic properties of copper(II) binuclear complexes and crystal structure of [N,N′-(1,2-dithioxoethane-1,2- diyl)bis(methylmethioninato)]bis(bromocopper(II))”, Inorg. Chem., 23: 4448-4454. 13. Silverstein, R. M.; Bassler, G. C. and Morrill, T. C. (1981) “Spectrometric Identification of Organic Compound”, 4th Ed., John Wiley and Sons, Inc., New York. 14. Dyer, R. J. (1965) “Application of Absorption Spectroscopy of Organic Compounds” Prentice-Hall, Inc., Englwood Cliffs, N. J., London. 15. Sutton, D. (1968) “Electronic Spectra of Transition Metal Complexes”, McGraw-Hill, New York. 16. Blum, P. R.; Wei, R. M. C. and Cummings, S. C. (1974) “Square-planar transition metal complexes with tetradentate thioiminato Schiff base ligands”, Inorg. Chem., 13 (2): 450-456. 17. Ferraro, J. R.; Murray, B. B. and Wieckowicz, N. J. (1972) “Cobalt(II) halide complexes of 2,2′-dithiodipyridine and 4,4′-dithiodipyridine”, Inorg. Nucl. Chem., 34: 231-235. 18. Menabaue, L.; Pellcani, G. C. and Saladini, M. (1979) “Cobalt(II), nickel(II) and zinc(II) complexes of peptide-group containing amino acids. Bis(N-Acetyl-DL-valinate)metal(II) complexes and their amine adducts”, Inorganic Chimica Acta, 32: 149-155. 19. Burger, K. (1973) “Coordination Chemistry, Experimental Methods”, Butter Worth, London. 20. Massy, A. C.; and Johnson, B. F. G. (1975) “The Chemistry of Copper, Silver and Gold”, Pergamon Press, Oxford, Vol. (20 and 41), London. 21. Jorgensen, C. K. (1964) “Absorption Spectra and Chemical Binding in Complexes”, Pergamon Press, Oxford, London. 22. Rabino Witch, E. and Mol, R. V. (1960) Phys., 14: 112, Jmorcus, R. (1960) Solar Energy, 4: 20. 23. Kashyap, B. C.; Taneja, A. D. and Banerji, S. K. (1975) “Complexes of some N-aryl,N′-2- (5-halo-pyridyl) thioureas with Cd(II) and Hg(II) chlorides”, J. Inorg. Nucl. Chem., 37 (6): 1542-1544. 322 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 Table (1): Physical properties of ligand and its complexes Formula Colour M.p˚C or dec. Metal % Found (Calc.) Molar conductivity (S.cm2mole-1) in DMSO (10-3 M) μeff (B.M) C24H20O11 [L] White 240(dec.) - 10.60 - [CaLCl2] White 190(dec.) 6.50 (6.73) 18 0 [CoLCl2] Deep-blue 110(dec.) 10.46 (9.59) 20 4.43 [NiLCl2] Green 220(dec.) 10.07 (9.57) 23 3.22 [CuLCl2] Green 187(dec.) 9.56 (10.27) 24.5 1.74 [ZnLCl2] White 210(dec.) 11.72 (10.54) 16.95 0 [CdLCl2] White 210(dec.) 15.84 (16.84) 23.6 0 [HgLCl2] White 175(dec.) 27.62 (26.54) 15 0 323 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 Table (2): The characteristic infrared of the ligand (L) and its metal complexes Compound υ(C=O) Ester aliphat. υ(C-H) Alipha. M-O M-Cl C24H20O11 [L] 1720(s) 2904(w) - - [CaLCl2] 1674(s) 2677(w) 524(w) 405(w) [CoLCl2] 1689(m) 2989(m) 432(w) 412(w) [NiLCl2] 1685(m) 2360(m) 459(w) 408(w) [CuLCl2] 1604(s) 2927(w) 474(w) 408(w) [ZnLCl2] 1612(s) 2985(m) 474(w) 405(w) [CdLCl2] 1708(s) 2935(w) 520(w) 439(w) [HgLCl2] 1712(s) 2985(m) 504(w) 435(w) Where: s = strong, m = medium, w = weak 324 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 Table (3): Electronic spectra data of (L) complexes in DMSO solvent Compound λmax nm Wave number cm -1 εmax Molar-1cm-1 Assignment [L] 297 33670 102 n π* π π* [CaLCl2] 291 34364 121 C.T [CoLCl2] 299 420.1 597.25 870 33444 23803 16743 11494 444 150 97 18 C.T 4A2 V3 4T1(p) 4A2 V2 4T1(F) 4A2 V1 4T2 [NiLCl2] 295 350 592 782 33898 28571 16891 12787 193 85 38 16 C.T 3T1(F) V3 3T1(P) 3T1(F) V2 3A2 3T1(F) V1 3T2 [CuLCl2] 304 780 32894 12820 2163 41 C.T 2B1g 2B2g [ZnLCl2] 288 34722 55 C.T [CdLCl2] 289 34602 77 C.T 325 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 [HgLCl2] 295 33898 432 C.T Fig. (1): 1HNMR spectrum of ligand (L) Fig. (2): 13CNMR spectrum of ligand (L) 326 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 Fig. (3): Infrared spectrum of ligand (L) Fig. (4): Infrared spectrum of [CuLCl2] Fig. (5): Electronic spectrum of ligand (L) 327 ة و التطبيقيةمجلة إبن الهيثم للعلوم الصرف 2012 السنة 25 المجلد 2 العدد Ibn Al-Haitham Journal for Pure and Applied Science No. 2 Vol. 25 Year 2012 Fig. (6): Electronic spectrum of [CoLCl2] CH CC OCH3 OO O O OBZBZO HO H3CO Cu ClCl Fig. (7): Tetrahedral geometry of [M(L)Cl2] complexes CH CC OCH3 OO O O OBZBZO HO H3CO M Cl Cl Fig. (8): Square planar geometry of Cu(II) complex