مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Synthesis o f Some New Metal Complexes of 5,6-O- Isopropylidene-2,3,-O,O Acetic Acid-L-Ascorbic Acid and Evaluation their Biological Activity J. S. Sultan, A. A. Muk hlus, F. H. Musa Departme nt of Chemistry, College of Education, Ibn Al- Haitham, Unive rsity of Baghdad Received in : 3 April 2011 Accepted in : 16 November 2011 Abstract Stable new derivative of L-ascorbic acid, 5,6-O-iso p rop y lidene 2,3-O,O acetic acid-L- ascorbic acid (L) was sy nthesized in good y ield by the reaction of 5,6-O-isop rop y lidene-L- ascorbic acid with chloroacetic acid in presence of potassium hydroxide. The new p roduct (L) was characterized by 1 H, 13 C–NM R, mass sp ectrum and fourier transform infrared (FT IR). The reaction of the ligand (L) with metal bivalent ion., M +2 = (Co, Ni, Cu, Cd, Hg, M g, Ca, Pb) sy nthesized and characterized by FT IR, UV-Visible, M olar conductance, Atomic absorp tion and the molar ratio (Ni +2 , Cd +2 ) comp lexes. Sp ectroscop ic evidence showed that t he binding of the M (II) ions with (L) are through the (C–I=O) Lacton and O-2-CH2COO – as a bidentate manar resulting in a six– coordinated metal ion; the values of , KF, G were estimated for Cd +2 , Ni +2 comp lexes and , B value, for Co +2 , Ni +2 comp lexes were calculated too. The st udy of biological activity of the ligand (L) and (Cd +2 , Cu +2 , Ca +2 ) comp lexes showed various activities toward staphylococcus aureu and Escherichia coli, excep t Ca- comp lex didn't show any effect. Key word: sy nthesis, sp ectroscop ic, Biological st udies Introduction The most sy nthetically useful and well st udied class of modified L-ascorbic acid is the 5,6-O-isop rop y lidene-L-ascorbic acid derivatives (Ketal of L-ascorbic aicd). These derivatives (5,6-O-Ketal & 5,6-O-acetal) are significant in organic sy nthesis for p rotection of the 5,6- hy droxy l functions, which makes them more soluble in organic solvents and also limits the interference of the p rotected hy droxy l group from reactions involving the C2- and C3- enol hy droxy ls[1-3], consequently, most sy nthesis began with 5,6-O-isop rop y lidene- L-ascorbic acid as the starting material, which is cheap ly and easily made from L-ascorbic acid[4]. مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 M etal comp lexes of ascorbic acid have been p repared and characterized. Sy nthesis of ascorbate comp lexes of some metals of the first transition series (e.g., TiO +2 , Cr +3 , M n +2 , Co +2 , Ni +2 , and Zn +2 ) have been achieved and they showed biochemical mechanism of metal ion cataly zed autooxidation of p harmaceutical and naturally occurring vitamin C[5]. The Vis, FT IR and 1 H–NM R sp ectral characterization of titany l ascorbates has been done by Jabs et.al.,[6]. Tajimir– Riahi[7] reported the FT IR and 13 C–NM R analysis of Al(III), La(VI) and Pb(II) ascorbates as solids and in solutions. The biological imp ortance of the ascorbic acid and its complexes are well known[5,6,8-12]. Recently , we reported some new metal comp lexes with 2,3,5,6-O,O,O,O-tetra acetic acid-L-ascorbic acid and showed various activities toward staphylococcus aureu and Escherichia coli, excep t Ca-complex didn't show any effect[13]. The main target of the p resent article is to p repare new derivatives of 5,6-O-iso p rop y lidene-L-ascorbic acid and its metal comp lexes and evaluate their activity toward staphylococcus aureu and Escherichia coli. Experimental Materials All chemicals were p urchased from BDH, and used without further purifications. Instrumentati on 1. FT IR sp ectra were recorded in KBr on Shimadzu- 8300 Spectrop hotometer in the range of (4000-400 cm –1 ). 2. The electronic sp ectra in H2O were recorded using the UV-Visible sp ectrop hotometer ty p e (sp ectra 190-900 nm) CECIL, England, with quartz cell of (1 cm) p ath length. 3. The melting p oint was recorded on "Gallen kamp melting p oint ap p aratus". 4. The conductance measurements were recorded on W. T. W. conductivity meter. 5. The characterize of new ligand (L) is achieved by: A: 1 H- and 13 C NM R sp ectra were recorded by using a bruker 300 M HZ (Switzerland). Chemical shift of all 1 H- and 13 C-NM R sp ectra were recorded in  (p p m) unit downfield from internal reference tetramethy lsilane (TM S), using D2O solvent. B: GCM S sp ectrum was p erformed GCM S solution/ M sc/ M sc-DI- unk, 9gm, comp any a Shimadzu model carried out QP 505 A, orgin: Jap an. C: All these analysis were done in at AL-al-Bay t University , Al- M afrag, Jordan. 6. Thin lay er chromatography (TLC): The (TLC) was p erformed on aluminum p lates coated with (0.25 mm) lay er of silica gel F254 (Fluka), and were detected by iodine. 1. S ynthesi s of 5,6-O-i so propyli dene-2,3,O,O-acetic acid -L-ascorbic acid (L) مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 O O O O O O O O HO OH O O 2 KO H H3C H 3C H3C H3 C H 2C OH C 2 Cl CH 2COOH O H 2C C OH O 2K Cl.xH2O 5,6-O-iso p rop y lidene-L-ascorbic acid (0.216 gm, 1 m mole) was dissolved in (15 ml) ethanol. Pot assium hy droxide (0.112 gm, 2 m mole) in ethanol (10 ml) solution was then added. Stirring was continued for (30) minutes. The chloroacetic acid (0.190 gm, 2 m mole) in ethanol (15 ml) solution was then added drop wise, st irring was continued for one hour. The resulting mixture p recipitate was filtered, recry st allized from (15 ml ethanol + 5 ml water) gave p ale brown cryst alline residue, melting p oint (109- 110 C), y ield 92%), RF  0.581, (M ethanol: Benzene), (5:5). 2. S ynthesi s of 5,6-O-iso propylidene 2,3-O,O-aceti c acid-L- ascorbic acid metal complexes, (M II =Co, Ni, Cu, Cd, Pb, Hg, Ca and Mg) All complexes were prepared as follows: To a solution of the L (0.332 gm 1 m mole) in ethanol (20 ml) was added a solution of p otassium hy droxide (0.056 gm, 1 m mole) in ethanol (5 ml). The mixture was st irred at room temp erature for hour. To this mixture was added solution of (1 m mole) of metal chloride in (20 ml) of ethanol. (0.170 gm CuCl2.2H2O), (0.238 gm NiCl2.6H2O), (0.238 gm CoCl2.6H2O), (0.202 gm CdCl2.H2O), (0.331 gm Pb(NO3)2), (0.271 gm HgCl2), (0.204 gm M gCl2.6H2O) and (0.219 gm CaCl2.6H2O). Then the solution was st irring for one hour. The solution was evap orated slowly to bring down the comp lex. The comp lex was recry st allized from ethanol. The phy sical prop erties for sy nthesized ligand L and its complexes are shown in Table (1). Re sults and Discussion 5,6-O-iso p rop y lidene-2,3-O,O-acetic acid L-ascorbic acid (L) was p repared in one st ep from reactions 5,6-O-iso p rop y lidene-L-ascorbic acid with chloroacetic acid in p resence of p otassium hydroxide, scheme (1): S cheme (1): The reaction of 5-6-iso propylidene -L-ascorbic acid with chl oro acetic acid in presence of potassium hydroxide 1 2 مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 The I.R sp ectrum of 5,6-O-iso p rop y lidene-L-ascorbic acid Fig. (1) as st arting material is comp ared with the new ligand (L) Fig. (2), the results are summarized in Table (2). 5,6-O-iso p rop y lidene-L-ascorbic acid exhibits two bands at 3240 cm –1 and 3078 cm –1 assigned to (OH) p ositions (C–3) and (C–2) resp ectively[14-15]. These are disap p eared in the sp ectrum of the new liagnd (L) accomp anied by the app earance of bands in the (3402 cm –1 ) (OH of water); (3244– 2789 cm –1 ), 2596 cm –1 are characterist ic st rongly H–bonded O–H of carboxy lic acid[16-17]. Stretching bands at (2993, 2943 cm –1 ) and bending bands at (1431 cm –1 ) are assigned for C–H alip hatic resp ectively. (C–I=O) st etching vibration app eared at (1755 cm –1 ). The bands at (1662, 1652 cm –1 ) in st arting material are due to the (C=C) + (C=O) app eared as one sy mmetric band at (1662cm –1 ) in the new ligand (L). The new ligand exhibits additional two p eaks at (1600, 1381cm –1 ) due to the st retching vibration of asy mmetric and sy mmetric of (COO – ), (=219 cm –1 )[18,19]. The mass sp ectrum of the ligand (L) Fig. (3) gave the fragments as shown in scheme (2): S cheme (2): The fragmentation se quence of (L) with relati ve bundance O O O O H C 4 H 4 O 2 1 1 6 ( 8 % ) O O H 3 C H 3 C H 3 C O C - C 9 H 1 2 O 8 1 0 1 ( 2 % ) H H H C H 2 O O O H H H H C O 2 4 (100 %) C H 2 C O O H H O O C C 8 H 8 O 8 C 1 3 H 1 6 O 1 0 M . W = 3 3 2 H 3 C C H C H C 5 H 8 O 2 - C 3 H 4 O 2 -C 4H8 مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 NMR S pectral ( 1 H, 13 C) The 1 H, 13 C–NM R sp ectra of ligand (L) in D2O are shown in Figs. (4 and 5). The following signals were distinguished: 1. The 1 H–NM R for the Lacton ring 4–H was disp lay ed as doublet (4.5–4.6) p p m[21,22]. 2. The CH3 app eared at = 1.27 p p m. 3. The CH2–6, CH–5 ap p eared at (4.1, 4.2) p p m. 4. The CH2–7 showed at (4.7–4.8) p p m. The 13 C–NMR 1. The signal at =22 p p m is due to the CH3. 2. The signal at 176.7 p p m is assigned to C–1 Lactone. 3. The signal at 169.8 p p m is due to carboxy lic group . 4. The signals at (121), (153), (76), (65), (110) are due to (C–2, C–3, C–4, C–5, C–6). The results were compared with those obtained by chem. office p rogram. IR spectra of the complexes The I.R. sp ectrum of 5,6-O-isop rop y lidene-2,3-O,O-acetic acid as a ligand (L) comp rised with its comp lexes, the results are summarized in Table (3). A broad band centered at 3402 cm –1 is related to (OH of water), bands at (3244– 2789 cm –1 ) are due to t he presence of (H– bonded OH of carboxy lic acid) in free ligand[23]. The free ligand (L) carbony l C–I=O st retching vibration was observed as a band with medium intensity at 1755 cm –1 and shifted towards a lower frequency at 1739 cm –1 in (Cd II ), 1732 cm –1 (Hg II , Co II ), and 1735 cm –1 (Ni II , Cu II , M g II , Ca II , Pb II ) due to coordinate with metal ions. Similarly , the slightly broad band concerned at 1662 cm –1 is due to couple C=O and C=C st retching of free ligand (L) were observed as two bands (1639, 1620 cm –1 ) (Hg II ), (1670, 1612 cm –1 ) (Cu II ), (1645, 1604 cm –1 ) (Ni II ), broaden p eak center at 1620 cm –1 (Co II ) Fig. (7), 1635 cm –1 (M g II ), 1610 cm –1 (Pb II ), 1627 cm –1 (Cd II , Ca II ). The observed sp ectral changes are due to the p resence of unequivalent behavior of O–CH2COOH group s in C–2 and C–3 towards t he metal ions[24,25]. The free ligand (L) exhibits a very st rong absorp tion band with shoulder at 1600 cm –1 is due to the st retching vibration of carboxy lic group . This group is p resent in the sp ectra of all comp lexes confirming that O–CH2COOH–C–3 is uncomp lexed which is lower than exp ected, so this is related to the degree of hy drogen bonding which is lengthing and weaking the , Fig. (6)[26,27]. The app earance of two bands in the (1416, 1320, =96) cm –1 (Cu II ), (1408, 1315, =93) cm –1 (Ni II ), (1419, 1323, =96) cm –1 (Ca II ), (1404, 1311, =93) cm –1 , (Cd II ), (1420, 1327, =93) cm –1 , (M g II ), (1390, 1370, =70) cm –1 , (Hg II ) are due to t he  asy mm. (COO – ),  sy mm. (COO – )[28,29]. The value of (96–70) cm –1 indicated that the carboxy late group in C–2 coordinate to metal ions as a bidentate fashions[29-30]. The C–O, C–C stretching vibrations of (L) were observed as sharp bands at 1100–900 cm –1 and exhibited major losses of intensities in the all comp lexes. (C=O) مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 The absorp tion band at range (700–600) cm –1 is assigned to the coordinated water[22,31] conclusive evidence of the bonding is also shown by the observation that new bands in the sp ectra of all metal comp lexes app eared in the low frequency region at 555–516 cm –1 characterist ic to M –O stretching vibration[16,19,32]. Electroni c S pectra The electronic sp ectrum of (L) Fig. (8) under st udy in water solution was characterized mainly by two absorp tions in the region (248.5) nm (40241) cm –1 (m ax=952 molar –1 cm –1 ) assigned to (–*) and (358.5) nm (27894) cm –1 (m ax=17 molar –1 cm –1 ) as tail assigned to (n–*) transition[33]. The electronic absorp tion of Co–comp lex red colour solution is shown in Fig. (9). Bands at 750 nm (13333) cm –1 is due to 4 A2g  4 T1g and at (650) nm (15380) cm –1 is due to 4 T2g  4 T1g. However most octahedral cobalt (II) comp lexes are p ink or reddish brown and these two t ransitions are ty p ical of the sp ectra of octahedral comp lexes[21,22,24,34]. The ligand field p arameters (q, B an ) are calculated from Fig. (a) 1 2 cm740 18 13333 ΔqΔq18υ   1 = 8 q = 8  740 = 5920 cm –1 3= 6 q + 15 B 15385 = 6  740 + 15 B 75.0 971 66.729 B B 729.66B metal free comp. comp    The electronic absorp tion of Ni comp lex[35-36] Fig. (10) showed multiple bands centered at (700) nm (14286) cm –1 and another band at (430) nm (23256) cm –1 are due to 3 T1g 3 A2g and 3 T1g(P ) 3 A2g resp ectively[37] p arameters (q, B an ) are calculated from Fig. (b) 1.63 14286 23256 υ υ 2 3  861 27 23256 27 B υ E comp 3  compB 84.0 1030 861 B B metal free comp.  The sp ectrum of Cu– comp lex green colour is shown in fig. (11). The observed band (786.5) nm (12715) cm –1 is broad and clearly is due to 2 Eg 2 T2g contains several comp onents. مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 The ion is in fact t etragonal distorted presumably as a result of the operation of the Jan Teller effect[35,37]. The electronic of the metal comp lexes M II = Cd, Pb, Hg, Ca, M g (Table 4) showed (–*) and tail transition are shifted to lower energy for (–*) and high energy for the tail (n –*) comp ared to the free ligand transition confirming of the ligand (L) to metal ion. S oluti ons chemistry Molar ratio The comp lexes of the ligand (L) with selected ions (Ni +2 , Cd +2 ) were st udied in solution using water as solvents, in order to determine (M :L) ratio in the p repared comp lexes, following molar ratio method[38]. A series of solutions were p repared having a const ant concentration (C) 10 –3 M of the hy drated metal salts and the ligand (L). The (M :L) ratio was determined from the relationship between the absorp tion of the observed light and mole ratio (M :L) found to be (1:1). The result of comp lexes formation in solution is shown in Table (5), Table (6) and Table (7), Fig. (12) and Fig. (13). Molar conductivity for the complexes of l igand (L) The molar conductance of the comp lexes in (water), Table (8) lies in the (27.5–60) S.cm 2 molar –1 range, indicating their non–electrolyte nature, excep t for the comp lexes Hg, and M g which their molar conductance lies in the (70.4–132.8) S.cm 2 M olar –1 range, indicating their electrolytic nature with (1:1) ratio[39]. Biologcal e ffect of new ligand L and its complexes Indicating that the new ligand and its comp lexes exhibited antibacterial activity against both gram p ositive and gram negative bacteria[10-13], excep t Ca–complex has no effect on bot h bacteria. Table (9), Fig. (14) and Fig. (15). Conclusion A series of comp lexes of Co +2 , Ni +2 , Cu +2 , Cd +2 , Pb +2 , Hg +2 , Ca +2 , M g +2 with 5,6-O- isop rop y lidene 2,3-O,O acetic acid-L-ascorbic acid (L) have been prepared and characterized. The ligand (L); (C13H16O10) acts a tridentate via C–I Lactone and one bidentate carboxy late group giving general formula LM +2 (H2O)X,Y (EtOH)z (KCl)n(X – ). with octahedral structure the resulted carboxy late group were assigned by the infrared sp ectra. X = H2O coordinated Y = number of H2O hy drated z = number of EtOH n = number of KCl مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 X – = Cl, NO3 in Pb comp lex. The comp lexation between metal ions as (Co II , Ni II , Cu II , Cd II , Pb II , Hg II , Ca II and M g II ) with ligand (L, resulted in the formation (1:1) molar ratio (M etal: L). Fig (6). Re ferences 1. Ay odel, O. and M athew, P. D. M ahindaratne and Kandateg wimalasena (2005) Aconvenient to C2 and C3– substitut ed Gulono -Lactone Derivatives from L–ascorbic acid, J. Org. Chem., 70 (17): 6782-6789. 2. Ay odel, O.; Olabisi, and Kandateg Wimalasena (2004) Rational Ap p roach to selective and Direct 2-O-alkylation of 5,6-O-isop rop y lidene-L-ascorbic acid, J. Org. Chem., 69 (21): 7026-7032. 3. Hasan, T.and Hindsgaul, O. (2000) Regio Chemoselective Alky lation of L-ascorbic acid under mitsunobu condition, J. Org. Chem., 65: 911-913. 4. Salamon, L. L. (1963) 5,6-O-isop rop y lidene-L-ascorbic acid, Exp erientia, 19(12):6119. 5. Jabs, A. M . (1984) The sy nthesis of ascorbate comp lexes of some metals, Anorg. Allg. Chem. 514: 179-184. 6. Jabs, A. M .(1984) The electronic, infrared and 1 H-NM R of titany l ascorbates, Anorg. Allg. Chem., 514: 185-195. 7. Tajimair- Riahi. (1991) FT -IR and 13 C-NM R of Al(III), La(VI) and Pb(II) ascorbates as solids and in solution, J. of Inorg. Biochem. 441: 39-45. 8. Tahereh Rohani, M ohammed Ali Taher (2009) Anew method for electrocataly tic oxidation of ascorbic acid at the Cu(II) Zeolite-M odified electrode, Talanta, 78: 743–747. 9. Pat U. S. (1996)Color st ability of Dental comp osition containing metal comp lexes ascorbic acid. Wang et al. 501(5):727. 10. Anacona, J. R. (2006) Sy nthesis and antibacterial activity of some metal complexes of - Lactams antibiotics, J. coord. Chem. 54: 355–365. 11. Tauber S. C. and Nau R. (2008) Immunomodulatory p rop erties of antibiotics Current molecular p harmacology , Vol. 1, PP. 68–79. 12. Sultana, N. and Aray ne, M . S. (2007) In vitro activity of cefadroxil, cep halexin. Cefatrizine and cefp irome in p resence of essential and trace elements Pakistan Tournal of p harmaceutical sciences, Vol. 20(4):305–310. 13. Sultan, J. S.; M uklus, A. J. and M usa, F. H. (2011) Sy nthesis, sp ectroscop ic and biological st udies of some metal comp lexes with 2,3,5,6-O,O,O,O-tetra acetic acid L- ascorbic acid. Accep ted for p up lication in Ibn-Haitham Jornal for p ure and Ap p lied Science's, 1881/2. 14. Silverstein M . R. G. C. Bassler and M orrill T. C. (1981), "Spectrometric Identification of Organic Comp ounds", 4 th ed., John Wiley and sons, New York. 15. Fleming and Williams, D. H. (1966) Sp ectroscop ic methods in organic chemist ry ", Ed. M cGraw Hill p ublishing comp any ltd, London. 16. Abd El- Wahab, Z. H. (2007) M ononuclear metal comp lexes of organic carboxy lic acid derivatives, Sp ectrochimica Acta Part A, 67:25-38. 17. John, R. Dy er (1965) Ap p lication of Absorp tion Sp ectroscop y of Organic comp ound, Prentic– Hall, Inc. 18. M esubi, M . A. (1982) An infrared st udy of Zinc, Cadmium and lead salts of some fatty acids Journal of M oleculular st ructure, vol. 81(1–2): 61–71. 19. M ohamed, G. G.and Abd El– Wahab, Z. H. (2005) M ononuclear metal comp lexes of organic carboxy lic acid derivatives, Sp ectrochem. Acta A 61:1059. 20. Parikh, V. M . (1985) Absorp tion Sp ectroscop y of Organic M olecules. مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 21. Tajmir- Riahi (1990) Coordination Chemistry of vitamin C. p art I. Interaction of L- Ascorbic Acid with Alkaline Earth M etal Ions in the Cry st alline Solid and Aqueous Solution, J. Inorg. Biochem, 40:181-188. 22. Tajmir- Riahi (1991) Coordination Chemistry of vitamin C. p art (II). Interaction of L- Ascorbic Acid with Zn(II), Cd(II), Hg(II), and M n(II) Ions in the solid st ate and in Aqueous solution, Int. J. Inorg. Biochem, 42:47-55. 23. Fodor, C.; Arnold, R. and M ohacsi, T. (1983) A new role for L-ascorbic acid M ichael donor to alp ha, beta-unsaturated carbonyl compounds. T etrahedron 39: 2137-2145. 24. M alcolm, J. Arendse, Gordonk- Anderson and Nigam P. Rath (1999) Sy nthesis and characterization of Platinum (II) Complexes of L- Ascorbic Acid, Inorg. Chem. 38:5864- 5869. 25. Rajesh, S. B. and Vidyanand, K. R. (2006) Coordination diversity of new mononucleating hy drazone in 3d metal comp lexes, J. Serb. Chem. Soc. 71, 12, 1301- 1310. 26. El– Washed, M . G. A.; Refat, M . S. and El, M egharbel S. M . (2009) Sy nthesis sp ectroscop ic and thermal characterization of some transition metal comp lexes of folic acid sp ectrochimia acta A, vol. 70(4): 916–922. 27. Nakamato, K. (1968) M ecarthy Sp ectroscop y and structure of metal chelate compounds, P. J. John Wiley & Sons, New York, NY, U.S.A. 28. Choi, K. Y.; Jeon, Y. M .;Lee, K. C.; Ry u, H.; Suh, M .; Park, H. S.; Kim, M . J. and Song, Y. H. (2004)Prep aration and characterization of a bidentate carboxy late bridged dinuclear cadimium(II) comp lex with bis(2-p y ridyl methy l) amino-3-prop ionic acid, Journal of Chemical Cry st ollography , vol. 34: No. 9. 29. Anacona, J. R. (2006) Sy nthesis and antibacterial activity of some metal comp lexes of –Lactams Ant ibiotics, J. Coord. Chem., 54: 355– 365. 30. Nakamoto, K. (1986)Infrared and Raman Sp ectra of Inorganic and Coordination comp ounds", 4 th , ed., Wiley. New York. 31. Sutton, D. (1968) Electronic sp ectra of Transition M etal Comp lexes M c GRAW-HILL., London. 32. Wang, Y. Y.; Shi, Q.; Gao, Y. C. and Zhou, Z . Y. (2009)p reparation and characterization of a bidentate carboxy late bridge dinuclear, Poly hedron 1999, 18. 33. William Kemp . (1987) Organic sp ectroscop y 2 nd , Edition. 34. Orgel, L. (1966) "An Introduction to transition metal Chemistry ", 2 nd ed, Wiley , New York. 35. Rakesh, K.; Sharma, M unirathnam N. and Ashoka, G. Sumuleson, (2008) Asy mmetric allylic alkylation by p alladium- bisp hosp hinites, Tetrahedron; Asy mmetry , 19:555–663. 36. Khen, F. and khanam, A. (2008) Study of Complexes of cadmium with some L- amino acids and Vitamin-C by Voltammetric technique, Ecl. Quim, Saopaulo, 33 (2):29-36. 37. P. Lever A. B., (1968), "In organic electronic sp ectroscop y ", New York, 6: 121. 38. Skoog, D.A. and Donald ,M . west (1974)Fundamentals of Analytical Chemistry Altoit London Edition. 39. Kettle, S. F. (1975), "Coordination Compounds", Thomas Nelson and Sons, London, P. 165. مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Fig. (a): Ene rgy le vel diagram (Tanabe- S ugano) for d7 ions in an octahe dral field[37] (C=4.633B) Fig. (b): A2 and T1 ground states, transition energy ratios versus E(v3)/B (range 16-47). Note that the left-hand ordinate refers to E(v3)/B (16-24.6) and the right-hand ordinate to E(v3)/B (24.6-47) Co and Ni complexes[37] مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Table (1):The physical propertie s for synthesized li gnad (L) and its complexes D = Decomp osition, DM F = dimethy l formamide, DM SO = dimethy l sulfoxide Found (Calc.) % Em pirical formula Yiel d % M.P.C Col our Metal S olubili ty L.2KCl.XH2O 77.9 109–110 Brown Water, DM F, DM SO LCoCl.2H2O 74 109–110 Red (12.20) 12.70 = LNiCl.2H2O 83 120D Golden (12.80) 12.70 = [LCuCl.2H2O].6H2O.4EtOH.3 KCl 80 130D Green (6.80) 6.60 = [LCdCl.2H2O]. 3KCl 75 210D Brown (14.00) 14.50 = [LPbNO3.2H2O].3KCl 68 210 Dark brown (24.45) 25.60 = [LHgCl.2H2O]. 5H2O.3EtOH.3KCl 83 205D Brown (18.30) 19.10 = LCaCl.2H2O 75 115D White (10.40) 9.50 = [LM gCl.2H2O].10H2O.8EtOH .3KCl 76.7 220D Dark brown (1.24) 1.92 = مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Table (2): infrared spectral data (wa ve number  – ) cm –1 for the L and starting material Compoun d (OH) (C– H) aliph. (C= C) (C– O) (C= O) Lacto ne Additi onal peaks 5,6-O-iso p ropy liden e L- ascorbi c acid (3240)br (3078)m (2993 )w (1662 )s (1652 )s 1751( s) (1360–1220)cm –1 Stron gly coupled O(2)–H,O(3)–H and C–H bending modes (1100–900)s due to C–O, C–C L (3402)m(OH– H2O) (3244, 2789, 2596) (OH– COOH) (2993 )w (2943 )w (1662 )s (1755 )s (1600,1381)cm –1 asy mmetric and sy m. COO – (1281–1219)cm –1 shifting and sp litting OH( C2-C3 ) مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Table (3): Infrared spectral data (wa ve number  – ) cm –1 for the ligand L and its complexes. Compound (O–H) (C– H) (C =O)  c m –1 asy m. sym . CO O –  c m – 1 ( M– O) Additional peaks L.2KCl.XH2O 3402(w) (OH water) (3244,2789, 2596) (OH– COOH) (2993– 2943) w (175 5)s (3093)w Due to OH of carboxy lic acid C–2 (1662)s C=O, C=C (1100 – 900, for (C–O), C–C–C L complexes LCoCl.2H2O 3417 the OH water 2730-2500 (OH– COOH) 2920 173 2 2 3 (14 00) br (13 20) w 80 520 – 443 1620 C=O, C=C 779- 605 coordinated water LNiCl.2H2O 3396 3344 2650- 2560 OH–COOH 2730 173 5 2 0 140 8 131 5 93 590 - 516 1604(br) C=O, C=C 702-671 coordinated water [LCuCl.2H2O].6 H2O.4EtOH.3KC l 3414(w) 3475(w) 2680- 2580(OH– COOH) 2951 173 5 2 0 141 6 132 0 96 532 - 482 1612 C=O, C=C 661-609 coordinated water [LCdCl.2H2O].3 KCl 3487(br) OH water 2730- 2580 (OH– COOH) 2989(w ) 173 9(s) 1 6 140 4 131 1 93 590 - 524 1616(br) C=O, C=C 783-621 coordinated water OH water OH water مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 [LPbNO3.2H2O]. 3KCl 3410(s) OH water 2700- 2500 (OH– COOH) 2997(w ) 173 5(w) 2 0 (14 19)s (13 85) w 34 555 - 515 1593(w) C=O, C=C 775-605 coordinated water 1420, 1660 NO3 group [LHgCl.2H2O].5 H2O.3EtOH.3KC l 3421(br) OH water 2750- 2500 (OH– COOH) 2981(w ) 173 2(w) 2 3 (13 90) m (13 20) w 70 594 - 516 1639(s) C=O, C=C 771-632 coordinated water [LCaCl.2H2O] 3429(br) OH water 2790- 2660(OH– COOH) 2931(w ) 173 5 2 0 (14 19) (13 23) 96 555 - 493 1616(s) C=O, C=C 779-621 coordinated water [LM gCl.2H2O].1 0H2O.8EtOH.3K Cl 3429(br) OH water 2720- 2620 (OH– COOH) 2940 173 5 2 0 (14 20) (13 27) 93 578 - 540 1635(s) C=O, C=C 779-605 coordinated water Recorder as KBr disk br = broad, s = strong, w = weak, m = mediu m,  = bendin g, alip h. Aliphatic مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Table (4): Electroni c spectral data of the ligand (L) and its metal complexes Compound n m  – wave number cm –1 (max molar – 1 cm –1 ) Assignment s Propose d structure L.2KCl.XH2O 248. 5 358. 5 40241 27894 952 17  * n * LCoCl.2H2O 497. 5 650 20097 15380 770 270 4 T1g(P ) 4 T1 g 4 A2g(F) 4 T1 g Dist orted Octahedral LNiCl.2H2O 372. 9 655. 5 14266 15255.5 1500 240 3 T2g 3 A2g 3 T1g(F) 3 A2 g Dist orted Octahedral [LCuCl.2H2O].6H2O.4EtO H.3KCl 786. 5 12715 844 2Eg 2 T2 g Tetragonal [LCdCl.2H2O].3KCl 350 28571 350 L.F.C.T. Octahedral [LPbNO3.2H2O].3KCl 350 28571 425 L.F.C.T. Dist orted Octahedral [LHgCl.2H2O].5H2O.4EtO H.3KCl 350 28571 1025 L.F.C.T. Octahedral [LCaCl.2H2O] 350 28571 875 L.F.C.T. Octahedral [LM gCl.2H2O].10H2O.8Et OH.3KCl 350 28571 525 L.F.C.T. Octahedral L.F.C.T. = Ligand Field Charge Transfer مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Table (5): VM, VL and Absorption of l igand L2, VM = volume of metal in ml, VL= volume of ligand in ml [L–Ni Cl .2H2O] [L–CdCl.H2O].3KCl VM VL Abs VM VL Abs 1 ml 0.25 1.654 1 ml 0.25 1.400 1 0.50 1.910 1 0.50 1.700 1 0.75 2.10 1 0.75 1.778 1 1 2.230 1 1 1.990 1 1.25 2.370 1 1.25 2.125 1 1.50 2.300 1 1.50 2.285 1 1.75 2.420 1 1.75 2.340 1 2.0 2.460 1 2 2.345 1 2.25 2.440 1 2.25 2.400 1 2.50 2.470 1 2.50 2.500 1 2.75 2.450 1 2.75 2.550 1 3.0 2.450 1 3 2.565 1 3.25 2.500 1 3.25 2.570 1 3.50 2.500 1 3.50 2.580 1 3.75 2.550 1 3.75 2.590 1 4 2.550 1 4 3.00 K= M L/ [M ] [L] (1)  = (Am – As) / Am (2) K = The equation (1) is written to mole ratio (1:1) as t he following KF = (1-)/  2 C (3)  = m ax.b.c (4) KF = stability constant  = Decomposition Degree M = M etal ion L = The ligand مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 [ ] = concentration As = The absorpt ion at the equivalent p oint of mole ratio. Am = The maximum absorp tion of the mole ratio. C = The complex concentration (mole. L –1 ).  G = – 2.303 RT Log K. R = 8.303 T = 273 + 25 = 298 Compounds As Am  K Log K 1/K G [LCdCl.2H2O]3K Cl 1.990 2.345 0.15 3×10 9 9.5 0.11 –54.2 [LNiCl.2H2O] 2.230 2.460 0.0934 10×10 8 9 0.11 – 51 [LCdCl.2H2O].3KCl > [LNiCl.2H2O] Table (6): The absorbance value s against mole– ratio values of complex [LCdCl.2H2O].3KCl in solution (1×10 –3 mole.L –1 ) in water at  264.5 nm No. L: M absorbance 1 0.5:1 1.700 2 1:1 1.990 3 2:1 2.345 4 3:1 2.565 5 4:1 3.000 Table (7): The absorbance value s against mole- ratio values of complex [LNi Cl .2H2O] in soluti on (1×10 –3 mole.L –1 ) in water at  260 nm No. L: M absorbance 1 0.5:1 1.910 2 1:1 2.230 3 2:1 2.460 4 3:1 2.450 5 4:1 2.550 مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Table (8): The molar conductance of the complexes * Compound fragment i ons m S .cm 2 molar –1 ratio LCoCl.2H2O 28.6 Neutral LNiCl.2H2O 46 Neutral [LCuCl.2H2O].6H2O.4EtOH.3KCl 60 Neutral [LCdCl.2H2O].3KCl 45.4 Neutral [LPbNO3.2H2O].3KCl 27.5 Neutral [LHgCl.2H2O].5H2O.3EtOH.3KCl 70.4 1:1 LCaCl.2H2O 35.1 Neutral [LM gCl.2H2O].10H2O.8EtOH.3KCl 132.8 1:1 * Recorded in (water) solvent Where L=(C13H16O10).2KCl Table (9): S howed the inhibition circle diame ter in milli meter for the bacteria after 24 hour in cubation paid and 37C. Compounds Staphylococcus aureu (gram posi tive) Escherichia coli (gram posi tive) L 14 12 L Cd 40 24 L Cu 28 25 L Ca 0 0 مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Fig. (1) The IR. S pectrum of the 5,6-O-isopropylidene-L-ascorbic acid Fig. (2) The IR. S pectrum of the ligand (L) Fig. (3) The GCMS spectrum of the ligand (L) مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 4.5 4.6 1.27 4.1 4.2 4.7 4.8 30 65 15 3 76 11 0 12 1 17 6.7 16 9.8 C H 3C O O H 3C O C CH 2 H H O O O CH 2 C O O M OH 2 X OH 2 CH 2 C O O H Fig. (4) 1 H NMR of the ligand L (practical) Fig. (5) 13 C NMR of the ligand L ( practical) Fig.(6): S uggested structure of (LM II ) M II = Co, Ni, Cu, Cd, Hg, Pb, Ca and Mg. X= Cl , NO 3 for Pb- Comple x مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Fig. (7) The IR. spectrum of the (LCoCl.2H2O] complex Fig. (8) The ele ctronic spectrum for the ligand (L) مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 65 0.0 Fig. (9) The ele ctronic spectrum for the [LCoCl.2H2O] complex Fig. (10) :The ele ctronic spectrum for the [LNi Cl.2H2O] complex مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 Mole Ratio Absorbtion Fig. (11) :The electroni c spectrum for the [LCuCl.2H2O].3KCl complex Fig. (12): The mole ratio curve of complex [LNi Cl.2H2O] in solution (1×10 -3 mole. l -1 ) at (=260 nm) مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 0 0.5 1 1.5 2 2.5 3 3.5 0 0 .5 1 1 .5 2 2 .5 3 3 .5 4 4 .5 Mole Ra tio A b s o rb ti o n Fig. (13): The mole ratio curve of complex [LCdCl.2H2O].3KCl in soluti on (1×10 -3 mole. l -1 ) at (=264.5 nm) Fig. (14): Effect of staphyl ococcus aureu gram posi tive 0 5 10 15 20 25 30 35 40 45 50 Cu Cd L Ca Conc entration of ligand and its comple xes (1mg/ml) D im e te r o f in h ib it io n z o n e ( m m ) مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 Fig. (15): Effect of Esche richi a coli gram negative 0 5 10 15 20 25 30 35 40 45 50 Ca Cu Cd L D im e te r o f in h ib it io n z o n e ( m m ) Conc entration of ligand and its comple xes (1mg/ml) مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012 O,O-2,3-ایزوبروبلدین O-5,6تحضیر بعض المعقدات الفلزیة الجدیدة لـ حامض االسكوربیك مع تقییم الفعالیة البایولجیة- L-حامض الخلیك جاسم شهاب سلطان، عبد الجبار عبد القادر مخلص، فالح حسن موسى الهیثم، جامعة بغداد ابن-قسم الكیمیاء، كلیة التربیة 2011 تشرین الثاني 16 قبل البحث في 2011 نیسان 3:استلم البحث في الخالصة اسكوربك اسید،-Lمشتق مستقر جدید لحامض حضر 5,6-O-iso p rop y lidene-2,3,-O,O-acetic acid-L- ascorbic acid (L) O-iso p-5,6بناتج جید بواسطة مفاعلة rop y lidene-L-ascorbic acid .حامض الخلیك وبوجود هیدروكسید البوتاسیوم رومع كلو اللكانـد الجدیــد شــخص بوســاطة الــرنین النــووي المغناطیــسي البروتــون 1 H والكــاربون 13 C وطیــف الكتلــة، وطیــف ، افؤ الثنائیــة التكـــمــع أیونــات بعـــض العناصــر ) L(مفاعلـــة اللكانــد . األشــعة تحــت الحمــراء وطیـــف األشــعة فــوق البنفــسجیة )Co ،Ni ،Cu ،Cd ،Pb ،Hg ،Ca ،M g ( ًمعطیا معقدات، حضرت وشخصت بواسطة األشعة تحت الحمراء، واألشعة واســـتنتج مـــن . فــوق البنفـــسجیة، والتوصــیلیة الكهربائیـــة، واالمتـــصاصیة الذریــة والنـــسبة المولیــة لمعقـــدات النیكـــل والكــادمیوم O-2-CH2COO، )الكتـون (C–I=O اللكانــد مـن خــالل التحلیـل ان تناســق ایـون الفلــز الثنـائي التكــافؤ مـع – ً معطیــا ایــون B ،كـذلك تـم حـساب قـیم . لمعقـدات النیكـل والكـادمیوم ثنائیـة التكـافؤ ،KF ،Gالفلز سداسي التناسق وقد حسبت قـیم الكـادمیوم، والنحـاس (ة التكـافؤ لمعقدات الكوبلت والنیكل ثنائیة التكافؤ، كما دراست الفعالیـة البایولوجیـة للكانـد ومعقداتـه ثنائیـ مـا عـدا معقـد الكالـسیوم الـذي Escherichia coli وStaphylococcus aureuوأظهرت فعالیة متباینـة تجـاه ). والكالسیوم .لم یظهر أي فعالیة تجاه البكتریا المذكورة أعاله .تحضیر، مطیافیة، الدراسات البایولوجیة: الكلمات المفتاحیة مجلة إبن الھیثم للعلوم الصرفة و التطبیقیة 2012 السنة 25 المجلد 1 العدد Ibn A l-Haitham Journal f or Pure and Applied Science No. 1 Vol. 25 Year 2012