IBN AL- HAITHAM J . FO R PURE & APPL. SC I. VOL.24 (3) 2011 Approximations of Entire Functions in Locally Global Norms S.K.Jas sim, N.J.Mohamed Departme nt of Mathematics, College of Science, Unive rsity of Al-Mustansirya Departme nt of Mathematics, College of Education I bn Al-Haitham , Unive rsity of Baghdad Received in : 3 February 2011 Accepte d in : 10 May 2011 Abstract The p urp ose of this p aper is to evaluate the error of the app roximation of an entire function by some discrete op erators in locally global quasi-norms (L,p-sp ace), we intend to establish new theorems concerning that Jackson p olynomial and Valee-Poussin op erator remain within the same bounds as bounded and p eriodic entire function in locally global norms (L,p), (0 < p  1). Key words : Entire functions, bounded masurable functions, quasi-normed sp ace. Introduction and Preliminaries Al-Abdulla, A. [1], Al-Saidy , S.K. [2] and E.S.Bhayah [3] gave estimation for app roximation of bounded measurable functions with some discrete op erators in Lp-norm (0 < p  1). Here, we give an est imation for app roximation of entire functions in L,p-sp ace. Let X = [–,] we denote the set of all 2-p eriodic bounded measurable function with usual sup -norm by L, such that L(X) = {f : f is 2-p eriodic bounded measurable function} with norm f sup{ f ( x) x X}       …(1.1) and the Lp-norm (1  p < ) of f  Lp by Lp f , such that p p 1 p p p p L ( X) X L (X) f : f ( f ( x) dx) ; f f              …(1.2) Now let us consider the Dirich let kernel of degree n, [4] n n v 1 1 D ( u) cos(vu ) 2      uR, n=0,1,… …(1.3) Let be the Fejer kernel of degree not grater than n. where k ,n 2K X , (K 0,1, 2, ..., n), n 1     be the so called Jackson p olynomial of function f  L. n 0 1 n 1 K (u ) [D ( u) D (u ) ... D (u )] n 1      …(1.4) n n k ,n n k ,n k 0 2 J (f , x ) f (x )K (X X ) n 1      …(1.5) IBN AL- HAITHAM J . FO R PURE & APPL. SC I. VOL.24 (3) 2011 Let j 2 j X 3n 1    , j=0,1,…,3n. Then we define the following op erator. be the valee-p oussin discrete op erator of 2-p eriodic bounded measurable function. The unique linear trigonometric p olynomial which is interp olating a given function f Lp(X) at the point Xj is denote by In(t) which has t he rep resentation: Now let Bn be the set of all entire functions, since the derivative of p olynomial exists every where, then we get that every p olynomial is an entire function [5], so we consider that f Bn and Jn(f ) Bn, V2n,3n(f ) Bn. Let n, k be p ositive integers, (0 < p  1) and ( > 0) are fixed numbers which will be used for the degree of app roximating p olynomial, for the rate order of modulus and for the sp ace L,p resp ectively. We consider the locally global norm for ( > 0), (0 < p  ) Now the k th average modulus of smoothness for f  L,p are defined by the following resp ectively, [6], [7] where the k th modulus of smoothness for f  L,p, k  is defined by Now, we set k k m k m 0h k ( 1) f (t mh) if t or t kh X f ( t) m 0 otherwise                      . In the following we recall some theorems which are needed:- The orem 1.1: [6] If f  Bn, then for (0 < p  1) and ( > 0), we have, 1 1 p p ,p p f c(p)[(1 n ) (ns)] f    . 2 n n n 1 2 n 1 V ( t) [D (t) D ( t) D (t)] n 1     …(1.6) 3 n 2 n ,3n j 2 n j j 0 2 V (f , X) f ( X )V (X X ) 3n 1      …(1.7) 2 n n j n j j 0 2 I (f , X) f ( X )D (X X ) 2n 1      …(1.8) 1 p p ,p X f sup f (y ) , y x , x dx 2 2                   , X[–,]. …(1.9) k p k p k ,p k ,p 1 1 (f , ) W (f ,., ) , n n 1 1 (f , ) W (f , ., ) n n                   …(1.10) k k h 1 k k W (f , x, ) sup f ( t) : t, t kh x , x X n 2 2                  …(1.11) IBN AL- HAITHAM J . FO R PURE & APPL. SC I. VOL.24 (3) 2011 The orem 1.2: [3] If f  2-p eriodic bounded measurable functions, t hen for (0 < p  1) n 1 pp 1 f J (f ) C(p) (f , ) n     . The orem 1.3: [3] If f  2-p eriodic bounded measurable function, then for (0 < p  1) 2 n ,3 n k pp 1 f V (f ) C(p, k, ) (f , ) 2n     , where n=1,2,… and (p ,k,ℓ) is a const ant depends on p , k and ℓ. The orem 1.4: [3] Let f be 2-p eriodic bounded measurable function, then for (0 < p  1), we have n k pp 1 f I (f ) C(p, k, ) (f , ) n     , where p,k,ℓ is a constant dep ends on p , k and ℓ. Main Re sults We shall p rove direct inequality to find the degree of app roximation of 2-p eriodic entire function by some discrete op erators in (L,p) sp aces, (0 < p  1). Lemma 2.1: Let f be 2-p eriodic entire function, then for (0 < p  1), we have k p k ,p 1 1 (f , ) (f , ) . n n    Proof: k p k p k h p k i k i 0 p p k i k i 0 1 1 (f , ) W (f ,., ) n n k k sup f (t ) ; t, t kh x , x X 2n 2n k k k sup ( 1) f (t ih) ; t , t kh x , x X i 2n 2n k k k sup ( 1) f (t ih) ; t , t kh x , x X i 2n 2n                                                                   1 p X 1 p pp k i k i 0X k h ,p k ,p k ,p dx k k k k k sup sup ( 1) f (t ih) ; t , t kh y , y X y x , x dx i 2n 2n 2n 2n k k sup f (t ) ; t, t kh x , x X 2n 2n 1 W (f , ., ) n 1 (f , ) n                                                                  The orem 2.2: Let f be 2-p eriodic bounded measurable entire function, (f  L,p), (0 < p  1), we have IBN AL- HAITHAM J . FO R PURE & APPL. SC I. VOL.24 (3) 2011 n 1 ,p, p 1 f J (f ) C( p) (f , ) , n     where C(p) is a const ant dep ends only on p . Proof: By theorem (1.1), we get 1 1 p p p n n, p p f J (f ) C( p)[1 (1 _ n ) ( n ) ] f J (f ) .       Now since ( > 0), then n 1 n, p p f J (f ) C ( p) f J (f ) .    Then by using theorem (1.2) and lemma (2.1), we get that n 2 1 p, p 1 ,p 1 f J (f ) C (p) (f , ) n 1 C (p) ( f , ) n        The orem 2.3: Let f be 2-p eriodic bounded measurable entire function, (f  L,p), (0 < p  1), we have 2 n ,3 n k ,p,p 1 f V (f ) C( p, k , ) (f , ) , 2n      where p,k,ℓ is a constant dep ends on p , k and ℓ. Proof: By using theorem (1.1), we get 1 1 p p p 2 n ,3 n 1 2 n ,3n,p p f V (f ) C (p) [1 (1 n ) (n ) ] f V (f )        . Since 1 n   , then 2 n ,3 n 2 2 n ,3 n,p p f V (f ) C (p) f V ( f ) .    Now by using theorem (1.3) and lemma (2.1), we have 2 n ,3 n k p,p k ,p 1 f V (f ) C( p, k , ) (f , ) 2n 1 C (p, k , ) (f , ) . 2n          The orem 2.4: Let f be 2-p eriodic bounded measurable entire function, (f  L,p), (0 < p  1), we have n k ,p,p 1 f I (f ) C(p, k, ) (f , ) 2n     , where p,k,ℓ is a constant dep ends on p , k and ℓ. Proof: By using theorem (1.1), we get 1 p p n 1 p n,p p f I (f ) C (p) [1 (1 n ) (n ) y ] f I (f )        . Since 1 n   , then n 2 n,p p f I (f ) C (p) f I (f ) .    Then by using theorem (1.4) and lemma (2.1), we get IBN AL- HAITHAM J . FO R PURE & APPL. SC I. VOL.24 (3) 2011 n k p,p k ,p 1 f I (f ) C( p, k , ) (f , ) n 1 C (p, k , ) (f , ) . n          Conclusion We found the degree of app roximation of entire functions by using Jackson, Vallee Pouson and interpolation polynomials in locally quasi-norms L,p ( 0 < p < 1). Re ferences 1. Al-Abdullah, A. (2005), On Equi-Ap p roximation of Bounded -M easurable Functions in Lp()-Sp ace, Thesis, University of Baghdad. 2. Al-Saidy , S.K. (2002), Best One-Sided Ap p roximation with Algebraic Poly nomials in Lp- Sp aces, Ibn Al-Haitham J. for p ure and app lied Science., 15 :(3). 3. Bhayah, E.S. (1999), A Study on Ap p roximation of Bounded M easurable Functions with some Discrete Series in Lp-Sp aces (0 < p  1), Thesis. 4. Zy gmund, A. (1958), Trigonometric Series, I:II, Cambridge. 5. Verhey , C.B., Complex Variables and Ap p lication, Third Edition, Toky o, Jap an. 6. Dry anov, D. (1991), Equi Convergence and Equi Ap p roximation for Entire Functions. Const ructive Theory of Functions' 91, International Conference, Varna, M ay 28-June 3. 7. Sendov, B. and Pop ov, V.A., (1983), Average M odulus of Smoothness, Sofia. 2011) 3( 24للعلوم الصرفة والتطبیقیة المجلد مجلة ابن الهیثم طة المتعددات المتقطعة في الفضاءات المحلیةاتقریب الدوال الداخلیة بواس صاحب كحیط جاسم ، نادیة جاسم محمد الجامعة المستنصریة ،كلیة العلوم ،قسم الریاضیات جامعة بغداد ،ابن الهیثم -كلیة التربیة ،قسم الریاضیات 2011 شباط 3 :في استلم البحث 2011 ایار 10 :قبل البحث في خالصةال ن ــذا البحـث الغـرض ـم ــاب ھ ــأ ھـو حس دار الخط دوال مـق ــة لتقریـب اـل ــؤثرات طة بعـضابواسـ الداخلی ــي الم المتقطعـة ف k الوسیط لاباستعم المحلیة شبھ الفضاءات p 1 τ , ) n . .المعیاريالدوال الداخلیة ، الدوال محدودة القیاس ، الفضاء شبھ :الكلمات المفتاحیة