IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Open Newton Contes Formula for Solving Linear Voltera Integro-Differential Equation o f the First Order A. J. Saleh Departme nt of Mathematics, College of Basic Education, Al-Mustansiriyah Unive rsity Received in: 17, January, 2010 Accepte d in: 17, June , 2010 Abstract In this work, some of numerical methods for solving first order linear Volterra Integro- Differential Equations are p resented. The numerical solution of these equations is obtained by using Op en Newt on Cotes formula. The Op en Newt on Cotes formula is app lied to find the op timum solution for this equation. The computer program is written in (M AT LAB) language (version 6) Key word: Voltera Integro- Differential Equation, Op en Newton Cotes Formula Introduction In this search we first p resent the most familiar formula of numerical integration: the Op en Newton Cotes formula (O-N). and then we illust rate p rimarily the use of these rules for evaluating integrals and show how the linear VIDEs of first order is reduced to sy st em of (n) equations in the (n) unknowns of the solution sample values u(xi ), i=0,1,2,…n. The procedure of the p revious t echnique is called the Op en Newton Cotes formula. In addition a comp uter program is written, examp les with satisfactory results are given. 1. Cl assification of Inte gral Equati ons: Any functional equation in which the unknown function app ears under the sign of integrations is called an integral equation [1]. The general non-linear integral equation can be presented in the form.  )( ))(,,()()()( xb a dttutxkxfxuxh  …(1.1) and if )(),())(,,( tutxktutxk  Then (1.1) is called linear integral equation having the form  )( )(),()()()( xb a dttutxkxfxuxh  … (1.2) Here the function h(x), f(x) and the kernel function k(x,t) are p rescribed, while u(x) is the unknown function to be determined and  is a scalar p arameter[2,3] If in equation (1.1) and equation (1.2), f(x)=0 the integral equations are said to be homogeneous integral equations otherwise, they are non homogeneous [4]. In the classical theory of integral equations one distinguishes between Volterra equations and Fredholm equations In a Fredholm integral equation the region of integration is fixed i.e. b(x)=b, where as in Volterra integral equation the region is variable [5]. Thus, t he equation  b a dttutxkxfxuxh )(),()()()(  , bxa  … (1.3) is an examp le of a linear Fredholm integral equation and the equation IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011  x a dttutxkxfxuxh )(),()()()(  , xa  …(1.4) is an examp le of a linear Volterra integral equation. 1.1 Voltera Inte gral Equati ons: A linear Volterra integral equation of the first and second kind is defined as in equation (1.4) by letting h(x)=0 and h(x)=1, [6,1]  x a dttutxkxf )(),()(  , xa  … (1.5)  x a dttutxkxfxu )(),()()(  , xa  …(1.6) A Volterra equation can be looked at as an imp ortant sp ecial case of a Fredholm equation which arises when k(x,t)=0 for t >x. The dist inction between Fredholm and Volterra equation is analogous to the distinction between boundary and initial value p roblems in ordinary differential equations [6,1]. De fini tion 1.1: An integral equation is termed linear if it involves t he integral op erator  )( ),( xb a dttxkL  which satisfies the linearity condition )]([)]([)]()([ 22112211 tuLctuLctuctucL  where ,),()]([ )(  xb a dttxktuL  and c1, c2 are constants [1,7]. De fini tion 1.2: The equation (1.1) is said to be linear integral equation of the first kind , if the unknown function is p resent under the integral sign only, i.e. 0)( xh ; linear integral equation of the second kind also has the unknown function outside the integral, i.e. 0)( xh for bxa  ; and if h(x) vanishes somewhere but not identically, the equation is of third kind [8]. 1.2 S ingular and Weakl y S ingular Equati ons: An integral equation may be called singular if either (a) its kernel k(x,y ) is not bounded (b) the range of integration is infinite e.g., x0 or  x . And it is said to be Weakly -singular if the kernel becomes infinite at y =x. [9,10] 2.3 S tructure of kernel: (a) Linear integral equation with a kernel k(x,t)=k(t ,x) is said to be Sy mmetric. This p rop erty p lay s a key role in the theory of Fredholm integral equations. (b) If k(x, t)=k(a+ b- x,a+ b- t) in linear integral equation, the kernel is called conter- sy mmetric. (c) If k(x,t) in (1.1)and (1.2) depends only on the difference (x-t) i.e. if the kernel is of the form k(x,t)=k(x-t).Such a kernel is called difference kernel and the integral equation is called integral equation of convolution ty p e which has the form [1,11]:   )( )()()()()( xb a dttutxkxfxuxh  … (1.7) (d) In equation (1.1), k(x,t) is called Separable or Degenerate kernel of rank n if it is of the form:    n r rr tbxatxk 1 )()(),( where n is finite, it is assumed that the functions {ar} and {br} are sufficiently smooth functions of t hese arguments [11]. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Hence, in many cases a non degenerate kernel k(x,t) may be app roximated by a degenerate kernel as a p artial sum of Taylor series exp ansion of k(x,t) [11]. For examp le, consider the kernel xtetxk  1),( which may be app roximated to be finite number of terms of its Taylor’s series about 0,0 00  yx i.e. ] !3!2 1[11 3322  txtx xte xt Hence, if only 3-terms of t he series are considered, we have a degenerate kernel:    3 1 3322 )()( !3!2 ),( r rr tbxa txtx xttxk  where ,)(1 xxa  ,)( 2 2 xxa  3 3 )( xxa  ,)(1 ttb  , !2 )( 2 2 t tb  !3 )( 3 3 t tb  De fini tion 1.3: An ordinary differential equation is an equation that involves at most the thn derivative of an unknown function [13]. i.e. if the unknown function u is a function of x then we write the differential equation of order n as: ),.......,,,,( )( )1(  n n n uuuuxg dx xud where g is a given function of variable )1(,.......,,,,  nuuuux 1.4 Inte gro-Differential Equati on: [14,15] An integro-differential equation is an equation involving one (or more) unknown functions u(x), together with both differential and integral op erations on x. A linear integro-differential equation of order n is an equation of the form     )(1 0 )()( )(),()()()()( xb a n i i i n dttutxkxfxuxpxu  Here, )1,......,1,0)((),(),,(  nixpxftxk i are known functions, u(x) is the unknown function, and  is a scalar p arameter[11]. 2. Numerical Solution of VIDE Using Op en Newton Cotes formula(O-N). In this search, we use Op en Newton Cotes formula (O-N) to find the numerical solution of 1 st order linear VIDE, in the form:   x a baIxdyyuyxkxfxuxpxu ],[,)(),()()()()( … (1.8) with the initial condition ,)( 0uau  where the functions f and p are assumed to be continuous on I and k denotes given continuous functions. Were the interval [a, b] is divided in to n equal subintervals, where h=(b-a)/n, byay n  ,0 and * , 0,1, , . j y a j h j n    we set , 0,1, , , ( ) , ( ) , ( ) , i j i i i i i i x y i n u x u p x p f x f     ii uxu )( and .),( ijji kyxk  2.1 Open Newton Cotes formul a(O-N). Op en Newt on Cotes formula is used with n-subinterval to app roximate the integral in equation (1.6), hence If n = 0 M idpoint M ethod Let h = (b-a)/(2m+2) and xj = a + (j + 1)h for j = 1,….,2m+1 for n = 2m subinterval is IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 ),()( 6 )(2)( 0 2 2 baforsomMMfh ab xfhdxxf M j j b a      …(1.9) ]2.....2[2 111100 iiiiiiiiiiii ukukukukhfupu   … (1.10) since h xuxu xu iii )()( )( 1   … (1.11) Subst itut ing equation (1.11) into equation (1.9) we have ]2.....2[2) 2 1( 111100 2 1 2   iiiiiiiiiii ukukukhhfuuk h hp … (1.12) which are (n+1) equation in ui that represents the app roximate solution to equation (1.8) at ).,....,1,0(,* nihiax                                                                 030 2 3 020 2 2 0010 2 1 3 2 1 33 2 332 2 31 2 22 2 221 2 11 2 1 2 2 2 0021212 0002121 000021 ukhhf ukhhf uukhhf u u u khhpkhkh khhpkh khhp The Algorithm (AQ) The numerical solution of (1 st order VIDEs), by using Op en Newt on Cotes formula (O- N), is obt ained as follows: Step 1: Put h=(b-a)/n, Nn Step 2: Set )( 0 auu  (which is t he initial condition) is given. Step 3: Compute iu  by using h uu u iii 1 Step 4: Use step –1, -2 and –3 in equation (1.10) to find ),......,2,1(, niui  we get ]2.....2[2)21( 111100 2 1 2   iiiiiiiiiii ukukukhhfuukhhp 3. Numerical Examples: Example 4.1: Consider the following VIDE: . 0 1 5 ( ) ( 1) ( ) , 0 1 2 6 x u x x xt u t dt x       The exact solution is u(x) = 1 + x , [16]. Take n=10 h=0.1 and xi =a+ih, i=0, 1, …., n. Table (1) illustrates the comp arison between the exact and numerical solution depending on the least square error and running time. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Example 4.2: Consider the following Voltera integro-differential equation: 0x   x dttutxxxxu 0 4 )()2( 6 5 2)(' Table (2) presents results from a comp uter program that solves t his p roblem over the interval x=0 to x=1 with u(x) = x 2 for which the analytical solution is h=0.1, [16]. 4. Di scussi on and Conclusi on. The app roximate solution of linear Voltera integro-differential equation (1.8) is given using the Op en Newt on Cotes formula. A comp uter p rogram was written and several examp les were solved using these method. We have the op tion that the result of the O-N formula is better than the results of Homotop y Perturbation method. Rely ing on our work t he following notes are drawn: 1.The number of subintervals n is rest ricted to be even for Op en Newton Cotes formula. 2.Through the solution of linear Voltera integro-differential equations of the first order, we see that Re ferences 1. AL-Rawi, S.N. (1995), Numerical Solution of First kind Integral Equations of Convolutions T y p e; M .Sc. thesis, University of Technology . 2. AL-Yacob, L.A. (2002), Ap p roximate solution of Volterra Integral Equations of Convolutions T y p e; M .Sc. thesis, University of Technology . 3. Barker, C.T.H. (1977) The Numerical Treatment of Integral Equation; Oxford University p ress. 4. AL-Kachi, A.M . (2000), Ap p roximate M ethod for solving Voltera Integral of First kind; M .Sc. thesis, University of Technology . 5. Gerlach, U. (2002), Boundary value p roblem Via Green’s function: Integral equation; http : //www. math. ohio-state. Edu /~gerlach /math/BV ty p est/node76.html. 6. Linz, P. (1985), Analytical and Numerical M ethods for Voltera Equations; Siam Philadelp hia. 7. Kalwi, P.W. (1999), Numerical M ethods for solving Fredholm Integral Equations of the second kind; M .Sc. thesis, University of Technology . 8. Phillips, David L. (1961), A Technique for The Numerical Solution of Certain Integral Equation of the First kind; June. 9. Weisst ein, E.W. (2002), Integral Equation, www.marauder.tm/research/Iamprey/a.p df p ress. 10. R.S.K. (2002), Ap p roximated Treatment of Higher-Order Linear Voltera Integro- differential Equations; M .Sc. thesis, University of Technology . 11. Qaid, M .Q.A. (2002), Numerical Treatment of Fredholm Integro-differential Equations; M . Sc. thesis, AL-M ust ansiriy ah University . 12. M ohammed S.S. (2002), Numerical solution of linear Voltera Integro-Differential Equations; M .Sc. thesis, University of Technology . 13. Okane, T. (2001), For Integro-differential Closure Equations Inhomogeneous Turbulence; Dep artment of M athematics and Statist ics, M onash University . Australla, http ://conference. M ath.uq. Edu. au/ctac 2001/abstracts/Terenceokanel.htm1. 14. Delves, L.M . and M ohamed, J.L. (1985), Computational M ethods for Integral Equations; Cambridge University p ress. 15. Hall, G. and Watt, J.M . (1976), M odern Numerical M ethods for Ordinary Differential Equation; Oxford University p ress. 16. AL-Akaedee, A. H. (2009), Some Ap p roximation M ethods for Solving Linear Sy st em of Integro-Differential Equations; M .Sc. thesis, University of Baghdad. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Table (1) Results of (O -N) Formula for example 1 X EXACT O- N  NOexa ct  0.0 1.0 1.00000000000 0.00000000000 0.1 1.1 0.059535959719- 1.040464040280 0.2 1.2 0.130123733624- 1.069876266376 0.3 1.3 0.213768960894- 1.086231039105 0.4 1.4 0.313206121581- 1.086793878418 0.5 1.5 0.432225024164- 1.067774975835 0.6 1.6 0.576122808453- 1.023877191546 0.7 1.7 -0.752340013843 0.947659986156 0.8 1.8 0.971371157918- 0.828628842081 0.9 1.9 1.248090330516- 0.651909669483 1.0 2.0 1.603711691947- 0.396288308052 L.S .E. 53.40100881831022 53.401008818 R. T ime. 0.33000000000000 0.3300000000 Table (1.a) comparison betwee n (O -N) formula and Homotopy Perturbation Method of example (1). METHOD Nodes O- N Homotopy Perturbation SIMPSONS1/3 SIMPSONS13/8 0.0 1.00000000000 1.00000000000 1.00000000000 1.00000000000 0.1 0.059535959719- 0.059535959719- 0.058629411863- 0.058629411863- 0.2 0.130123733624- 0.130123733624- 0.126532083085- 0.126532083085- 0.3 0.213768960894- 0.213768960894- 0.204566898710- 0.204556471062- 0.4 0.313206121581- 0.313206121581- 0.293815208714- 0.293816208897- 0.5 0.432225024164- 0.432225024164- 0.395769114158- 0.395757665364- 0.6 0.576122808453- 0.576122808453- 0.512372661710- 0.512361184126- 0.7 -0.752340013843 -0.752340013843 -0.646289429429 -0.646277987576 0.8 0.971371157918- 0.971371157900- 0.801011403831- 0.800999920591- 0.9 1.248090330516- 1.248090330516- 0.981254168189- 0.981226479926- 1.0 1.603711691947- 1.603711691947- 1.193202937519- 1.193192880315- L.S .E. 53.40100881831 53.400975910829 47.059404783003 47.0589476850 R.T. 0.330000000000 0.550000000000 0.440000000000 0.440000000000 Table (2) Results of (O -N) Formula for example 2 X EXACT Open Newton Cotes formula.  NOexa ct  0.0 0.00 0.000000000000 0.00000000000 0.1 0.01 0.020112340710 1.079887659290 0.2 0.04 0.060870350306 1.139129649694 0.3 0.09 0.123471139122 1.176528860878 0.4 0.16 0.210064039206 1.189935960794 0.5 0.25 0.324135025802 1.175864974198 0.6 0.36 0.471049431039 1.128950568961 0.7 0.49 0.658846458868 1.041153541132 0.8 0.64 0.899428134734 0.900571865266 0.9 0.81 1.210363739718 0.689636260282 1.0 1.00 1.617657119881 0.382342880119 L.S .E. 0.659596059903 R.T. 0.330000000000 IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Table (2.a) comparison betwee n (O -N) formula and Homotopy Perturbation Method of example (2). METHOD Nodes O- N Homotopy Perturbation SIMPSONS1/3 SIMPSONS13/8 0.0 0.00000000000 0.00000000000 0.00000000000 0.00000000000 0.1 0.020112340710 0.020112340710 0.020021699215 0.020021699215 0.2 0.060870350306 0.060870350306 0.060115379036 0.060115379036 0.3 0.123471139122 0.12347113912 0.120446218308 0.120432870642 0.4 0.210064039206 0.210064039206 0.201204441266 0.201205986374 0.5 0.324135025802 0.324135025802 0.302718695118 0.302703459057 0.6 0.471049431039 0.471049431039 0.425348164531 0.425332499117 0.7 0.658846458868 0.658846458868 0.569633374553 0.569617082912 0.8 0.899428134734 0.899428134734 0.736177654792 0.736160153872 0.9 1.210363739718 1.210363739718 0.925843695363 0.925801402953 1.0 1.617657119881 1.617657119881 1.139636574700 1.139616212933 L.S .E. 0.659596059903 0.659596059903 0.058689234914 0.058663452819 R.T. 0.330000000000 0.980000000000 0.820000000000 0.380000000000 2011) 2( 24ابن الهیثم للعلوم الصرفة والتطبیقیة المجلدمجلة طریقة نیوتن كوتس لحل معادالت فولتیرا التكاملیة التفاضلیة من الرتبة االولى عاطفة جلیل صالح الجامعة المستنصریة،كلیة التربیة األساسیة ، قسم الریاضیات 2010، كانون الثاني ،17: استلم البحث في 2010 ،حزیران ،17: قبل البحث في الخالصة .الرتبة االولى يالتفاضلیة الخطیة ذ-ق العددیة لحل معادلة فولتیرا التكاملیةائبعض الطر في هذا العمل یوجد .طریقة نیوتن كوتس معادالت تم التوصل الیها بأستعمالالحلول العددیة لهذه ال .الیجاد الحل االمثل لهذه المعادلةطریقة نیوتن كوتس طبقت ).version 6(البرامج الحسابیة قد كتبت بلغة ماتالب كوتس المفتوحة -صیغ نیوتن -التكاملیة –معادالت فولتیرا التفاضلیة :الكلمات المفتاحیة