IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Solving System of Linear Fredholm Integral Equations o f Second Kind Using Open Newton-Cotes Formulas G. H. Ibraheem Departme nt of Mathematics, College of Education, Ibn-Al-Haitham, Unive rsity of Baghdad Received in: 27,October, 2010 Accepte d in: 28, February, 2011 Abstract In this p aper, the linear sy st em of Fredholm integral equations is solving using Op en Newt on-Cotes formula, which we use five different t y p es of Op en Newt on-Cotes formula to solve this sy st em. Compare the results of suggested method with the results of another method (closed Newt on-Cotes formula) Finally, at the end of each method, algorithms and p rograms developed and written in M AT LAB (version 7.0) and we give some numerical examp les, illustrate suggested method. Keyword: Op en Newt on – Cotes formula, Closed Newt on-Cotes formula, Sy st em of linear Fredholm integral equation. Introduction The p roblem of Newt on-Cotes formula arises when the integration cannot be carried out exactly or when the function is known only at a finite number of data. Furt hermore, Newt on- Cotes rules are p rimary tool used by engineers and scientists to obtain app roximate answers for definite integrals that cannot be solved analy tically. [ 1 ] This p aper is organized as follows: in Section 2, we introduce a brief introduction to the Op en Newt on-Cotes and some basic definitions for integral equation. In Section 3, we construct our methods to app roximate the solution of linear sy st em of Fredholm integral equations. Numerical examp les are given in Section 4. 1- Review and Background 1.1 S ome defini tions of inte gral e quati on De fini tion 1-1: [ 2 ] Inte gral equati on is an equation in which the unknown function app ears under an integral sign. A general form of line ar integral e quati ons may be writt en as follows: IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 bxadttutxkxfxuxh xb a   )( )(),()()()(  ………………..(1) Where h(x) and f(x)are given function of x, t)k(x, is a function of two variables x and t called kernel of integral equation which are also known, while u(x) is to be determined and  is a scalar p arameter [in this p aper we take 1 ]. De fini tion 1-2: [ 2 ] If the function h(x) =1, then the linear integral equation (1) is said to be an equati on of the se cond ki nd (i.e.) bxadttutxkxfxu xb a   )( )(),()()( ……………………..(2) De fini tion 1-3: [ 2 ] The integral equation (1) is called Fredhol m inte gral equati on (FIE) if b b(x)  , where b is constant such that ab . Therefore, the integral equations   b a bxadttutxkxf )(),()( bxadttutxkxfxu b a   )(),()()( Represent the one-dimensional Fredholm integral equation of the first and second kind resp ectively. 1.2 Open Newton-Cotes formul a In numerical analysis, the Newt on-Cotes (N-C) formulas are a group of formulas of numerical integration based on evaluating the integrand at equally - sp aced p oints. They are named after Isaac Newt on and Roger Cotes [ 3 ]. T here are two t y p es of N-C formulas: - The (closed) ty p e which uses t he function value at all p oint in the domain. - The (op en) ty p e which does not use the function value at the initial and end p oint of the domain . Numerical integration formulas of the form )()()()( 00 fExfwdxxfdxxf b a n i x x ii n     where )( fE is the error, niforhixxi ,...,1,0*0  , and niwi ,...,1,0 are the weights, is called closed Ne wton-Cotes formul as Some of the common closed N-C formulas are as follows: - Trapezoidal rule , Simp son 1/3 rule and Simp son 3/8 rule IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Numerical integration formulas of the form )()()()( 0 1 1 fExfwdxxfdxxf b a n i x x ii n       where )( fE is the error, 1,...,0,1*)1(0  niforhixxi , and niwi ,...,1,0 are the weights, is called open Newton-Cotes formul as. Some of the common open N-C formulas with their error terms are a follows: [ 1 ] - n=0 M idpoint rule ),()( 3 )(2)( 11 3 0 1 1 xxwheref h xhfdxxf x x     - n=1 ),()( 4 3 )]()([ 2 3 )( 21 3 10 2 1 xxwheref h xfxf h dxxf x x     - n=2 ),()( 45 14 )](2)()(2[ 3 4 )( 31 )4( 5 210 3 1 xxwheref h xfxfxf h dxxf x x     - n=3 ),()( 144 95 )](11)()()(11[ 24 5 )( 41 )4( 5 3210 4 1 xxwheref h xfxfxfxf h dxxf x x     - n=4 ),()( 1404 4 )](11)(14)(26)(14)(11[ 10 3 )( 51 )6( 7 43210 5 1 xxwheref h xfxfxfxfxf h dxxf x x     2- S oluti on of a syste m of line ar Fredholm inte gral e quati ons of the se cond ki nd Usi ng Open N-C formul as In this section, we use the common formula of Op en N-C to solve the sy st em of linear Fredholm integral equations of the second kind. Consider the sy st em of linear Fredholm integral equations of the second kind nrdtxutxkxfxu s n s b a rsrr ,...,2,1,)(),()()( 1    ……(3) where nsrkfNn rsr ,...,2,1,,,,  are assumed to be continuous function. Sup p ose that t he interval [a, b] is divided into n+2 equal subintervals of length 2   n ab h , such that 1,1 ,   n xbxa with nihiαx i ,...,1,0,*  this imp lies that hax 0 and hbxn  and )( ir xu for nrni ,...,2,1,,...,1,0  can be determined by : nrnidttutxkxfxu n s b a sirsirir ,,2,1,,,1,0,)(),()()( 1     ………….(4) Thus, we are ap p roximating each integral term by the open N-C formulas. 2.1 Usi ng O pen N-C: with n=0 (Midpoint Rule) We replace the integral term that ap p eared in the right hand side of the above equation by the comp osite midpoint rule which illustrate in the following theorem: [ 4 ] IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 The orem: Let ],[2 baCf  . With )22/()(  mabh and hjαxj )1(  12,...,0,1,  mj , the midpoint rule for n=2m subintervals is: )( 6 )(2)( 20 0 2 fh ab xfhdxxf b a m j j      for some ),( ba . If the number of subinterval is even we app ly op en N-C with (n=1) rule. Therefore 2/,,1,0,,,2,1, 2 nmwhereminru ir   are obtained by solving the equation:   nsnrniuxxkhfu jii s n j jirsrr ,,2,1,,,2,1,2 ,,1,0,),(2 2 2/ 0 22     )5( where ir u 2 denote the numerical solution at , m=n/2, Transform all the terms involving the solution ir u 2 2/,,1,0,,,2,1, nminr   to left side of the equation (5) and ir f 2 to the right side.                                   ),(21),(2),(2),(2),(2),(2 ),(2),(21),(2),(2),(2),(2 ),(2),(2),(21),(2),(2),(2 ),(2),(2),(2),(21),(2),(2 ),(2),(2),(2),(2),(21),(2 ),(2),(2),(2),(2),(2),(21 1011101 1110111111011 0100001101001 111011 111 101 1 1111101111 1111 1011 1 0110100101 1101 1001 1 mmnnmnnmnnmmnmnmn mnnnnnnmnnn mnnnnnnmnnn mmnmnmnmmmm mnnnm mnnnm xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk                                                                                                   nm m m n nm m m n f f f f f f u u u u u u       2 1 1 21 11 2 1 1 21 11 …(6) Remark: equation (6) has unique solution if the determent of t he matrix K not equal to z ero Also, if the number of subintervals is odd, we get combination between op en N-C: n=1 and open N-C: n=0: Midpoint rules. Therefore mninru ir  )2(,,2,1,,,2,1,  where 2/)1(  nm are obtained by solving the equations: 2/)1()2(,,2,1,,,2,1,,,2,1 2 2 3 2 3 )2( 3 2211      nmwheremninsnrfor ukhuk h uk h fu mn j srssrssrsrr jijiiii  ……(7) Transform all the terms involving the solution mninru ir  )2(,,2,1,,,2,1,  where 2/)1(  nm to left side of the equation (7) and ir f to the right side. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Finally, each of sy st em in equations (6) and (7) can be written in matrix form as FKU  where K is the matrix of the coefficients, U is the matrix of solution and F is the matrix of non-homogeneous p art. To find the app roximate solution nru ir ,,2,1,  we find FKU 1  . The Algorithm of Numerical S oluti on of a S yste m of line ar Fredholm Inte gral Equations Usi ng O pen N-C: {n=0} (S ONCn0) S tep 1: comp ute 2   n ab h , Nn S tep 2:  Compute 2/,,1,0,,,2,1, 2 nminru ir   , using equation (6) when the number of subintervals is even.  Compute mninru ir  )2(,,2,1,,,2,1,  where 2/)1(  nm , using equation (7) when the number of subintervals is odd. S tep 3: solve the resulting sy st em by multiplication it with K -1 . 2.2 Usi ng O pen N-C: n=1 Rul e By the same st eps of condition on equation (4), use the op en N-C where n=1 formula to app roximate each integral term in equation (4). If the number of subintervals is (a multiple of three). Therefore mninru ir  )2(,,2,1,,,2,1,  where 3/)2(  nm are obtained by solving the equations: we app ly op en N-C with (n=1). Therefore nru ir ,,2,1,  mni  )2(,,2,1,  , where 3/)2(  nm are obtained by solving the equations: where 3/)2(  nm   nsnrmniuxxkhfu jii s mn j jirsrr ,,2,1,,,2,1,)2(,,2,1,),( 2 3 )2( 1      …..(8) where ir u denote the numerical solution at , 3/)2(  nmwhere Transform all the terms involving the solution m-2)+(n,…1,2,=i,,,2,1, nru ir  to left side of the equation (8) and i fr to the right side. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011                                                   ),( 2 3 1),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 1),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 1),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 1),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 1),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 ),( 2 3 1 2112111 2221221221121 1211111211111 1211111211111 2122112121122111211 1121111111121111111 mmnnmnnmnnmmnmnmn mnnnnnnmnnn mnnnnnnmnnn mmnmnmnmmmm mnnnm mnnnm xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk xxhkxxhkxxhkxxhkxxhkxxhk                                                                                                   nm m m n nm m m n f f f f f f u u u u u u       2 1 1 21 11 2 1 1 21 11 ….....(9) Also, if the number of subintervals is (a multiple of three +1), we get combination between op en N-C : n=0 M idpoint and op en N-C: n=1 rules. Therefore mninru ir  )1(,,2,1,,,2,1,  where 3/)1(  nm are obtained by solving the equation: 3/)1()2(,,2,1,,,2,1,,,2,1 2 3 2 )2( 2 11      nmwheremninsnrfor uk h uhkfu mn j srssrsrr jijiii  …….(10) Transform all the terms involving the solution mninru ir  )1(,,2,1,,,2,1,  , where 3/)1(  nm to left side of the equation (10) and ir f to the right side. if the number of subintervals is (a multip le of three +2), we get combination between op en N- C : n=0 (M idpoint method) and op en N-C : n=1 rules. Therefore mninru ir  )1(,,2,1,,,2,1,  , where 3/nm are obtained by solving the equation: 3/)1(,,2,1,,,2,1,,,2,1 2 3 22 )2( 3 2211 nmwheremninsnrfor uk h uhkuhkfu mn j srssrssrsrr jijiiii       ……….(11) Transform all the terms involving the solution mninru ir  )1(,,2,1,,,2,1,  where 3/nm to left side of the equation (11) and ir f to the right side. Finally, each sy st em in equations (9), (10) and (11) can be written in a matrix form as FKU  where K is the matrix of the coefficients, U is the matrix of solution and F is the matrix of non-homogeneous p art. To find the ap p roximate solution nrur i ,,2,1,  we find FKU 1 The Algorithm of Open N-C {n=1} (S ONCn1) IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 S tep 1: comp ute 2   n ab h , Nn S tep 2:  Compute m-2)+(n,…1,2,=i,,,2,1, nru ir  where 3/)2(  nm , using equation (9) when the number of subintervals is (a multiple of 3).  Compute mninru ir  )1(,,2,1,,,2,1,  where 3/)1(  nm , using equation (10) when the number of subintervals is (a multiple of 3 +1).  Compute mninru ir  )1(,,2,1,,,2,1,  where 3/nm , using equation (11) when the number of subintervals is (a multiple of 3 +2). S tep 3: solve the resulting sy st em by multiplication it with K -1 . 2.3 Usi ng O pen N-C: n=2 Rul e The open N-C: n=2 formula can be used to app roximate equation (4) such that: If the number of subintervals is (a multiple of four), we app ly the op en N-C: n=2 formula to each integral term in equation (4) as the form:   4/)2()2(,,2,1,,,2,1,,,2,1 2222 3 4 )2())2(()1())1((44332211    nmwheremninsnrfor ukukukukukuk h fu mnmnimnmniiiiiii srssrssrssrssrssrsrr   ……(12) Transform all the terms involving the solution m-2)+(n,…1,2,=i,,,2,1, nru ir  where 4/)2(  nm to the left side of the equation (12) and ir f to the right side. Also, if the number of subintervals (n+2) is (a multiple of four +1), we get combination between op en N-C: n=0, op en N-C: n=1 and op en N-C: n=2 rules and mnimru ir  )1(,2,1,,,2,1,  where 4/)1(  nm are obtained by solving the sy st em of equations: 4/)1()1(,,2,1,,,2,1,,,2,1 ]22[ 3 4 2 3 2 3 2 )1())1(()(5544332211    nmwheremninsnrfor ukukukuk h uk h uk h uhkfu mnmnimnmniiiiiiii srssrssrssrssrssrssrsrr   ...(13) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  , where 4/)1(  nm to the left side of the equation (13) and ir f to the right side. If the number of subintervals (n+2) is (a multiple of four +2), we get combination between op en N-C: n=0 and op en N-C: n=2 rules and mnimru ir  )1(,2,1,,,2,1,  , where 4/nm are obtained by solving the sy st em of equations. 4/)1(,,2,1,,,2,1,,,2,1 ]222[ 3 4 2 )1())1(()(44332211 nmwheremninsnrfor ukukukukuk h uhkfu mnmnimnmniiiiiii srssrssrssrssrssrsrr      ………….(14) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  where 4/nm  to the left side of the equation (14) and ir f to the right side. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 ]Also, if the number of subintervals (n+2) is (a multiple of four +3) we get combination between op en N-C: n=1 and op en N-C: n=2 rules and mnimru ir  )1(,2,1,,,2,1,  , where 4/)1(  nm are obtained by solving the sy st em of equations. 4/)1()1(,,2,1,,,2,1,,,2,1 ]22[ 3 4 2 3 2 3 )1())1(()(44332211    nmwheremninsnrfor ukukukuk h uk h uhk h fu mnmnimnmniiiii rs ii srssrssrssrssrssrr   …..….(15) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  where 4/)1(  nm to the left side of the equation (15) and ir f to the right side. Finally, each sy st em in equations (12), (13), (14) and (15) can be written in a matrix form as FKU  , where K is the matrix of the coefficients, U is the matrix of solution and F is the matrix of non-homogeneous p art. To find the app roximate solution nruir ,,2,1,  , we find FKU 1 The Algorithm of Open N-C:{n=2} (S ONCn2) S tep 1: comp ute 2   n ab h , Nn S tep 2:  Compute m-2)+(n,…1,2,=i,,,2,1, nru ir  where 4/)2(  nm , using equation (12) when the number of subintervals is (a multiple of 4).  Compute mninru ir  )1(,,2,1,,,2,1,  where 4/)1(  nm , using equation (13) when the number of subintervals is (a multiple of 4 +1).  Compute mninru ir  )1(,,2,1,,,2,1,  where 4/nm , using equation (14) when the number of subintervals is (a multiple of 4 +2).  Compute mninru ir  )1(,,2,1,,,2,1,  where 4/)1(  nm , using equation (15) when the number of subintervals is (a multiple of 4 +3). S tep 3: solve the resulting sy st em by multiplication it with K -1 . 2.4 Usi ng O pen N-C: n=3 Rul e The open N-C: n=3 formula can be used to app roximate equation (4) such that: If the number of subintervals is (a multiple of five) we app ly the op en N-C: n=3 formula to each integral term in equation (4) as the form:   5/)2()2(,,2,1,,,2,1,,,2,1 111111 24 5 )2())2(()1())1((44332211    nmwheremninsnrfor ukukukukukuk h fu mnmnimnmniiiiiii srssrssrssrssrssrsrr   ……….(16) Transform all the terms involving the solution m-2)+(n,…1,2,=i,,,2,1, nru ir  , where 5/)2(  nm to the left side of the equation (16) and ir f to the right side. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Also, if the number of subintervals (n+2) is (a multiple of five +1) we get combination between op en N-C: n=1 and op en N-C: n=3 rules and mnimru ir  )1(,2,1,,,2,1,  , where 5/)1(  nm are obtained by solving the sy st em of equations. 5/)1()1(,,2,1,,,2,1,,,2,1 ]1111[ 24 5 2 3 2 3 2 3 2 3 )1())1(()(5544332211    nmwheremninsnrfor ukukuk h uk h uk h uk h uhk h fu mnmnimnmniiiiiiii srssrssrssrssrssrssrsrr   ...(17) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  , where 5/)1(  nm to the left side of the equation (17) and ir f to the right side. If the number of subintervals (n+2) is (a multiple of five +2) we get combination between op en N-C: n=0 and op en N-C: n=3 rules and mnimru ir  )1(,2,1,,,2,1,  , where 5/nm are obtained by solving the sy st em of equations. 5/)1(,,2,1,,,2,1,,,2,1 ]1111[ 24 5 2 )1())1(()(44332211 nmwheremninsnrfor ukukukukuk h uhkfu mnmnimnmniiiiiii srssrssrssrssrssrsrr      …….(18) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  where 5/nm  to the left side of the equation (18) and ir f to the right side. Also, if the number of subintervals (n+2) is (a multiple of five +3) we get combination between op en N-C: n=1 and op en N-C: n=3 rules and mnimru ir  )1(,2,1,,,2,1,  , where 5/)1(  nm are obtained by solving the sy st em of equations. 5/)1()1(,,2,1,,,2,1,,,2,1 ]1111[ 24 5 2 3 2 3 )1())1(()(44332211    nmwheremninsnrfor ukukukuk h uk h uhk h fu mnmnimnmniiiiiii srssrssrssrssrssrsrr   …….(19) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  , where 5/)1(  nm to the left side of the equation (19) and ir f to the right side. And, if the number of subintervals (n+2) is (a multiple of five +4) we get combination between op en N-C: n=2 and op en N-C: n=3 rules and mnimru ir  )1(,2,1,,,2,1,  , where 5/)2(  nm are obtained by solving the sy st em of equations. 5/)2()1(,,2,1,,,2,1,,,2,1 ]1111[ 24 5 ]22[ 3 4 )1())1(()(44332211    nmwheremninsnrfor ukukuk h ukukuhk h fu mnmnimnmniiiiiii srssrssrssrssrssrsrr   …(20) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  , where 5/)2(  nm to the left side of the equation (20) and ir f to the right side. Finally, each sy st em in equations (16), (17), (18), (19) and (20) can be written in a matrix form as FKU  where K is the matrix of the coefficients, U is t he matrix of solution and F IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 is the matrix of non-homogeneous p art. T o find the ap p roximate solution nru ir ,,2,1,  we find FKU 1 The Algorithm of Open N-C {n=3} (S ONCn3) S tep 1: comp ute 2   n ab h , Nn S tep 2:  Compute m-2)+(n,…1,2,=i,,,2,1, nru ir  where 5/)2(  nm , using equation (16) when the number of subintervals is (a multiple of 5).  Compute mninru ir  )1(,,2,1,,,2,1,  where 5/)1(  nm , using equation (17) when the number of subintervals is (a multiple of 5 +1).  Compute mninru ir  )1(,,2,1,,,2,1,  where 5/nm , using equation (18) when the number of subintervals is (a multiple of 5 +2).  Compute mninru ir  )1(,,2,1,,,2,1,  where 5/)1(  nm , using equation (19) when the number of subintervals is (a multiple of 5 +3).  Compute mninru ir  )1(,,2,1,,,2,1,  where 5/)2(  nm , using equation (20) when the number of subintervals is (a multiple of 5 +4). S tep 3: solve the resulting sy st em by multiplication it with K -1 . 2.4 Usi ng O pen N-C: n=4 Rul e The open N-C: n=4 formula can be used to app roximate equation (4) such that: If the number of subintervals is (a multiple of six) we app ly the op en N-C: n=4 formula to each integral term in equation (4) as the form:   6/)2()2(,,2,1,,,2,1,,,2,1 11141114261411 10 3 )2())2(()1())1((5544332211    nmwheremninsnrfor ukukukukukukuk h fu mnmnimnmniiiiiiii srssrssrssrssrssrssrsrr   ….(21) Transform all the terms involving the solution m-2)+(n,…1,2,=i,,,2,1, nru ir  , where 6/)2(  nm to the left side of the equation (21) and ir f to the right side. Also, if the number of subintervals (n+2) is (a multiple of six +1) we get combination between op en N-C: n=0, op en N-C: n=3, and op en N-C: n=4 rules and mnimru ir  )1(,2,1,,,2,1,  , where 6/)1(  nm are obtained by solving the sy st em of equations. 5/)1()1(,,2,1,,,2,1,,,2,1 ]111411[ 10 3 1111[ 24 5 2 )1())1(()(665544332211 ]    nmwheremninsnrfor ukukuk h ukukukuk h uhkfu mnmnimnmniiiiiiiii srssrssrssrssrssrssrssrsrr   ....(22) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  , where 6/)1(  nm to the left side of the equation (22) and ir f to the right side. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 If the number of subintervals (n+2) is (a multip le of six +2) we get combination between op en N-C: n=0 and op en N-C: n=4 rules and mnimru ir  )1(,2,1,,,2,1,  where 6/nm are obtained by solving the sy st em of equations. 6/)1(,,2,1,,,2,1,,,2,1 ]1114261411[ 10 3 2 )1())1(()(44332211 nmwheremninsnrfor ukukukukuk h uhkfu mnmnimnmniiiiiii srssrssrssrssrssrsrr      .….(23) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  , where 6/nm  to the left side of the equation (23) and ir f to the right side. Also, if the number of subintervals (n+2) is (a multiple of six +3) we get combination between op en N-C: n=1 and op en N-C: n=4 rules and mnimru ir  )1(,2,1,,,2,1,  , where 6/)1(  nm are obtained by solving the sy st em of equations. 6/)1()1(,,2,1,,,2,1,,,2,1 ]11141411[ 10 3 2 3 2 3 )1())1(()(44332211    nmwheremninsnrfor ukukukuk h uk h uhk h fu mnmnimnmniiiiiii srssrssrssrssrssrsrr   ….(24) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  where 6/)1(  nm to the left side of the equation (24) and ir f to the right side. If the number of subintervals (n+2) is (a multip le of six +4) we get combination between op en N-C: n=2 and op en N-C: n=4 rules and mnimru ir  )1(,2,1,,,2,1,  , where 6/)2(  nm are obtained by solving the sy st em of equations. 6/)2()1(,,2,1,,,2,1,,,2,1 ]111411[ 10 3 ]22[ 3 4 )1())1(()(44332211    nmwheremninsnrfor ukukuk h ukukuhk h fu mnmnimnmniiiiiii srssrssrssrssrssrsrr   ….(25) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  , where 6/)2(  nm to the left side of the equation (25) and ifr to the right side. Also, if the number of subintervals (n+2) is (a multiple of six +5) we get combination between op en N-C: n=3 and op en N-C: n=4 rules and mnimru ir  )1(,2,1,,,2,1,  , where 6/)3(  nm are obtained by solving the sy st em of equations. 6/)3()1(,,2,1,,,2,1,,,2,1 ]111411[ 10 3 ]1111[ 24 5 )1())1(()(5544332211    nmwheremninsnrfor ukukuk h ukukukuhk h fu mnmnimnmniiiiiiii srssrssrssrssrssrssrsrr   ....(26) Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru ir  , where 6/)3(  nm to the left side of the equation (26) and ir f to the right side. Finally, each sy st em in equations (21), (22), (23), (24), (25) and (26) can be written in a matrix form as FKU  where K is the matrix of the coefficients, U is t he matrix of solution IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 and F is the matrix of non-homogeneous p art. To find the app roximate solution nru ir ,,2,1,  we find FKU 1 The Algorithm of Open N-C {n=4} (S ONCn4) S tep 1: comp ute 2   n ab h , Nn S tep 2:  Compute m-2)+(n,…1,2,=i,,,2,1, nru ir  where 6/)2(  nm , using equation (21) when the number of subintervals is (a multiple of 6).  Compute mninru ir  )1(,,2,1,,,2,1,  where 6/)1(  nm , using equation (22) when the number of subintervals is (a multiple of 6 +1).  Compute mninru ir  )1(,,2,1,,,2,1,  where 5/nm , using equation (23) when the number of subintervals is (a multiple of 6 +2).  Compute mninru ir  )1(,,2,1,,,2,1,  where 6/)1(  nm , using equation (24) when the number of subintervals is (a multiple of 6 +3).  Compute mninru ir  )1(,,2,1,,,2,1,  where 6/)2(  nm , using equation (25) when the number of subintervals is (a multiple of 6 +4).  Compute mninru ir  )1(,,2,1,,,2,1,  where 6/)2(  nm , using equation (26) when the number of subintervals is (a multiple of 6 +5). S tep 3: solve the resulting sy st em by multiplication it with K -1 . 3- Numerical Examples In this section, we test some of the numerical examp les p erformed to solving this linear sy st em of Fredholm integral equations. The exact solution is used only to show the accuracy of the numerical solution which obtained with our method. Example (1): Consider the p roblem:          1 0 21 2 2 1 0 211 )()(1 12 19 )( )()( 3 )( 36 17 18 )( dttutuxtxxxu dttutu txx xu which is a sy st em of two linear FIE's, with exact solution is [5]: 1)(,1)( 2 21  xxuxxu Tables (1) and (2) p resent a comp arison between the exact and numerical solution of four ty p es of Op en Newt on – Cotes and two ty p es of Closed Newt on – Cotes for u1 and u2 resp ectively depending on least square error and running time with h=1/16. Example (2): Consider the p roblem:       1 0 3 1 0 2 1 0 1 2 3 1 0 3 1 0 2 1 0 1 22 2 1 0 3 2 1 0 2 1 0 1 2 1 )()()(3)()1( 6 11 12 7 )( )()()()2()()( 6 7 3 5 3 2 )( )()()()( 30 29 3 )( dttuxtdttudttuxxxxu dttuxdttutdttuxxxxu dttutdttutdttutx x xxu IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 which is a sy st em of three linear FIE's, with exact solution is 23 2 2 2 1 1)(,)(,)( xxuxxxuxxu  Tables (3)- (5) p resent a comp arison between the exact and numerical solution of four ty p es of Op en Newt on – Cotes and three ty p es of Closed Newt on – Cotes for u1, u2 and u3 resp ectively depending on least square error and running time with h= 0.1 Example (3): Consider the p roblem:     1 0 2 2 1 0 1 24 2 1 0 2 2 1 0 1 2 1 )()()( 12 7 5 1 )( )()()1(1 12 25 6 5 )( dttuxtxdttuxtxxxxu dttutxdttutxxxxu which is a sy st em of two linear FIE's, with exact solution is [6 ]: 42 2 1 )(,1)( xxuxxu  Tables (6) and (7) p resent a comp arison between the exact and numerical solution of four ty p es of Op en Newt on – Cotes and two ty p es of Closed Newt on – Cotes for u1 and u2 resp ectively depending on least square error and running time with h=1/18 Conclusion In this p aper we suggest op en N-C formula to solve sy st em of linear Fredholm integral equations of the second kind and we obtain the following results: 1- The results obtained using op en N-C formulas are more accurate than the results obtained using closed N-C formulas in general. 2- Op en N-C formulas are more efficient than closed N-C formulas since the op en N-C formulas have most results than closed N-C with fewer nodes in the open N-C formulas. 3- The results obtained in op en N-C formula when n=4 or multiple of four is most of the results in a short time in other open N-C formulas. Re ferences 1.M athews, J.H. and Fink, K.D. (1999), "Numerical M ethods Using M AT LAB "; third edition, Prenice-Hall, Inc. 2.Chambers, L.I.G. (1976), “Integral Equation: A Short Course”; International Textbook Company Limited. 3. Lap idus, L. and Seinfeld, J. H. (1971) “Numerical Solution of Ordinary Differential Equations”; Academic Press New-York and London. 4.Burden, R. L. and Faires, J. D. (2006), “Numerical Analysis”; Eighth Edition, An International Thomson Publishing Company. 5.Vahidi, A.S. R. and M okhtari, M . (2008), “On the Decomp osition M ethod for Sy st em of Linear Fredholm Integral Equations of the Second Kind”; Ap p lied M athematical Sciences, Iran, 2 :(2) 57-62. 6.Al-Dulaimi, M . Y. (2008),”Some M odified Quadrature Rules for Solving Sy st em of Fredholm Linear Integral Equations”; M .Sc. thesis, University of Baghdad, Ibn-Al-Haitham College of Education. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Table (1) A comparison betwee n the exact and numerical sol uti on of 4 types of Open N – C and 2 types of Close d N– C for u1 Table (2) A comparison betwee n the exact and numerical sol uti on of 4 types of Open N – C and 2 types of Close d N– C for u2 Closed N-C Simp. 3/8 Closed N-C Trap. Open N-C n=4 Open N-C n=3 Open N-C n=2 Open N-C n=1 Open N-C n=0 Exact u1 x 1.06254649 1.06408126 1.0625000 1.06135355 1.06250000 1.05802317 61.0593592 1.0625000 0.62500 1.12505018 1.12668959 1.1250000 1.12376887 01.1250000 1.1250000 0.12500 1.31256126 1.31451459 1.3750000 1.37500000 1.36899583 1.3750000 0.37500 1.50007234 1.50233959 1.5000000 1.49826084 1.49338489 1.5000000 0.50000 1.75008711 1.75277293 1.7500000 1.74792216 1.74216302 1.7500000 0.75000 1.87509449 1.87798960 1.8750000 1.87275281 1.86655208 1.8750000 0.87500 1.038e- 008 1.028e- 005 1.972e- 031 e- 0065.437 e- 0311.972 e- 0057.662 e- 0053.789 L.S.E. 0.297000 0.31200 0.18800 0.172000 0.203000 0.12500 0.07800 Time Closed N-C Simp. 3/8 Closed N-C Trap. Open N-C n=4 Open N-C n=3 Open N-C n=2 Open N-C n=1 Open N-C n=0 Exact u2 x 1.00391427 1.00418242 1.00390625 1.00370716 1.00390625 1.00312412 1.00335774 1.0039062 0.62500 1.01564105 1.01617734 1.0156250 1.01522683 1.01562500 1.0156250 0.12500 1.14067315 1.14228204 1.1406250 1.14062500 1.13593222 1.1406250 0.37500 1.25006420 1.25220939 1.2500000 1.24840733 1.24374297 1.2500000 0.50000 1.56259630 1.56581408 1.5625000 1.56011100 1.55311445 1.5625000 0.75000 1.76573735 1.76949143 1.7656250 1.76283783 1.76562500 1.75467520 1.7656250 0.87500 1.648e- 008 1.952e- 005 0 e- 0068.917 e- 0324.930 e- 0041.376 e- 0056.769 L.S.E. 0.297000 0.31200 0.18800 0.172000 0.203000 0.12500 0.07800 Time IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Table (3) A comparison betwee n the exact and numerical sol uti on of 4 types of Open N – C and 2 types of Close d N– C for u1 Table (4) A comparison betwee n the exact and numerical sol uti on of 4 types of Open N – C and 2 types of Close d N– C for u2 Closed N-C Simp. 3/8 Closed N-C Trap. Open N-C n=4 Open N-C n=3 Open N-C n=2 Open N-C n=1 Open N-C n=0 Exact u1 x 0.00853472 -0.0123549 0.00985664 0.00939200 0.01634641 0.07564343 0.05805579 0.010000 0.1 0.08810184 0.06074898 0.08980885 0.08918933 0.09823966 0.17608013 0.15296328 0.090000 0.3 0.24766898 0.21385289 0.24976106 0.26013291 0.35651683 0.32787077 0.250000 0.5 0.48723610 0.44695676 0.48971327 0.48878400 0.50202615 0.58277826 0.490000 0.7 0.80680323 0.76006071 0.80966549 0.80858133 0.82391940 0.95739024 0.91768575 0.810000 0.9 1.16e- 005 0.00285 1.118 e- 007 2.012 e- 006 1.937 e- 004 0.02172388 0.01159622 L.S.E. 1.172 1.188 0.15600 0.1710000 0.110000 0.110000 0.078000 Time Closed N-C Simp. 3/8 Closed N-C Trap. Open N-C n=4 Open N-C n=3 Open N-C n=2 Open N-C n=1 Open N-C n=0 Exact u2 x 0.11102031 0.12946933 0.11008521 0.11036142 0.10543206 0.05300473 0.06875521 0.11000 0.1 0.39105674 0.40942113 0.39010194 0.39043235 0.38528876 0.33304139 0.34870102 0.39000 0.3 0.75092003 0.76661449 0.75009955 0.74590276 0.70125273 0.71460984 0.75000 0.5 1.19061016 1.20104942 1.19007805 1.19033102 1.18727406 1.16648165 1.19000 0.7 1.71012715 1.71272591 1.71003743 1.71015875 1.70940265 1.70219946 1.70431646 1.71000 0.9 3.214e- 008 6.102e- 006 1.401 e- 009 2.520 e- 008 3.568 e- 007 6.084 e- 005 3.230 e- 005 L.S.E. 1.172 1.188 0.15600 0.1710000 0.110000 0.110000 0.078000 Time IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Table (5) A comparison betwee n the exact and numerical sol uti on of 4 types of Open N – C and 2 types of Close d N– C for u3 Table (6) A comparison betwee n the exact and numerical sol uti on of 4 types of Open N – C and 2 types of Close d N– C for u1 Closed N-C Simp. 3/8 Closed N-C Trap. Open N-C n=4 Open N-C n=3 Open N-C n=2 Open N-C n=1 Open N-C n=0 Exact u3 x 0.99026659 0.99687951 0.98996416 0.98984800 0.98878499 0.97099871 0.99000000 0.99000 0.1 0.90969268 0.90749750 0.90989248 0.90954400 0.91131067 0.91867773 0.91000000 0.91000 0.3 0.74911876 0.73811548 0.74982080 0.75383634 0.78635675 0.75000000 0.75000 0.5 0.50854484 0.51000000 0.50974912 0.50893600 0.51636201 0.51000000 0.51000 0.7 0.18797093 0.19000000 0.18967744 0.18863200 0.19888768 0.28171479 0.19000000 0.19000 0.9 5.36e- 006 0.0012 1.040 e- 007 1.871 e- 006 7.899 e- 005 0.00841160 0.00450909 L.S.E. 1.172 1.188 0.15600 0.17100 0.11000 0.1100 0.07800 Time Closed N-C Simp. 3/8 Closed N-C Trap. Open N-C n=4 Open N-C n=3 Open N-C n=2 Open N-C n=1 Open N-C n=0 Exact u1 x 1.00308849 1.00439048 1.00308641 1.00286469 1.00299173 0.99935102 1.00056628 1.0030864 0.05556 1.04939139 1.05476199 1.04938271 1.04847428 1.04899455 1.03397239 1.0493827 0.22222 1.15125043 1.16093361 1.15123456 1.14960709 1.15053877 1.12344622 1.13248750 1.1512345 0.38889 1.30866561 1.32290534 1.30864197 1.30626312 1.26777251 1.3086419 0.55556 1.52163693 1.54067718 1.52160493 1.52025143 1.46695127 1.48473476 1.5216049 0.72222 1.79016439 1.81424913 1.79012345 1.78614486 1.78841988 1.72098248 1.7901234 0.88889 2.229e- 009 7.634e- 004 4.146e- 029 e- 0051.812 e- 0063.324 0.00549471 0.00250056 L.S.E. 0.391000 0.359000 0.281000 0.203000 0.188000 0.157000 0.11000 Time IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 (2) 2011 Table (7) A comparison betwee n the exact and numerical sol uti on of 4 types of Open N – C and 2 types of Close d N– C for u2 Closed N-C Simp. 3/8 Closed N-C Trap. Open N-C n=4 Open N-C n=3 Open N-C n=2 Open N-C n=1 Open N-C n=0 Exact u2 x 0.00000979 0.00031686 0.00000952 0.00004540- 0.00001319- 0.00086507- 0.0005813- 0.0000095 0.05556 0.00243999 0.00387053 0.00243865 0.00219055 0.00233587 0.00164220- 0.0024386 0.22222 0.02287473 0.02573211 0.02287189 0.02238811 0.02267126 0.01471108 0.01736184 0.0228718 0.38889 0.09526463 0.09985221 0.09525986 0.09449787 0.08214541 0.0952598 0.55556 0.27207881 0.27869997 0.27207171 0.27162193 0.25312991 0.25928723 0.2720717 0.72222 0.62430494 0.63326303 0.62429507 0.62284907 0.62369401 0.59865224 0.6242950 0.88889 1.425e- 010 1.144e- 004 8.985e- 030 e- 0062.485 e- 0074.296 e- 0047.879 e- 0043.588 L.S.E. 0.391000 0.359000 0.281000 0.203000 0.188000 0.157000 0.094000 Time 2011) 2( 24والتطبیقیة المجلدمجلة ابن الھیثم للعلوم الصرفة صیغ عمالمنظومة معادالت فریدهوم التكاملیة الخطیة من النوع الثاني باستحل كوتس المفتوحة –نیوتن غادة حسن إبراهیم جامعة بغداد، أبن الهیثم –كلیة التربیة ، قسم الریاضیات 2010، تشرین األول، 27: استلم البحث في ,2011شباط ، 28: قبل البحث في الخالصة اذ ،كوتس المفتوحـة –صیغ نیوتن عمالالبحث حل منظومة من معادالت فریدهوم التكاملیة الخطیة باست هذا یتضمن . لحل هذا النظام كوتس المفتوحة –من صیغ نیوتن خمس صیغ مختلفة عملنااست .كوتس المغلقة –ق نیوتن ائق أخرى مثل طر ائالبحث مع نتائج طر كذلك قارنا نتائج الطریقة المقترحة في هذا M( را في نهایة كل طریقة ذكرنا الخوارزمیة وبرنامج للطریقة المقترحة للحل وبلغة أخی AT LAB (version 7.0) ( أیضا .وضحنا الطریقة المقترحة من خالل األمثلة العددیة كوتس المغلقة ، منظومة معادالت فریـدهولم التكاملیـة –كوتس المفتوحة ، صیغ نیوتن –صیغ نیوتن :الكلمات المفتاحیة .الخطیة