IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Synthesis, Spectroscopic and Biological Studies of Some Metal Complexes with 2,3,5,6- O,O,O,O-tetraacetic acid L- ascorbic acid J. S. Sultan, A. A. Mukhlus, F. H. Musa Departme nt of Chemistry, College of Education, Ibn Al- Haitham ,Unive rsity of Baghdad Received in : 11 August 2010 Accepte d in : 8 February 2011 Abstract The reaction of L-ascorbic acid with the chloroacetic acid in p resence of p otassium hy droxide has been invest igated. The new p roduct L (2,3,5,6-O,O,O,O-tetraacetic acid L-ascorbic acid) was isolated and characterized by elemental analysis(C.H), 1 H, 13 C-NM R. M ass sp ectrum and Fourier transform infrared (FT -IR). The reaction of the ligand (L) (where L = H4L), M +2 = (Co, Ni, Cu, Cd, Pb, Hg, Ca, M g) has been invest igated and was isolated and characterized by FT -IR, UV- visible, conductivity , At omic absorp tion and molar ratio (Cd, Co) comp lexes. Sp ectroscop ic evidence showed that the binding of the M (II) ions are throughy the O-1 Lacton, O-2-OCH2COOH and O-6-OCH2COOH resulting in a six- coordinated metal ion, , Kf, m ax, for Co, Cd comp lexes, were estimated,  for Co, Ni, comp lexes were calculated too. The study of biological activity of the ligand (L) and its comp lexes (Cu +2 , Cd +2 , Ca +2 ) showed various activity toward st aphy lococcus aureu and Escherichia coli, excep t Ca- comp lex didn't show any effect. Key word : Sy nthesis, Sp ectroscop ic , Biological Studies Introduction Ascorbic acid h as been reported to act in a number of ways. It acts as a biological hy drogen carier for redox enzy me sy stems in cell metabolism[1], as a food preservative by oxidative rancidity of fatty oily foods or to p revent discoloration of p reserved fruits and vegetables[2,3]. Although ascorbic acid has a wide ran ge of antimicrobial effects, some of its, oxidative products are toxic[4]. L-ascorbic acid molecule has four hy droxy l group s and all these group s are active for classical esterification[5,6] and formation Schiff b ase with amines complexes[7]. Some metal ions have been p repared and characterized[8]. In view of this, we have sy nthesized, and characterized, new l igand (L) and its complexes with M II ions where M II = (Co +2 , Ni +2 , Cu +2 , Cd +2 , Pb +2 , Hg +2 , Ca + and M g +2 ) with biological studies of ligand and its comp lexes (Cu +2 , Cd +2 , Ca +2 ). Experimental Materials All chemicals were p urchased from BDH, and used without further purifications. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Instrumentati on 1. Infra-red sp ectra between (400-4000 cm –1 ) 8300 (FT -IR) Shimadzu Spectrop hotometer. 2. The electronic sp ectra were recorded on the UV-Visible sp ectrop hotometer ty p e (sp ectra 190-900) nm CECIL, England, using water as a solvent. 3. The melting p oint was recorded on "Gallen kamp M elting p oint Ap p aratus". 4. The Conductance M easurements were recorded on W. T. W. conductivity M eter. 5 The characterize of new ligand L is acheaved by : A: Elemental analysis for carbon, hy drogen was using a Euro Vector EA 3000 A Elemental Analysis (It aly ). B: 1 H- and 13 C NM R sp ectra were recorded by using a bruker 300 M HZ (5witzerland). Chemical Shift of all 1 H- and 13 C-NM R sp ectra were recorded in  (p p m) unit downfield from internal reference tetramethy lsilane (TM S), using D2O solvent. C: GCM S sp ectrum was p erformed GCM S solution/ M sc/ M sc-DI- unk, 9gm, comp any a Shimadzu model carried out QP 505 A, orgin: Jap an. D: All these analysis were done in at AL-al-Bay t University , Al- M afrag, Jordan. 6. Thin lay er chromatography (TLC): The (TLC) was p erformed on aluminum p lates coated with (0.25 mm) lay er of silica gel F254 (Fluka), and were detected by iodine. S ynthesi s 1. Sy nthesis of 2,3,5,6-O,O,O,O-tetraacetic acid L-ascorbic acid To a solution of 0.176 gm (0.001 mole) of L-ascorbic acid in 20 ml aqueous ethanol (15 ml ethanol + 5ml water) were added a solution of 0.224 gm (0.004 mole) of p otassium hy droxide in 5 ml of ethanol, after which the mixture was st irred for 30 minutes. To this mixture was added solution of 0.380 gm (0.004 mole) of chloroacetic acid in 10 ml of ethanol. Then the solution was st irring for one hour. The solution was evap orated slowly to bring down the orange p recipitate. The p roduct was recry st allized from (ethanol + water) in the ratio (15:5). The analytical results showed the comp osition (L) of C14H16O14.3H2O. EtOH.4KCl. Rf (0.526) in ethanol benzene (9:1). 2. Sy nthesis of 3,5-O,O,-diacetic acid-2,6- O,O diacetato L- ascorbic acid aqua metal (II), (M II =Co, Ni, Cu, Cd, Pb, Hg, Ca and M g) All comp lexes were p repared as follows: To a solution of (1 m mole) of L in 20 ml ethanol was added a solution of (4 m mole) of p otassium hy droxide in 5ml of ethanol. The mixture was st irred at room temp erature for half hour. To this mixture was added solution of (1 m mole) of metal chloride in 20 ml of ethanol. Then the solution was st irring for one hour. The solution was evap orated slowly to bring down the comp lex. The comp lex was recry st allized from ethanol. The p hy sical p rop erties for all sy nthesized ligand L and its comp lexes are shown in Table (1-1) Re sults and Discussion 1. Sy nthesis of 2,3,5,6-O,O,O,O-tetea acetic acid L-ascorbic acid (L) In the present work of the ligand (L) was sy nthesized by reacting L-ascorbic acid with chloroacetic acid in presence of potassium hydroxide. 1 2 .3H2O. EtOH.4KCl 1 2 O O HO HO OHHO O CH2O CH2O OO 4C lC H2C OOH HOOC HOOC H2C COOH CH2 COOH O 4KOH IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 The infrared sp ectrum of the (L) lacked absorp tions caused by (HO–CH2) which app eared in the sp ectrum of L-ascorbic acid at 3525, 3410, 3313 and 3213 cm –1 Fig. (1) resp ectively[9]. This confirms the disp lacement of the O–H hy drogen by mean of acetic group O–CH2COOH Fig. (2) (L). In the same trend broad band centered at 3421 cm –1 and bands in the range 2700-2500 cm –1 , are related to carboxy lic OH st retching. The band at 2954 cm –1 st retching is att ributed to C–H alip hatic. The strong band at 1608, 1404, 941 and 570 cm –1 are att ributed to the O=C–O st retching vibration[10,11]. The carbony l (lactone C–I=O) st retching vibration ap p eared as band medium intensity at 1755 cm –1 . Anot her medium broad band observed at ca. 1380cm –1 is assigned to C(3)–O – and the p eak at 1319cm –1 , (O(2)–H) for free acid shifted from the sp ectrum of L at 1311cm –1 which st rongly indicates the binding of OCH2COOH with C–2 and C–3 in a new ligand (L)[12], Fig. (2). The mass sp ectrum of the ligand (L) Fig. (3a) showed a highest M ass m /e at 167 with signal intensity (3%), (relative to the base p eak at m /e (44)) which may due to C8H7O4. The detailed decomp osition path ways are summarized in the reaction scheme; S cheme (1): The fragmentation sequence of the ligand (L) with relative abundance NMR spectrum for the ligand (L) 1 H–NM R. sp ectrum of the L in D2O exhibited (d) at  4.2 p p m for (IH) Lactone ring and O–CH2– at 4.8 p p m. Carboxy lic acids usually absorbs in the region (8–9.5) p p m and this is out of scale. Evidence for the carboxy lic of L has been observed from the 13 C-NM R. sp ectra. The sp ectrum of L measured in D2O showed resonances ty p ical for C=O at 177 and p eak at 43 p p m is due to O–CH2 [8,9] , as in Table (1–2), (1–3), Figs. (5a), (5b). C H HCH2O C HOOC CH2OHO OC H O O OO H CH2 CO OH CH2 CO OH O O O H 97 C4HO3 (8%) O O O H 111 C5H3O3 (6%) CH2 O O O H 125 C6H5O3 (4%) HH CH2 O O H 167 C 8H7O4 (3%) HH CH2 57 27% CO2 44 (90%) OO HC CH 408 HC2O2 -C 6 H 9 O 10 -C2 H 2O -CH 2 -CH2 -C 2 O -C H IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 The prepared complexes Reaction of the ligand (L) with metal salts M Xn.YH2O, {where Y = H2O}, (X=Cl, NO3 with lead only), were carried out in ethanol- water under st irring in p resence of potassium hydroxide. All complexes are st able, the analytical and phy sical data, in Table (1–1) and sp ectral data, in Table (1–4). All comp lexes are dissolving in water, DM SO and DM F solvents. IR spectra The comparative IR sp ectral st udy of the ligand L Fig. (2), and its comp lexes Fig. (3) (Co– comp lex as examp le). reveals the interesting coordination of the ligand during comp lex formation. The imp ortant IR bands with t heir p ossible assignment are depicted in Table (1–4). In general up on metal ion interaction, the p resence broad band is observed at  3400 cm –1 , weaks bands in the range 2700–2500 cm –1 and band at 1605 cm –1 are related to H–bonded– OH of acetic acid and carboxy lic[23]. The carbony l (C–I=O) st retching vibration is shifted towards a lower frequency at (1740–1730) cm –1 due to coordinate metal ion with lacton (C– I=O) and this band is assigned to (O–C=O) of lacton ring st rongly suggest that the ligand acid ring is not rup tured in the course of the comp lexation. For instance the I.R. sp ectrum of [p t(dp p m)Asc–O 2 ,O 3 ] diphosp hine (P  P) t he position of the (C=O) band of ascorbic acid at 1745 cm –1 shifts to lower frequency by between 30 and 50 cm –1 up on coordination to p latinum[14]. This value comp are favourably with that found for L–complexes. All comp lexes exhibits a broad absorp tion bands at 1593–1635 cm –1 due to the st retching vibration of C=C and (COO – ). The ap p earance of new t wo bands in the 1495–1530 cm –1 range due to as(COO – ) and another one in the 1408–1427 cm –1 range assigned to s(COO – ). Accordingly, The antisy mmetric and sy mmetric st retching vibration modes as(COO – ) and s(COO – ) of the group should help in elucidating the st ructure of our comp lexes[15]. The direction of the frequency shift of the as(COO – ) and the s(COO – ) bands with resp ect to those of the free ion depends on the coordination mode of the COO – group with the metal ion. Nakamoto and M c carthy [16,17] claimed that if the coordination is monodentate the as(COO – ) and s(COO – ) will be shifted to higher and lower frequencies resp ectively. Whereas, if the coordination is chelating bidentate or bridging bidentate both as(COO – ) and s(COO – ) frequencies will change in the same direction. This is because the bond orders of both C=O bonds would change by the same amount. Based on these facts and comp aring the as(COO – ) and s(COO – ) frequencies of the L comp lexes by the as(COO – ) and s(COO – ) frequencies of RuH(ac)(PPh3)2 (1582, 1449)[18], as shown in Table (1–4) and Fig. (3). One can say that all the p repared comp lexes are metal chelates, because both as(COO – ) and s(COO – ) frequencies changed in the same direction and the  – values [as(COO – )–s(COO – )  (87–111) cm –1 which are significantly less than ionic values indicates that L–complexes contains carboxy lic and bidentate carboxy lato group in a molecule. The two carboxy lic group in 2, 6 are bidentate coordinate and at in 3, 5 are carboxy lic acid. Several other sharp absorp tion bands at 941 and 570 cm –1 of the free acid, which att ributed to the COO – st retching vibration exhibited considerable shift and sp litting up on metal ion interaction. The band characteristic of coordinated water are seen in all comp lexes in the range (825–763) cm – 1 . The sharp absorp tion bands observed around 400 cm –1 [23], have been assigned to M –O st retch vibrational bands. T hese assignments are based on the fact t hat t he M –O stretch bands for the most metal comp lexes occur within this region[15,16]. Electroni c S pectra The electronic sp ectral data of free ligand and its comp lexes are summarized in Table (1–5). The p eak at 246 nm (40650 cm –1 ) in the electronic sp ectrum of free lignad L Fig. (6) was shifted to lower frequency with tail start at 300–400 nm indicated to charge transfer were noticed in the electronic sp ectra of Pb, Hg, Cd, M g and Ca[19]. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 LCu; six coordinate comp lexes, the ground st ate in an octahedral field is 2 Eg, it is subject to considerable Jahn– Teller distortion and in p ractice, the majority of copp er (II) comp lexes which are usually green or blue are tetrgonally distorted. Such comp lexes give rise to one absorp tion band in the visible region near 13000 cm –1 [11,27]. the sp ectrum of the green LCu comp lex is shown only a brood absorp tion band centered at 800 nm (12500 cm –1 ) due to the transition 2 Eg  2 T2g. LCo complex The most octahedral Co(II) comp lexes[28-30] are p ink or reddish while the most tetrahedral Co(II) complexes are blue or green. These colour may indicate to st ereochemist ry . The LCo comp lex gives reddish colour and its UV–visible sp ectrum Fig. (7) is shown bands within range octahedral st ereochemist ry [8,9,11,17] and as follows; 2 = 680 nm (14706 cm –1 ) 4 T1g  4 A2g 3 = 590 nm (16949 cm –1 ) 4 T1g  4 T1g(p ) The absorp tion within range 440 nm (22220 cm –1 ) which is assigned to charge transfer T2g   * . The transition 1, Dq, B and  are calculated theoretical limits, from the graphs Fig. a and Fig. b. 2 = 18 Dq 1-cm817 18 14706 Dq  1470 = 18 Dq 1 = 8 Dq = 8  817 = 6536 cm –1 3= 6Dq + 15 B – 16949 = 6  817 + 15 B – = 4902 + 15 B – 15 B – = 16949 – 4902 15 B – = 12047 803 15 12047 B cmoplex -  0.827 971 803 ionfree B complex B β -  IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Fig. (a) Energy level diagram (Tanabe- Sugano) for d 7 ions in an octahedral field (C=4.633B) Fig. (b) A2 and T1 ground st ates, transition energy ratios versus E(v3)/B (range 16-47). Not e that the left-hand ordinate refers to E(v3)/B (16-24.6) and the right-hand ordinate to E(v3)/B (24.6-47) Co and Ni comp lexes LNi complex Six coordinate comp lex nickel (II) comp lexes exhibit a simple sp ectrum involving three sp in allowed transitions t o the 3 T2g, 3 T1g(F) and 3 T1g(P ) levels[8,9,11,17]. These occur in range 7000– 13.000, 11.000–20000 and 19000–27000 cm –1 regions resp ectively. In addition, two sp in forbidden bands to 1 Eg and to 1 T2g are frequently observed. When Dq/ B is nearly unity the 2 transition 3 T1g(F) app ears as a well defined doublet- this may be consequence of the transition to the 1 Eg level gaining intensity through configurational interaction with the 3 T1g(F)[24,25] although other authors p refer to interp ret t he structure in terms of sp in– orbital coupling[26]. From the above the L1Ni comp lex app ears as a well defined doublt due to 3 A2g 3 T1g(F) 2776 nm (12987 cm –1 ) and 660 nm (15151 cm –1 ) due to 3 A2g  1 Eg. The third sp in allowed transitions to the 3 T1g(p) 3 at 22000 cm –1 from the graph Fig. b. B, , 10q may be calculated in the following way s; 1.69 12987 22000 υ υ from 2 3  28B / )E(υand0.89 B Δq hence 3  B = 785.7 cm –1 10q = 6990 cm –1 = 1( 3 T2g  3 A2g) 0.76 1030 785.7 β  B for free ion Ni = 1030 IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 S oluti ons chemistry Molar ratio The comp lexes of the ligand (L) with selected ions (Co +2 , Cd +2 ) were st udied in solution using water as solvents, in order to determine (M :L) ratio in the prepared comp lexes, following molar ratio method[21]. A series of solutions were p repared having a constant concentration (C) 10 –3 M of the hy drated metal salts and the ligand (L). The (M :L) ratio was determined from the relationship between the absorp tion of the observed light and mole ratio (M :L) found to be (1:1). The result of comp lexes formation in solution are shown in Table (6), Table (7) and Table (8), Fig. (8) and Fig. (9). M olar conductivity for the complexes of ligand (L) The molar conductance of the comp lexes in (water), Table (9) lie in the (90– 177.6) S.cm 2 molar –1 range, indicating their electrolytic nature with (1:1) ratio, excep t for the comp lexes, Ni, Cd, Pb, and M g which their molar conductance lie in the (6.6– 42) Scm 2 M olar –1 range, indicating their non– electrolyte nature[20]. Biologcal e ffect of new ligand L and its complexes Indicatin g that t he new ligand and its complexes exhibited antibacterial activity against both gram p ositive and gr am negative bacteria[31-34], except Ca–complex has no effect on bot h bacteria. Table (10), Fig. (10) and Fig. (11). Conclusion A series of comp lexes of Co +2 , Ni +2 , Cu +2 , Cd +2 , Pb +2 , Hg +2 , Ca +2 , M g +2 with 2,3,5,6– O,O,O,O–tetraacetic acid L–ascorbic have been p repared and characterized. The ligand (L); two bidentate acetate 2,6 and O–1 Lacton are binding to metal ions and one molecule water forming octahedral st ructure leaving two group s of acetic are uncoordinated as follow: References 1. Gilula, N. B.; Epst ein, M .L. and Beers, W.H. (1978), Cell– to–Cell–Communication and ovulation. A. Study of the cumulus– oocy te Comp lex–J–ce Biol. 78 (1): 58 – 75. 2. Pauling, L. (1972) "Vitamin C the Common cold and the Flu", Ed., W. H. Free man and comp any, San Francisco, PP. 33– 46 . 3. Lewin, S. (1976), "Vitamin C Its molecular Biology and M edical Pot ential". Ed. A cademic p ress, London, New York, San Francisco, PP. 11– 14. 4. Halli, B. (1996), Vitamine C: antioxidant or p ro – oxidant in vitro; Free Rad. Res 25: 439– 454. 5. M asuo, M . and Hidenori, I. (1970), Yamanouchi pharmacentical Co., Ltd., Jap an.8031, 661 (C1. C07d, A61K, A23L). IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 6. Fodor, C. ;Arnold, R. and M ohacsi, T. (1983), A new role for L-ascorbic acid M ichael donor to alp ha, beta-unsaturated carbonyl compounds. T etrahedron 39:2137-2145 . 7. M agdi, F. ;Iskander M ohamed, A.E.; Shaban, Susan M . El-Badry (2003), Carbohydrate Research, Sugar hy drazone- metal comp lexes , 338:2341-2347. 8. Tajmir- Riahi (1990), Coordination Chemistry of vitamin C. p art I. Interaction of L- Ascorbic Acid with Alkaline Earth M etal Ions in the Cry st alline Solid and Aqueous Solution, J. Inorg. Biochem; 40:181-188. 9. Tajmir- Riahi (1991), Coordination Chemistry of vitamin C. p art (II). Interaction of L- Ascorbic Acid with Zn(II), Cd(II), Hg(II), and M n(II) Ions in the solid st ate and in Aqueous solution, Int. J. Inorg. Biochem; 42:47-55. 10. John, R. Dy er, (1965), Ap p lications of absorp tion sp ectroscop y of organic comp ounds, Englewood by p rentic– Hali, Inc. 11. Kazvo Nakamoto (1986), John Wiley & Sons, Inc., Infrared and Raman Sp ectra of Inorganic and Coordination Compounds Fourth edition. 12. Birgül Zümreogh– Karan, Ahmet N– Ay and Canan Ünaleroglu, (2005), (st ructural and magnetic st udies on mono-and p olynuclear chromium ascorbate comp lexes. Transition M etal Chemist ry , 30:451– 459. 13. Parikh, V. M . (1985),"Absorp tion Sp ectroscop y of organic M olecules". 14. M alcolm, J.; Arendse, Gordonk- Anderson and Nigam, P. Rath,(1999), Sy nthesis and characterization of Platinum (II) Complexes of L- Ascorbic Acid, Inorg. Chem., 38:5864-5869. 15. M esubi, M . A. (1982), "An infrared study of Zinc, Cadmium and lead salts of some fatty acids", Journal of M oleculular st ructure, Vol. 81:No. 1–2, PP. 61– 71. 16. Washed, M . G. A.; Refat, M . S. and El M egharbel, S. M . (2009), "Sy nthesis sp ectroscop ic and thermal characterization of some transition metal comp lexes of folic acid", Sp ectrochimia Acta A, Vol. 70(4): 916– 922 . 17. Nakamato, K. and M ccarthy , P. J. (1968), John Wiley & sons. New York, NY, USA, Sp ectroscop y and Structure of M etal Chelate Comp ounds. 18. John, R. Dy er, (1965), Inc Ap p lication of absorp tion sp ectroscop y of organic comp ound, p rentic- Hall, 19. Williamkemp (1987), "Organic sp ectroscop y " 2 nd , Edition. 20. Kettle, S. F. (1975), "Coordination comp ounds", Thomas Nelson and sons, London, P. 165. 21. Skoog D.A., Donald M . west (1974), Fundamentals of Analytical Chemistry Altoit London Edition. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 22. Farrington Daniels and Robert Alberty , A. (1975), "Physical Chemistry" 4 th , ed. 23. Clegg, D. E. and Hall ,R. J. (1969), Decomp osition of Ascorbic Acid in the p resence of cadmium ions leads to formation of a p olymeric cadmium oxalate sp ecies with p eruliar st ructural features, J. Organ metal chem., 17: 175. 24. Holmes, O. G. and M c Clure, D. S. (1957), Sy nthesis and Characterization of some metal comp lexes of Vitamic c. Part 1,2 –Ascorbate Complexes of M n(II), Fe(III) and Co(II), J. chem. Phy s., 26. 25. Sutton, D. (1968), Electronic sp ectra of Transition M etal Comp lexes M c GRAW-HILL., London. 26. Geary, W.J. (1970), "Coorination Chemistry Reviews" Elsevier p ublishing comp any Amst erdam. 27. Lever, A. B. P. (1968), Elsevier p ublisihing comp any "In organic electronic sp ectroscop y ". 28. Rakesh, K. ;Sharma, M unirathnam Nethaji and Ashoka, G. Sumuleson, (2008), Asy mmetric allylic alky lation by p alladium – bisp hosp hinites, Tetrahedron; Asy mmetry , 19: 555–663. 29. Khen, F. and khanam, A. (2008), Study of Complexes of cadmium with some L- amino acids and Vitamin-C by Voltammetric technique, Ecl. Quim, Saopaulo, 33, numero 2:29–36. 30. Tahereh Rohani, M ohammed Ali Taher (2009), Talanta, Anew method for electrocataly tic oxidation of ascorbic acid at the Cu(II) Zeolite-M odified electrode, 78: 743 – 747. 31. Anacona, J. R. (2001), Sy athesis and antibacterial activity of some metal comp lexes of - Lactams antibiotics, J. coord. Chem., 54: 355–365. 32. Petra, D. ;Tetjana, Z. and Boris, P. et al., (2005), "M ixed- valence Cu(II)/ Cu(I) comp lex of quinolone cip rofloxacin isolated by ahydrothermal reaction in the p resence of L– histidine comp arison a biological activities of various copp er- cip rofloxacin comp ounds", Journal of inorganic biochemistry , 99(2): 432– 442. 33. Tauber, S. C. and Nau,R. (2008), "Immunomodulatory p rop erties of antibiotics", Current molecular p harmacology , Vol. 1, PP. 68–79. 34. Sultana, N. and Aray ne, M . S. (2007), "In vitro activity of cefadroxil, cep halexin. Cefatrizine and cefp irome in presence of essential and trace elements", Pakistan Tournal of p harmaceutical sciences, 20(4): 305–310. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Table (1) :The physical properties for synthesized ligand (L) and its complexes D = decomposition Table (2): 13 C-NMR chemical shifts for L-ascorbic acid, L (ppm in D2O) practically and theoretically are comptable Table (3) 1 H-NM R, chemical s hifts for L (ppm in D2O) Compounds H–4 H–5 O=C–OH Practical (L)  4.2 p p m 4.8 8–9.5 p p m No. Compound Colour M.PC or (D) Yield % C% H% M% Theo. Pract. solubility 1 L Orange 138-139C 85.7 (22.1) 21.5 (3.04) 3.08 Wa ter, DMF, DMSO 2 [LCo.H2 O].3H2 O Da rk re d 118-120C 74 – – (16.80) 16.05 Wa ter, DMF, DMSO 3 LNi.H2 O Pale gre en 148-150C 88 – – 12.60 13.45 Wa ter, DMF, DMSO 4 LCu.H2 O Gree n 168-170C 80 – – (13.40) 14.22 Wa ter, DMF, DMSO 5 LCd.H2 O Pale brown 212-220D 82.2 – – (21.60) 22.30 Wa ter, DMF, DMSO 6 [LP b.H2 O].9H2 O.3EtO H.4KCl White 218-220D 85 – – (16.60) 16.84 Wa ter, DMF, DMSO 7 [LH g.H2 O].9H2 O.4KC l Pale brown 130-131D 80.3 – – (18.50) 18.30 Wa ter, DMF, DMSO 8 [LCa.H2 O].9H2 O.5EtO H.3KCl. White 185-186C 61.6 – – (3.70) 3.80 Wa ter, DMF, DMSO 9 [LMg.H 2 O].9H2 O.5Et OH.4K Cl White 100-101C 66 – – (2.10) 1.89 Wa ter, DMF, DMSO Compounds C–1 C–3 C–2 C–4 C–5 C–6 C=O O–CH2 (Pract)L 173.74 156 118 76 69 62 177 42.8 IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Table (4): Characteristic vibrarational frequencies (cm –1 ) Located in the FT-IR of the ascorbic acid, L, and its complexes Compounds (O–H) (C– H) aliph. (C=O )  cm – 1 a sy m.  sy m. COO –  cm – 1 (M – O) Additional pea ks L-asc orbic ac id 3525(s) 3410(s) 3315(s) 3213(s) 2916(s) 1755(s) Lacton e 1319  (O 2 –H) enolic 1138(s), 1118(s), 1072(s), 1026(s) 987 (s) (C–O, C–C) ring L 3421(br ) 2700- 2500 2954(w) 1755(s) (1608) s O=C–OH 1149, 1114, 1080, 1049, 941 (C–O– C), (C–C–C)  (1404) , (1400) m (C–3–O) L complexe s [LCo.H2 O].3H2 O 3417(br ) 3383(br ) 2958(w) 1730 25 (1500) w (1408) s 92 455 (1600) s C=O and C=C coupling (867- 740)s coor dinated wa ter LNi.H2 O 3414(s) 2950 1730 25 (1515) w (1408) s 107 443 (1608) s C=O a nd C=C (867- 702)s coor dinated wa ter LCu.H2 O 3425(br ) 2962 1732 23 (1530) w (1419) s 111 439 (1635) s C=O a nd C=C (790– 666)s coor dinated wa ter LCd.H2 O 3431(br ) 2929 1741 14 (1530) w (1427) w 103 453 (1593) s C=O a nd C=C (773–570) coor dinated wa ter [LP b.H2 O].9H2 O.3EtOH.4K Cl 3441(br ) 2920 1732 23 (1500) w (1411) s 89 420 (1593) s C=O a nd C=C (825- 702)s coor dinated wa ter [LH g.H2 O].9H2 O.4KCl 3422 2943 1743 12 (1520) w (1425) w 95 441 (1598) br C=O and C=C (763- 675)s coor dinated wa ter [LCa.H2 O].9H2 O.5EtOH.3K Cl. 3421 2958 1728 27 (1500) w (1408) s 92 459 (1597) s C=O a nd C=C (937- 694)s coor dinated wa ter [LMg.H 2 O].9H2 O.5EtOH.4 KCl 3352 3249 2966 1720 35 (1495) w (1408) s 87 455 (1600) s C=O a nd C=C (775- 638)s coor dinated wa ter Recorder as KBr disk br = broad, s = strong, w = weak, m = medium,  = bending, aliph. = Ali phati c, asym. = asymme tric, sym. = symme tric IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Table (5) Electroni c spectral data of ligand (L) and its metal complexes Compounds  nm  – wave num ber cm – 1 mex m olor –1 cm –1 Assignment bands Propose d structure L 246 40650 1175  * [LCo.H2 O].3H2 O 440 590 680 22220 16949 14706 110 650 600 T2 g * 4 T1 gT1 g(p) 4 T1 g 4 A2 g octa hedr al LNi.H2 O 656. 5 776 15232 12987 100 90 3 A2 g 1 Eg 3 A2 g 3 T1 g(f ) octa hedr al LCu.H2 O 808 12376 662 2 EgT2 g octa hedr al LCd.H2 O 300 400 33333 25000 500 200 L.F.C.T octa hedr al [LP b.H2 O].9H2 O.5EtOH.4 KCl 300 400 33333 25000 700 150 L.F.C.T octa hedr al [LH g.H2 O].9H2 O.4KCl 300 400 33333 25000 1300 750 L.F.C.T octa hedr al [LCa.H2 O].9H2 O.5EtOH.4 KCl 300 400 33333 25000 800 250 L.F.C.T octa hedr al [LMg.H 2 O].9H2 O.5EtOH.3 KCl 300 400 33333 25000 1500 250 L.F.C.T octa hedr al L.F.C.T = Ligand Field Charge Transfe r IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Table (6): VM, VL and Absorption of ligand (L), VM = volume of metal in ml, VL= volume of ligand in ml [L–Cd.H2O] [L–Co.H2O].3H2O VM VL Abs VM VL Abs 1 ml 0.25 1.315 1 ml 0.25 1.320 1 0.50 1.330 1 0.50 1.340 1 0.75 1.354 1 0.75 1.397 1 1 1.352 1 1 1.383 1 1.25 1.374 1 1.25 1.386 1 1.50 1.382 1 1.50 1.386 1 1.75 1.375 1 1.75 1.386 1 2 1.377 1 2.0 1.392 1 2.25 1.406 1 2.25 1.381 1 2.50 1.395 1 2.50 1.367 1 2.75 1.404 1 2.75 1.410 1 3 1.400 1 3.0 1.400 1 3.25 1.422 1 3.25 1.414 1 3.50 1.401 1 3.50 1.406 1 3.75 1.384 1 3.75 1.410 1 4 1.412 1 4 1.408 K= M L/ [M ] [L] (1)  = (Am – As) / Am (2) K = The equation (1) is written to mol ratio (1:1) as the following KF = (1-)/  2 C (3)  = m ax.b.c (4) KF = stability constant  = Decomposition Degree M = M etal ion L = The ligand [ ] = concentration As = The absorpt ion at the equivalent p oint of mole ratio Am = The maximum absorp tion of the mole ratio C = The complex concentration (mole. L –1 )  G = – 2.303 RT Log K [22] R = 8.303 T = 273 + 25 = 298 IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Compounds As Am  K Log K 1/K G [LCd.H2O] 1.352 1.377 0.018 3×10 9 9.5 0.11 - 54.2 [LCo.H2O].3H2O 1.383 1.392 0.0065 2×10 9 9.3 0.11 - 53 [LCd.H2O]  [LCo.H2O].3H2O Table (7) :The absorbance values against mole– ratio values of complex [LCd.H2O] in solution (1×10 –3 mole.L –1 ) in water at ( 271 nm) No. L:M Absorbance 1 0.5:1 1.330 2 1:1 1.352 3 2:1 1.377 4 3:1 1.400 5 4:1 1.412 Table (8) :The absorbance values against mole– ratio values of complex [LCo.H2O].3H2O in solution (1×10 –3 mole.L –1 ) in water at ( 263 nm) No. L:M Absorbance 1 0.5:1 1.330 2 1:1 1.383 3 2:1 1.392 4 3:1 1.400 5 4:1 1.408 IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Table (9) The molar conductance of the complexes Compound fragment i ons m S . cm 2 molar –1 Ratio [LCo.H2O].3H2O 141 1:1 LNi.H2O 24 Neutral LCu.H2O 113.5 1:1 LCd.H2O 6.6 Neutral [LPb.H2O].9H2O.5EtOH.4KCl 7 Neutral Table (10): Effect of li gand and its complexes on staphylococcus aureu a exherichia coli Compound 100 mg/ ml Diameter of inhib ition zone (mm) at concentration 1 mg/ ml Staphy lococcus Escherich ia coli L 27 26 L Cd 25 22 L Cu 24 24 L Ca 0 0 IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Fig. (1): The IR of L-ascorbic aci d Fig. (2):The IR of the ligand (L) 2,3,5,6-O,O,O,O-tetraacetic acid L-ascorbic acid Fig. (3) The IR of LCo IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Fig. (3a): The mass spectrum of (L) Fig. (4) suggested structure of (LM +2 ) Fig. (5a): 1 H-NMR for the ligand L Fig. (5b): 13 C-NMR for the ligand L O O M O O OH2 O O C C H2C O O CH2CO H O O C O H O H O H 2 CH H H2C H 3 1 2 4 6 5 M +2 = C o, Ni , Cu, C d, Pb, Hg, Ca, Mg IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Fig. (6) The U.V of the ligand (L) Fig. (7) The U.V of LCo IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Fig. (8): The mole ratio curve of complex [LCd.H2O] in solution (1×10 –3 mole. L –1 ) at ( = 271 nm) Fig. (9) :The mole ratio curve of complex [LCo.H2O].3H2O in solution (1×10 –3 mole. L –1 ) at ( = 263 nm) 0 5 10 15 20 25 30 35 40 45 50 Ca Cu Cd L Concentration of ligands and its complexes (1mg/ml) D im et er o f in h ib it io n z o n e (m m ) 0 5 10 15 20 25 30 35 40 45 50 Ca Cu Cd L D im et er o f in h ib it io n z o n e (m m ) Concentration of ligands and its complexes (1mg/ml) IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL. 24 (2) 2011 Fig. (10): Effect of staphyl ococcus gram posi tive Fig. (11): Effect of Esche richi a coli gram negative 2011) 2( 24المجلد مجلة ابن الھیثم للعلوم الصرفة والتطبیقیة تحضیر ودراسة طیفیة وبایولوجیة لبعض المعقدات الفلزیة مع 2,3,5,6-O,O,O,O رباعي حامض الخلیك-L-حامض اسكوربك جاسم شهاب سلطان،عبد الجبار عبد القادر مخلص، فالح حسن موسى ابن الهیثم،جامعة بغداد-كلیة التربیةقسم الكیمیاء، 2010آب 11:استلم البحث في 2011شباط 8: قبل البحث في الخالصة L اجدیـد ااسكوربك مع كلورو حامض الخلیك بوجـود هیدروكسـید البوتاسـیوم معطیـًا لیكانـد-Lدرس تفاعل حامض )2,3,5,6-O,O,O,O ربـاعي حـامض الخلیـك-L-تحلیـل العناصـر : ألتیـةطة التقنیـات اابوسـ، وشـخص )حـامض اسـكوربك )H, C( ،طیـف الكتلــة مـع طیـف الــرنین النـووي المغناطســيو المرئیـة، -األشـعة فـوق البنفســجیةو ، األشـعة تحـت الحمــراء- البروتون 1 H والكاربون 13 C. ، Co ،Ni ،Cu ،Cd ،Pb(كما حضرت وشخصت منه معقدات أمالح بعض ایونـات العناصـر الثنائیـة التكـافؤ Hg ،Ca ،M g.( ـــراء، لمعاســـت والمرئیـــة، التوصـــیلیة الكهربائیــــة، -األشـــعة فـــوق البنفســــجیةو ت تقنیـــات طیــــف األشـــعة تحـــت الحمـ االمتصاصیة الذریة، والنسبة المولیة لمعقدات الكادمیوم والكوبلت، واسـتنتج مـن التحالیـل ان تناسـق ایـون الفلـز الثنـائي التكـافؤ ثمـــاني معطیــًا شــكال O–2–O–CH2COOH ،O–6–O–CH2COOH، )كتــونال( C–1=Oمــع اللكانــد مــن خـــالل  ،Kf ،mقـیم توقــد حســب. السـطوح ax للمعقــدین الكوبلــت والكـادمیوم وحســاب تكمــا درســ. لمعقــدین الكوبلـت والنیكــل ، وقـد أظهــرت النتـائج امتالكهـا فعالیــة متباینـة تجــاه )النحـاس، الكــادمیوم، الكالسـیوم(ومعقداتـه Lالفعالیـة البایولوجیـة للكانــد Staphy lococcus aureu وEscherichia coli لـــم یظهــر أي فعالیــة تجــاه البكتریـــا الــذي مــا عـــدا معقــد الكالســیوم .المذكورة أعاله وجیة تحضیر ،مطیافیة ، الدراسات البایول: الكلمات المفتاحیة