2011) 2( 24مجلة ابن الهیثم للعلوم الصرفة والتطبیقیة المجلد المقاسات الجزئیة شبه االولیة التامة والمقاسات شبه االولیة التامة بثینة نجاد شهاب هادي و انعام محمد علي جامعة بغداد،ابن الهیثم -كلیة التربیة،قسم الریاضیات 2010 ،اب، 23: استلم البحث في 2010،تشرین الثاني، 9: قبل البحث في الخالصة في هذا البحـث درسـنا مفهـومي المقاسـات الجزئیـة . مقاساً احادیا ً Mحلقة ابدالیة ذا عنصر محاید ولیكن Rلتكن انـه مقـاس جزئـي شـبه Wالتـام شبه االولیة التامة والمقاسات شبه االولیة التامة إذ یقال عن المقاس الجزئـي الفعلـي المتغیـر مقاسـاً شـبه اولـي تـام اذا Mویسـمى XWمقاس جزئي متغیر تام یـؤدي الـى ان Xلكل XXWاولي تام اذا كان اعطینــا الخــواص االساسـیة لهــذین المفهـومین وكــذلك درسـنا العالقــات بــین . مقــاس شـبه اولــي تـام (0)كـان المقــاس الجزئـي ذات ) المقاسـات(مع انواع اخـرى مـن المقاسـات الجزئیـة ) المقاسات شبه االولیة التامة(المقاسات الجزئیة شبه االولیة التامة .العالقة معهما المقاســات شــبه االولیــة التامــة المقاســات الجزئیــة مــن الـــنمط -ولیــة التامــةالمقاســات الجزئیــة شــبه اال :الكلمــات المفتاحـیـة invarian المقاسات االولیة التامة -التامة IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 ( 2) 2011 On Fully Semiprime Submodules and Fully Semip rime Modules I.M.A.Hadi and B.N. Shihab Departme nt of Mathematics, Ibn-Al-Haitham, College of Education , Unive rsity of Baghdad Received in: 23, August, 2010 Accepte d in: 9, November, 2010 Abstract Let R be a commutative ring with unity and let M be a unitary R-module. In this p aper we st udy fully semip rime submodules and fully semip rime modules, where a p rop er fully invariant R-submodule W of M is called fully semip rime in M if whenever XXW for all fully invariant R-submodule X of M , imp lies XW. M is called fully semip rime if (0) is a fully semip rime submodule of M . We give basic p rop erties of these concepts. Also we st udy the relationship s between fully semip rime submodules (modules) and other related submodules (modules) resp ectively. Key words: Fully semip rime submodule, fully semip rime modules, fully invariant submodule, fully p rime modules. Introduction J.Abuihlail in [1], suggested the definition of fully semip rime submodule and fully semip rime module as p rojects, where a p rop er fully invarianr R-module W  M is fully semip rime in M , if whenever XXW for all fully invariant R-submodules XM , it follows that XW. An R-module M is called fully semip rime if whenever XX=0 for all fully invariant R- submodule X of M , it follows t hat X=0; that is M is a fully semip rime module if 0  M is fully semip rime. Also for R-submodules X, Y  M , the internal p roduct XY is defined by {f(X):fHom(M ,Y)}. Not ice that, if YM is fully invariant, then XYM is also fully invariant, and if XM is fully invariant, then XY XY. The internal p roduct of submodules of a given module over an associative not necessarily commutative ring was first introduced by Bican et.al, [2] to p resent the notion of p rime modules. The definition is modified in [3], where arbitrary submodules are replaced by fully invariant ones. To avoid any p ossible confusion, such modules are referred to as fully p rime modules, where a p rop er fully invariant submodule W  M is fully p rime, if whenever XYW, for all fully invariant R-submodule XM , YM , it follows t hat XW or YW. An R-module is called fully p rime if (0)   M is a fully p rime submodule; that is whenever XY=(0) for all fully invariant R-submodules XM , YM , it follows t hat X=(0) or Y=(0). In this p aper we give a comprehensive study of the concep ts fully semip rime submodules and fully semip rime modules, where this p aper consists of two sections. In section one, we give the basic p rop erties of fully semip rime submodules and fully semip rime modules. Section two is devoted to st udy the relationships between fully semip rime modules and other modules such as uniform module, chained module, Z-regular module, quasi-Dedekind module, multip lication module and retractable module. IBN AL- HAITHAM J. FOR PURE & APPL. S CI. VOL.24 ( 2) 2011 Next throughout this p aper, R is commutative ring with unity and M be a unitary R-module. 1- Fully S emiprime S ubmodul es and Fully S emiprime Modul es-Basic Results In this section we st udy the concep ts of fully semip rime submodules and fully semip rime modules which are introduced in [1] as p rojects. The concepts are generalizations of fully p rime submodules and fully p rime modules which are st udied in [3]. We give characterizations about theses concepts and establishe some basic p rop erties about t hem. We begin with the following definition. 1.1 De fini tion, [2]: Let K, L be two fully invariant submodules of R-module M . Then KL={f(K): f:ML} A p rop er submodule N of an R-module M is called invariant if for each f R End(M) , f(N)N. M is called fully invariant if every submodule of M is invariant, see [4]. Invariant submodule is called fully invariant submodule by some authors, see [3,p .14]. 1.2 De fini tion, [3]: A fully invariant submodule N of an R-module M is called fully p rime if for all fully invariant submodules K and L of M such that KLN, implies KN or LN. Now, we give the following concept. 1.3 De fini tion, [1]: A fully invariant submodule N of an R-module M is called fully semip rime if for all fully invariant submodules K of M such that KKN, implies KN. We call M fully p rime (fully semip rime) module if (0) is fully p rime (fully semip rime) submodule, see [1]. Recall that:An R-module M is said to be a prime module if annRM =annRN for every non- zero submodule N of M , where annRM ={rR:rx=0 for each xM }, see [5]. An R-module M is called semip rime if and only if annRN is a semip rime ideal of R for each non-zero R-submodule N of M , see [6]. Next, we give some remarks and examp les. 1.4 Note : Consider R as a left R-module, let I, J be two ideals of R. Then IJ=IJ, since every ideal of R is a fully invariant R-submodule. Thus I is a fully semip rime ideal if and only if I is a semip rime ideal. 1.5 Remarks and Examples: 1. Let N be a submodule of an R-module M . If N is a fully p rime submodule, then N is a fully semip rime submodule. 2. If an R-module M is fully p rime module, then M is p rime module. 3. A submodule N of an R-module M is semip rime, if N is fully semip rime submodule. proof: Sup p ose that rR, xM such that r 2 xN. Let K=, K is a fully invariant submodule, then KK={f(K): f:MK= }. Now, f(K)=f=rN. T hus KKN, implies KN, so rxN. 4. If an R-module M is a fully semip rime module, then M is a semiprime module. 5. Z6 as a Z-module is fully semip rime, since for all submodule N, N(0), then NN(0). Thus Z 6 is a semiprime Z-module. But it is not a fully p rime because it is not p rime. 6. Z4 as a Z-module is not semip rime module, since annZZ4=4Z is not a semiprime ideal of Z. Hence Z4 is not fully semip rime. 7. 6Z as a Z-submodule of Z is semiprime, so it is fully semip rime. 8. Let R be an integral domain and K be the quotient field of R. Then K is an R-module and the zero R-submodule of K is the only semip rime in K. That is (0) is the only fully semip rime submodule in K, because if  N