Microsoft Word - 42-60 42 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 New Schiff Base Derived From Folic Acid and 3- Aminoacetophenone and its Metal Complexes with Some Transition Metals and Evaluation of Their Biological Activity Ahmad T. Numan Khalid F. Ali Eman I. Al-Salihi Dept. of Chemistry/College of Education for Pure Science (Ibn –Al Haitham)/ University of Baghdad Received in: 15 October 2014, Accepted in : 2 February 2015 Abstract The ligand [Potassium (E)-(4-(((2-((1-(3-aminophenyl) ethylidene) amino)-4-oxo-1,4- dihydropteridin-6-yl) methyl) amino)benzoyl)-L-glutamate] was prepared from the condensation reaction of folic acid with (3-aminoacetophenone) through Schiff reaction to give a new Schiff base ligand [H2L]. The ligand [H2L] was characterized by elemental analysis CHN, atomic absorption (A.A), (FT-I.R.), (U.V.-Vis), TLC, E.S. mass (for spectroscopes), molar conductance, and melting point. The new Schiff base ligand [H2L], reacts with Mn(II), Co(II), Ni(II), Cu(II), Cr(III) and Cd(II) metal ions and (2-aminophenol), (metal : derivative ligand : 2-aminophenol) to give a series of new mixed complexes in the general formula:- K3[M2(HL)(HA)2], (where M=Mn(II) and Cd(II)); K3[M2(HL)(HA)2.H2O], (where M= Cu(II) , Ni(II) and Co(II); and K[Cr2(HL)(HA)2(H2O)3]. These complexes were characterized by elemental analyses [(C.H.N) and (A.A)], (FT-I.R), (U.V-Vis.), molar conductance, 1H,13C- NMR, biological activity, TLC and magnetic moment measurements. From the above data the proposed molecular structure for Mn(II), Co(II), Ni(II), Cu(II), Cr(III) and Cd(II) complexes adopt a tetrahedral structure about the metal ions. Key words: vitamin B9, Cd(+2)complexes infrared spectra , Schiff base, 1H,13C-NMR, TLC measurements. 43 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Introduction Folic acid (pteroylglutamic acid) heterocyclic compound is composed of three large sub- components. These are the pteridine ring, para-amino benzoic acid and glutamic acid, Fig.(1). Glutamic acid is an amino acid that the body can actually synthesize by itself and is found in proteins,[1] The folates are a group of heterocyclic compounds. They were the subject of previous recommendations prepared by the IUPAC-IUB commission on biochemical Nomenclature (CBN).[2] folic acid also known as vitamin M, vitamin B9 [3], and vitamin Bc[4] (or folacin).The electrophilic carbon atoms of aldehydes and ketones can be targets of nucleophilic attack by amines. The end result of this reaction is a compound in which the C=O double bond is replaced by a C=N double bond. This type of compound is known as an amine, or Schiff base. A Schiff base, named after Hugo Schiff, is a compound with a functional group that contains a carbon-nitrogen double bond with the nitrogen atom connected to an aryl or alkyl group.[5] Schiff bases in a broad sense have the general formula R1R2C=NR3, where R is an organic side chain. In this definition, Schiff base is synonymous with azomethine. Some restrict the term to the secondary aldimines (azomethines where the carbon is connected to a hydrogen atom), thus with the general formula RCH=NR.[6] Our study includes the synthesIs characterization and biological study of folic acid with mixed ligand (3-aminoacetophenone) and (2-aminophenole) through Schiff base reactions and their complexes with (Mn(II), Co(II), Ni(II) , Cu(II), Cr(III) and Cd(II) transition elements. Experimental Reagents were purchased from Fluka and Redial – Dehenge Chemical Co. FT-I.R spectra were recorded as THERMO SCIENTIFIC, ID5, ATR NICOLET, IS5 FTIR spectrophotometer in the range (4000-400) cm-1. Electronic spectra of the prepared compounds were measured in the region (200-900) nm for 10-3 M solutions in (DMSO) and distilled water at 25C using a Shimadzu160 spectrophotometer with 1.0000.001 cm matched quartz cell. Elemental microanalyses were performed on a (C.H.N) analyzer model THERMO SCIENTIFIC FLASH 2000 ORGANIC ELEMENTAL ANALYZER.While metal contents of the complexes were determined by atomic absorption (A.A) technique using a Shimadzu AA 680G atomic absorption spectrophotometer. Electrical conductivity measurements of the complexes were recorded at 25C for 10-3 M solutions of the samples in (DMSO) and distilled water using a PW 9526 digital conductivity meter. Magnetic measurements were recorded on a Bruker BM6 instrument at 298K following the farady's method. Most of the measurements are made in Department of Chemistry, Manchester University, U.K. Synthesis of Schiff base ligand [H2L] [Potassium (E)-(4-(((2-((1-(3-aminophenyl)ethylidene)amino)-4-oxo-1,4-dihydropteridin- 6-yl)methyl) amino)benzoyl)-L-glutamate]:- A solution of folic acid (2 g),(3.61 mmole) in methanol (20 ml)] was added to a mixture of little amount of KOH dissolved in small amount of hot distilled water (1 ml), and a solution of (3-aminoacetophenone) (0.488 g),(3.6 mmole) dissolved in (5 ml) methanol was added to the above mixture. And allow refluxing for (48 hrs.), then stirred at room temperature for (1 hr.). Mustard solid was collected by filtration. Scheme (1) and dried under vacuum for (24 hrs.), to give [H2L] derivative ligand as a mustered solid, yield (1.5 g),(75 % yield), m.p (117-119 0C). 44 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Scheme (1) Synthesis of K3[Mn2(HL)(HA)2] complex A solution of the derivative ligand [H2L] (0.3g),(0.446 mmole) in a hot distilled water (20 ml), mixed with another solution of (2-aminophenol was[H2A]) (0.097 g),(9.7 mmole) in a hot distilled water (5 ml), added slowly to a stirred solution of (MnCl2.4H2O),(0.176 g),(0.89 mmole) in (10 ml) distilled water. The resulting mixture was heated under reflux for (2 hrs.), during which, the solution became brown-yellow in color. The solution was concentrated by evaporating ethanol at room temperature and a deep-brown solid was formed, this was collected by filtration, dried under vacuum to give (0.23 g),(76.6 % yield), of the title compound, m.p (dec. 240 0C). Synthesis of K3[Co2(HL)(HA)2.H2O], K3[Ni2(HL)(HA)2.H2O], K3[Cu2(HL)(HA)2.H2O], K[Cr2(HL)(HA)2(H2O)3] and K3[Cd2(HL)(HA)2] complexes A similar method to that mentioned for preparing MnII complex was used to prepare the complexes of Schiff base ligand [H2L] and (2-aminophenol [H2A]) with (CoII, NiII, CuII CrIII and CdII) complexes. Scheme (2)., and Table (1) stated the quantities, reaction conditions and some physical properties of the prepared complexes Scheme (2) 45 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Results and Discussion FT-I.R Spectral data for Schiff base ligand [H2L] The essential infrared data are summarized in Table (2).The F.T-IR. Spectra of the starting materials, folic acid and 3-aminoacetophenone are shown in Figs.(2) and (3). The two bands at (3414 and 3547 cm-1) of folic acid, and (3369.6 and 3469.9 cm-1) of 3-aminoacetophenone are due to the υsy (N-H) and υasy (N-H), respectively of the primary imines (R-NH2) groups [7]. These bands are shifted to higher and lower frequency at (3367.7 and 3701 cm-1) indicating forming of new derivative ligand [H2L]. Fig.(5). Accompanied by the appearance of a new band at (1589 cm-1) range assigned to the υ(C=N) stretching indicates Schiff base reaction [8,9]. The sharp absorption bands at (1668 cm-1) and (1695 cm-1), are due to the υ(C=O) stretching vibration of free keton group of 3-aminoacetophenone and folic acid, respectively,[10,11] . On the other hand folic acid exhibits three bands at (1606.7 cm-1),(1485cm-1) and (1413.8 cm-1) assigned to the symmetric and asymmetric stretching vibration modes of (υasy COO –), (υasy COO –) and (COO – ) of carboxylic groups.[12] These peaks are still presented at (1575 cm-1), (1508cm-1) and (1400 cm-1) range in the spectrum of the derivative ligand [H2L] Fig(5). Compared with Folic acid as starting material. With {υΔ=189 = (υasy COO –) - (υasy COO –)}. The (U.V-Vis) spectrum of the Schiff base ligand [H2L] The (U.V-Vis) spectrum for [H2L], Fig (12), exhibits a high intense absorption peak at (220 nm) (45454 cm-1) (max= 460 molar-1.cm-1), assigned for (*). Shoulder peaks at (280 nm) (35714 cm-1) (max= 370 molar-1.cm-1) and (345 nm) (28985 cm-1) (max= 110 molar-1.cm-1) were assigned to (n*) transitions,[13,14] Table (3). Synthesis of the complexes The reaction of Schiff base ligand [H2L] with (2-aminophnole [H2A]) and (MnII, CoII, NiII, CuII, Cr III, and CdII) was carried out in methanol under reflux. All complexes are stable in the solid state. The analytical and physical data, Table (1) and spectral data Table (2) are compatible with the suggested structures for all the complexes of (MnII , CoII, NiII, CuII , Cr III, and CdII ) ion metals. The I.R. spectra, the essential infrared data are summarized in Table (2). The spectra of the derivative ligand [H2L], Fig.(5) and (2-aminophenone[H2A]) Fig.(4) shows two bands at (3367.7 and 3701 cm-1) and (3305 and 3475 cm-1) rang respectively, assigned to the stretching vibration of υs(N-H) and υasy(N-H) of amine group (NH2),[7] are disappeared in the spectra of MnII, NiII, CoII, CuII, Cr III and Cd+2 complexes Figs.(6, 7, 8, 9, 10 and 11), and a new bands are formed at (3462 - 3306 cm-1) range due to the stretching vibration of�� υ(N- H) secondary amine (R2-NH), because of reduced band order indicating the coordination with the metal ions through N and O atoms, and forming ring system. The band at (1589 cm-1) range due to the υ(C=N) stretching [8,9] of the Schiff base ligand [H2L], is shifted to lower and higher frequency at (1593 - 1573) rang for the complexes of MnII, NiII, CoII, CuII, Cr III and CdII as a result of forming ring system with the metal ions and delocalization of electron π density. The spectrum of the ligand [H2L] exhibits two bands at (1508-1589 cm-1) range due to υasy(COO –), and one at (1400 cm-1) range assigned to υsy(COO–)[12]. And the {υΔ= (υasy COO –) - (υasy COO –)}, {υΔ=1589 -1400=189}. These three bands are shifted to lower and higher frequencies for all the complexes, indicating the forming of new compounds. The asymmetric and symmetric stretching vibration modes (υsy(COO –) and υasy(COO – ) of the COO – group should help in elucidating the structure of the derivative ligands and their complexes. The direction of the frequency shift of the υasy(COO – ) and the υsy(COO – ) band with respect to those of the free ion depends on the coordination mode of the (COO –) group with the metal ion. Nakamoto and McCarthy, claimed that if the coordination is monodentate, the υasy(COO – ) and the υsy(COO –) will be shifted to higher and lower frequencies, 46 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 respectively. Therefore all the υasy(COO – ) and the υsy(COO – ) groups of MnII, NiII, CoII, CuII, Cr III and CdII complexes are monodentate because they are shifted to different directions . [15,16] And the value of the υΔ=(υasyCOO –) - (υasyCOO –)} for the complexes compared with the Schiff base ligand [H2L] are :- (υΔ, Mn= 254; υΔ, Co= 248; υΔ, Ni= 254; υΔ, Cu= 195; υΔ, Cr = 254; and υΔ, Cd= 193.The observed broad bands at (3051-3258.9 cm-1) rang are due to the υ (O-H) stretching of lattice water molecules, [17,18] of the CoII, NiII, CuII, and Cr III (bar MnII and CdII complexes, metal oxygen and metal nitrogen band further confirmed by the presence of peaks at (520-586 cm-1) and (420-470 cm-1) range were assigned to υ(M-O) [19], and υ(M-N) , [20] stretches for the MnII, NiII, CoII, CuII, Cr III and CdII complexes, respectively. The (U.V-Vis.) The (U.V- Vis) Spectra of the MnII, CoII, NiII, CuII, Cr III and CdII complexes, respectively. Table (3) summarized the absorption peaks of the complexes. The (U.V) spectra of MnII and CdII complexes Figs.(13) and (18) respectively showed two intense peaks in the range (256 nm), (39062 cm-1), (max =419 molar-1. cm-1) and (259 nm), (39370 cm-1), (max =500 molar-1. cm-1 ) range assigned to the ligand field for Mn II and Cd II, respectively[21]. Another two peaks at (418 nm), (23923 cm-1), (max =290 molar-1. cm-1) and (418 nm),(23923 cm-1), (max =663 molar-1. cm-1) range assigned to the charge transfer transition for MnII and CdII respectively[22]. The third peak detected in the visible region for MnII complex at (436 nm),(22935 cm-1),(max =936 molar-1. cm-1 ) is due to (6A1→4A1(G)) transition, indicating a tetrahedral structure[22] around MnII. The third peak for CdII complex at (436 nm),(22935 cm-1),(max =688 molar-1. cm-1 ) is assigned to charge transfer transition[23], suggesting a tetrahedral structure around CdΙΙ ion. Since the metal ion of compounds belongs to (d10) system, this peak is assigned to charge transfer transitions and this is in according compound with results reported by Ramesh and coworkers [24]. In the case of the spectra of (2), (3) and (4) Figs.(14), (15) and (16), respectively the intense peaks in the (U.V) region at (224-274) and (294 418) rang for CoII, NiII and CuII assigned to ligand field and charge transfer transitions about respectively. [21] Peaks at (436 nm) (22935 cm-1) (max =936 molar-1. cm-1), (416 nm) (24038 cm-1), (max =269 molar-1. cm-1) and (414 nm) (24154 cm-1) (max =275 molar-1. cm-1) range of (2), (3) and (4) complexes, respectively were assigned to (4A2(F) →4E(p)), (1A1→1E) and (e' → a1) [22]. (d- d) transitions suggesting a trigonal-bipyramidal structures around (CoII and CuII) ions, and square pyramidal structure around NiII.[22] The (U.V) spectrum of complex (5) Fig.(17) showed two intense peaks in the range (260 nm),(38461 cm-1), (max =907 molar-1. cm-1) and (291 nm) (34364 cm-1), (max =1126 molar-1. cm-1) assigned to ligand field and charge transfer transition[21]. The strong peak at the visible region at (353 nm), (28328 cm-1), (max = 303 molar-1. cm-1) is assigned to (4A2g → 4T2g(p)) transition, confirming a trans octahedral structure around Cr III ion complex[22]. The molar conductance The molar conductance of the complexes in (DMSO) lies in the (81-87 ohm-1.cm2.mole-1) range indicating the complexes are electrolyte with 1:3[25]. Bar Cr III complex where it lie in the (30 ohm-1.cm2.mole-1) range indicating the complex is electrolyte with 1:1[26]. The electronic spectral data of the complexes are summarised in (Table-3). 47 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 The magnetic moment The magnetic moment values for the of K3[Co2(HL)(HA)2.H2O] complex indicated trigonalbi-pyramidal geometry around CoII metal ion. According to the calculated and expected values of the µeff which is lies in (3.93 B.M.) of the complexes indicating paramagnetic [27]. 1H-NMR Spectrum 1H-NMR Spectrum of K3[Cd2(HL)(HA)2] complex:-The 1H-NMR spectrum for K3[Cd2(HL)(HA)2] complex in DMSO-d6 Fig.(19) showed single signal peak appear at (δ 1.31 ppm-CH)(3H) attributed to methyl groups. The quartarete signal obtained at (δ 2.4 ppm- CH)(4H) due to methylene CH2 group. The triplet signal obtained at (δ 3.0 ppm-CH)(3H) due to methylene CH2 group has shifted to low field as a result of the effect of C=O group. A single signal obtained at (δ 4.0 ppm-NH)(1H) assigned to (C-NH) aromatic. A signal at (δ 4.90 ppm-CH)(1H) due to methylene CH2 group has shifted to low field because of the cycle effect from one side and N-H group effect of the other side. The triplet signal at (δ 5.20 ppm- CH)(3H) due to methane (CH2) group. This group has shifted to low field as a result of the effect of (NH sec.) amide group and C=O. Four signals are due to benzylidenimine, doublet signal at (δ 6.51 ppm-CH)(2H), single signal at(δ 7.42 ppm-CH)(1H), triplet signal at (δ 7.60 ppm-CH)(3H) and doublet signal at(δ 7.80 ppm-CH)(2H). A single signal at (δ 8.5 ppm- CH)(1H) is due to (-CH=N) 2-pyrazine group. A signal at (δ 9.02 ppm)(1H) is due to (NH) amide group. And multiple group of resonance signals at (δ 6.20-7.90 ppm-CH) range is due to benzene ring. The NMR spectral data of K2[Cd2(L)HA2] complex was compared with the spectral data for the ligand according to chemoffes program. Table (4) summarized the details of the chemical shifts. 13C-NMR Spectrum of K3[Cd2(HL)(HA)2] complex The 13C-NMR spectrum of the K3[Cd2(HL)(HA)2]complex in DMSO-d6 solvent shown in Fig.(20). The characterization of chemical resonances are listed in Table (5). E.S-mass Spectrum of the derivative ligand [H2L] The E.S-mass (+) spectrum of Schiff base ligand [H2L], Fig.(21) shows the parent ion peak at (M/Z=634.11), which corresponds to (M)+. Peak detected at [M/Z=657.0 is assigned for (M+Na)+ , other fragments are summarized in Table (6). Biological activity for the Schiff base ligand [H2L] The biological activity of the Schiff base ligand (H2L] is studied by using inhibition method. [28-31] for four types of pathogenic bacteria. Two types of bacteria were gram positive which are staphylococcus aureuand bacillus subtilis, the second two were gram negative which are escherichiacoli and psedomonasaeruginosa. The Schiff base ligand (H2L] did not show any inhibition diameter against any type of the four bacterial, neither after 24 hrs. nor after 48 hrs., as shown in Table (7). But the results indicate that there complexes show more activity than the ligands under similar experimental conditions with the same kinds of bacteria. 48 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Thin-layer chromatography (TLC) measurement The T.L.C technique measurement for the Schiff base ligand (H2L] was performed with Mn+2, Co+2, Ni+2, (Cu+2, Cr+3, and Cd+2 complexes and resulting the appearance of a new spots in different positions belong to (Mn+2), Co+2, Ni+2, Cu+2, Cr+3, and Cd+2 ion complexes these spots position are differ from the position of the starting materials spots about (3.2 mm) range indicating the forming of a new compounds. As in the T.L.C chromatography for K3[Ni2(HL)(HA)2.H2O] complex. The proposed molecular structure The proposed molecular structure of K3[Ni2(HL)(HA)2.H2O] complex according to chem. office program display band angles and band lengths, table (8) and the proposed geometrical shape of the complex is trigonalbipyramedal Fig.(22) Acknowledgment I am very grateful to Professor Richard E. P. Winpenny and Professor Mohamed Jaber AL- Jeboori for helping me with respect to the required measurements for the compounds. References 1- Bailey, LB.; Gregory, JFr.; DC, International, Bowman B. and Russell Washington R. (2006), (Folate. Present Knowledge in Nutrition), Life Sciences Institute), 1, 278-301. 2- hgtwg hgh,g hk ahx hggi dhvfgmical Nomenclature, (1978), (Nomenclature and symbols for folic acid and related compounds .also in Biochemical nomenclature and related documents,CBN), The Biochemical Society IUPAC-IUB Commission on Biochelwh]v, p. 214 London . 3- Allen, L. H., (2004), "Folate and vitamin B12 status in the Americas." Nutrition Reviews, 62, no. 6, Pt. 2: 29–33. 4- Bailey, L. B., (2004), "Folate and vitamin B12 recommended intakes and status in the United States." Nutrition Reviews, 62, no. 6, Pt. 2: S14–20. 5- Griffin, R. N., (1968), Photochem- Pholbiol, 7, 159. 6- Lindqvist, L., (1972) , J. Phys. Chem. , 76, 821. 7- Rostkowska, Nowak, M.J.; Lapinski, L.; Bertner, M.; Kulikowski, T.; Les, A. and Adamowicz, L. , (1993) Spectro chim. Acta H. 49A, 551. 8- Nakamoto, K., (1997), "Infrared and Raman Spectra of Inorganic and Coordination Compounds", John Wiley Sons, New York. Parts A and B, 5th ed., 9- Panda, S.; Mishra, R., and Satpathyl, C.K., (1989), J. Ind. Chem. Soc., 66, 472. 10- Ali Hussain and Suphi Al-Azawi, Silverschtien, R.M., Bassler and Morril, (1981) "Spectrophotometers Indentification of Organic Compounds". 11- Molbank, Ivanov, I. and Nikolova, S., (2008), M, 565. 12- Mesubi, M. A., (1982), An infrared study of zinc, cadmium, and lead salts of some fatty acids,’Journal of Molecular Structure,. 81,. 1-2, 61-71. 49 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 13- Anuradha, K. and Rajarel, R., (2011Internatiol Journal of Pharmacy & Technology,) 2, 2217. 14- Colchoubian, H.; Waltz, WL. and Quail, JW., (1999), Can .J. Chem., , 37-77. 15- El-Wahed, M. G. A.; Refat, M. S., and EL-Megharbel, S. M., (2008),‘synthises, spectroscopic and thermal characterization of some transition metals complexes of folic acid,’ Spectrochimica Acta A vol. 70. No. 4, pp. 916-922. 16- Nakamato, K. and McCarthy, P. J., (1968), Spectroscpy and structure of Metal chelate Compounds , JohnWiley and Sons, New York, NY, USA 17- Wiely, J. and Sons, Nakamoto, K. (1996), “Infrared Spectra of Inorganic and Coordination Compounds”., 4th. Ed, New York, 18- Ferraro, (1971), “Low Frequancy Vibrations of Inorganic and Coordination Compounds”, Plenum, New York. 19- Kindeel, A.S.;Dawood, I.J. and Aziz, M.R., (2013), J. Baghdad for Sci, 10(2), 396. 20- Halli, V.B.; Patil, R.B.; Sumathi and Mallikarjun, K., (2012), Dev Pharma Chemica, 4(6), 2360. 21- Jakels, S.C.; Ciavola, J.; Carter, R.C.; Cheek, P.L. and Pascarlli, T.D., (1983), Inorg. Chem., 22, 3956. 22- Lever, A.B.P., (1984), "Inorganic Electronic Spectroscopy", 2nd. Ed., New York 23- Rao, P.V. and Rao, N.R., (1988), Ind.J. of Chem., 27A, 73. 24- AL-Shihri, A.S., (2004), Spectrochimica Acte, , 60, 1189-1192 Part (A). 25- Kettle, S.F.A., (1975), ‘’coordination compounds’’ Thomas Nelson and son lndon, P. 165. 26- Quaylian, J. V.; Fjita, J.,and Franz, G., (1965), J. Am chem. Soc., , 81, P.3770. 27- Huheey, J. E., (1994) Principles of Structure and Reactivity”, Harper International Edition, Harper and Row Publishers, New York, “Inorganic Chemistry“. 28- Anacona, J.R., (2006), J. Coord. Chem., 54, 355– 365. 29- Petra, D.; Tatjano, Z. and Boriset, P.. (2005), J. inorg. Bio. chemistry, 2, 432. 30- Tauber, S. C. and Nau, R., (2008), “Immunomodulatory properties of antibiotics”, Current molecular pharmacology, 1, 68. 31- Sultana, N. and Arayne, M. S., (2007), Pakistan, J. pharma. Sci., 4, 305. 50 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (1): some physical properties of the Schiff base ligand [H2L] and its complexes. Empirical formula M.W Yield % w.t of metal Ion= mmole w.t of product=g m.p C Color Found, (Cal.) % C H N K Metal [H2L] 634.73 75 - 1.5 117- 119 Mustar d (51.0 9)47. 25 (3.81) 3.00 (17.6 5)15. 28 (12.32) 10.00 - K3[Mn2(HL)(HA)2] 996.91 76.6 0.89 0.23 240 (dec.) Deep- Brown (46. 99)54 .11 (3.43) 2.66 (14.0 5)12. 22 (11.77) 10.00 (11.02) 9.12 K3[Co2(HL)(HA)2.H2 O] 1058.9 5 70 0.942 0.20 249 (dec.) Brown (44.2 3)43. 45 (3.71) 2.66 (13.2 3)12. 18 (11.08) 9.20 (11.13) 10.18 K3[Ni2(HL)(HA)2.H2 O] 1058.4 7 80 0.943 0.22 220 (dec.) Green (44.2 5)43. 80 (3.71) 2.50 (13.2 3)11. 01 (11.08) 9.98 (11.09) 10.01 K3[Cu2(HL)(HA)2.H2 O] 1068.1 7 73 0.939 0.23 248 (dec.) Deep- Brown (43.8 5)42. 09 (3.68) 2.10 (13.1 1)12. 00 (10.98) 9.61 (11.90) 9.00 K[Cr2(HL)(HA)2(H2 O)3] 963.23 63 0.943 0.19 232 (dec.) Deep- Brown (48.4 8)46. 12 (4.07) 3.10 (14.4 9)13. 50 (4.04) 3.61 (10.76) 9.49 K3[Cd2(HL)(HA)2] 1111.8 6 63 0.944 0.25 230 (dec.) Pal- Brown (42.1 3)41. 41 (2.99) 2.00 (12.0 0)11. 11 (10.55) 9.76 (20.22) 19.11 (Calcu.): calculated (dec.): decom 51 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (2): FT-I.R. spectral data (wave number ) cm-1 of the Schiff base ligand (H2L] and its complexes strong vs: very strong m: medium w: weak s,sh: strong sharp br: broad o.o.p: out of plane aliph: aliphatic arom: aromatic : stretching : bending Compound (N-H) Primary R-NH2 (N-H) Secondar y R2-NH (O-H) H2O (C=O) (COO- )as (COO-) s (C=N) imin. (CH3) (C- N)aroma (C- N)aliph. M- O M- N K2 [C27H24N8O6] [H2L] 3701(br.) 3367.7(br) - - - 1610(w .) 1575(m) 1508(sh) 1400(sh) 1589(s) 1334(sh) 1292(br) 1174.6(s) - - 2-aminophenole [H2A] 3475(sh) 3305(sh) - 3051(br) - - - - - - 1217 - - K3[Mn2(HL)(HA)2] - - 3412(w) - 1573(w ) 1654.9(w .) 1573.9(br .) 1400(br.) 1589(br.) 1325(sh) 1338.6(w) 1203(sh) 584(sh) 470(sh) K3[Co2(HL)(HA)2. H2O] - - 3369.6(w ) 3151.6(b r.) - 1654.9(w .) 1546.9(br .) 1406(w) 1585(w) 1330(sh) 1342(br.) 1273(w) 584(sh) 470(sh) K3[Ni2(HL)(HA)2.H 2O] - - 3317.8(sh ) - 3258.9(s h) - 1650(w) 1448.6(br ) 13 96(w) 1593(w) 1300(sh) 1373(br) 1280.7(br.) 520(sh) 420(sh) K3[Cu2(HL)(HA)2. H2O] - - 3462(w) - 3253.9(b r) - 1595(w) 1508(w) 1400(w) 1573(br) 1340(sh) 1350(br) 1294(br) 586(sh) 450(sh) K[Cr2(HL)(HA)2(H2 O)3] - - 3412(sh) 3248(br) - 1654.9(w ) 1585(w) 1400(w) 1573.9(s) 1300(sh) 1357(w) 1273(br.) 584(sh) 420(sh) K3[Cd2(HL)(HA)2] - - 3375(sh) 3306(sh) - 1595 1595(w) 1512(w) 1402(w) 1573(w) 1325(sh) 1344(br.) 1267(sh) 584(sh) 465(sh) 52 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (3): Electronic spectral data of derivative ligand (H2L] and it’s metal complexes Compound  nm  cm- 1 max molar-1. Cm-1 Assignmen t Geometric al shape Solven t Ratio M.C*(oh .m2.cm1m )1-ole [H2L] 220 4545 4 460   * - - - - 280 3571 4 370 n  * 345 2898 5 110 n  * K3[Mn2(HL)(HA)2] 256 3906 2 419 Ligand field Tetrahedr al DMSO 1:3 85 418 2392 3 290 Ch.T 436 2293 5 303 6A1→4A1(G) 510 1960 7 60 6A1→4A1(G), 4E K3[Co2(HL)(HA)2. H2O] 224 3663 0 900 Ligand field Trigonalb i- pyramidal DMSO 1:3 85 418 2392 3 908 Ch.T 436 2293 5 936 4A'2(F)→4A' 2(P) 500 2000 0 300 4A'2(F) →4E"(p) K3[Ni2(HL)(HA)2.H 2O] 259 3861 0 1158 Ligand field Square pyramidal DMSO 1:3 86 294 3401 3 1003 Ch.T 416 2403 8 269 1A1→1E ' 440 2272 7 190 1A1→1E" K3[Cu2(HL)(HA)2. H2O] 274 3649 6 360 Ligand field Trigonabi - Pyramidal DMSO 1:3 87 334 2994 0 232 Ch.T 414 2415 4 275 e' → a1 53 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (4) :1H-NMR Spectral data of K3[Cd2(HL)(HA)2] Group Funct. group δ ( ppm) Methane C (28) –H 5.20 1-benzene C (2,3,4,5.......)-H 6.20-7.90 2-pyrazine C (19)-H 8.5 Benzylidenimin C (8,10,11,12)-H 6.51-7.80 Methylene C (21,31,32)-H2 4.90, 3.0 , 2.4 Methyl C (14)-H3 1.31 aromatic C15 -NH C(15) -NH (s) 4.0 Amide C(28)-NH (s) 9.02 DMSO solvent 2.5 510 1960 7 150 e" → a1 K[Cr2(HL)(HA)2(H 2O)3] 260 3846 1 907 Ligand field Octahedr al DMSO 1:1 30 291 3436 4 1126 Ch.T 353 2832 8 303 4A2g →4T1g(F 445 2247 1 100 4A2g →4T2g K3[Cd2(HL)(HA)2] 259 3937 0 500 Ligand field Tetrahedr al DMSO 1:3 81 418 2392 3 663 Ch.T 54 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (5) :13C-NMR Spectral data of K3[Cd2(HL)(HA)2] Group C13 δ ( ppm) Pyrazine C (17,18,20) 133-152 Imine C (13,15) 168-165 Carbonyl C (16) 189 Benzen C (…1,6,7,9,11) 134,145,147,148,123,1 31 Amide C (28) 167 Carboxyl C (29,33) 177 DMSOsolve nt 30 Pyrazine CH (19) 145 Benzen CH (….4,3,2) 118,120,128,127,110,1 15,116, Aliphatic CH (30) 57 Aliphatic CH2 (21,31,32) 28,27,29 Aliphatic CH3 (14) 20 Table (6): E.S-mass Spectral data of derivative ligand [H2L]. Fragmentations Mass/charge (m/z) Relative abundance [M]+ 634.11 22 [M-{C2H5}]+ 543.O7 9 [M-{C2H5-C2H3N}]+ 502.0 30 [M-{C2H5-C2H3N-C5H4O}]+ 370.3 35 [M-{C2H5-C2H3N-C5H4O-C2H5N}]+ 326.9 18 [M-{C2H5-C2H3N-C5H4O-C2H5N-CKO2}]+ 245.05 35 [M-{C2H5-C2H3N-C5H4O-C2H5N-CKO2- C4H4O2}]+ 121.0 40 [M-{C2H5-C2H3N-C5H4O-C2H5N-CKO2- C4H4O2-CHNO}]+ 78.03 8 55 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Table (7): Inhibition circle diameter in millimeter for the ligands after 24 hrs. , and after 48 hrs. Compounds Time Staphylococ cus aureu Pseudomo nas aeruginosa Bacillu s subtilis Escher ichia coli [H2L] 24 hrs. _ _ _ _ [H2L] 48 hrs. _ _ _ _ Table (8): The proposed Bond Lengths and bond angles of K3[Ni2(HL)(HA)2.H2O] Type of bond Bond length (A˚) Type of angles Bond length (A˚) Ni-O 1.790 O-Ni-O 90.000 Ni-N 1.826 O-Ni-N 180.000 N-H 1.050 Ni-O-C 124.455 C-H 1.100 H-N-Ni 125.500 C-N 1.356 N-Ni-O 90.000 C-C 1.397 N-Ni-N 90.000 C-O 1.208 H-N-C 125.500 C-N-Ni 109.000 Ni-N-C 152.746 (A˚)= Angstrom,, (˚)= degree Fig(1) :the structure of folic acid 56 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 57 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 58 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Fig(19): The 1H-NMR spectrum for K3[Cd2(HL)(HA)2] complex in DMSO-d6 Fig(20): The 13C-NMR spectrum of the K3[Cd2(HL)(HA)2]complex in DMSO-d6 solvent 59 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 Fig(21): The E.S-mass (+) spectrum of Schiff base ligand [H2L], Fig(22) : The proposed molecular structure of K3[Ni2(HL)(HA)2.H2O] complex: 60 | Chemistry 2015) عام 3العدد ( 28مجلة إبن الھيثم للعلوم الصرفة و التطبيقية المجلد Ibn Al-Haitham J. for Pure & Appl. Sci. Vol. 28 (3) 2015 امينو - 3تحضير وتشخيص قاعدة شف جديدة مشتقة من حامض الفوليك و ( اسيتوفينون) ومعقداتھا المختلطة مع بعض الفلزات االنتقالية ودراسة فاعليتھا البايولوجية احمد ثابت نعمان فھد علي خالد ايمان ابراھيم عبد الكريم /جامعة بغداد )ابن الھيثم (قسم الكيمياء/ كلية التربية للعلوم الصرفة 2015شباط 2،قبل البحث في:2014تشرين االول 15استلم البحث في : الخالصة متشكلة من سلسلة جديدة من المعقدات (المع من حامض الفوليك بطريقة قاعدة شف اليكند مشتق تضمن البحث تحضير -لصيغة:مزيج من الليكاندات) بوجود ھيدروكسيد البوتاسيوم والميثانول وسطا للتفاعل باشكال رباعية السن ذات ا K[Cr2(HL)(HA)2(H2O)3] -:بالصيغة العامة Mn, Cd M ] 2(HL)(HA)2[M3K=حيث K3[M2(HL)(HA)2.H2O] M=Co, Ni, Cd حيث سجية وطيف الكتلة واالشعة فوق البنفطة التحليل الدقيق للعناصر واطياف االشعة تحت الحمراء اتم تشخيص الليكاند بوس لسلة جديدة من كروماتوكرافيا الطبقة الرقيقة كما تضمن البحث تحضير سقياس والفعالية البايولوجية ودرجة االنصھار و ) ІІ( ) والنيكلІІ( ) والكوبلتІІ( المنغنيز - : المعقدات من خالل مفاعلة الليكاند اعاله مع بعض امالح العناصر مثل ن النووي والرني طة التحليل الدقيق للعناصر سا) وشخصت المعقدات اعاله بوІІ( والكادميوم )ІІІ( ) والكرومІІ( اسوالنح ياس واالمتصاص الذري واطياف االشعة تحت الحمراء واالشعة فوق البنفسجية والمرئية وق 13المغناطيسي والكاربون ع الفعالية غناطيسية للمركبات وطيف الكتلة ودرجة االنصھار مدراسة الحساسية المفضال عن التوصيلية الكھربائية مينية واالستعاضة للمجموعة اال ابينت اطياف االشعة تحت الحمراء فقدانالبايولوجية وقياس كروماتوكرافيا الطبقة الرقيقة و فوليك مع ق مشتق التروجين والكاربون دليال على حدوث تفاعل قاعدة شف عند تناسيعنھا باالصرة المزدوجة بين الن كما بينت اطياف . ليكاندات كيتونية محتوية على مجموعة كاربونيلية قابلة للتفاعل مع المجموعة االمينية لمشتق الفوليك التناسق مع االشعة تحت الحمراء سلوك الليكاند عند تناسقه مع بعض العناصر الفلزية وھذا السلوك يعود تفسيره الى كبات متعادلة اما عند تناسق الليكند مع المنغنيز والكادميوم فانه يعطي مر -:اتي مجاميع فعالة وكما يالليكاندات المعوضة ب لكروم فانه عند تناسقه مع النيكل والنحاس والكوبلت فانه يعطي مركبات مشحونة بشحنة سالب واحدة وعند تناسقه مع ا لمغناطيسية االشعة فوق البنفسجية وقياسات الحساسية ااطياف عملتاستيعطي مركبا مشحونا بشحة موجبة واحدة ولقد - : من خالل ما تقدمللمعقدات لدراسة التوزيع الفضائي لليكاندات مع ايونات الفلزات واالستدالل على الشكل الفضائي لھا. و السطوح ة) ھي رباعيІІ) والكادميوم(ІІز(فان الشكل الفضائي المتوقع لمعقدات المنغني -1 ) ھوخماسي السطوح ІІ) والكوبلت (ІІ) والنحاس (ІІالشكل الفضائي المتوقع لمعقدات النيكل ( -2 ) ھو ثماني السطوح ІІІ( الكروم الفضائي المتوقع لمعقد الشكل-3 قة ، النين فيتامين بي ، المنطقة الحمراء لمعقدات الكادميوم ، قواعد شف ، تقنية الطبقة الرقي :الكلمات المفتاحية 13النووي المغناطيس للبروتون واحد والكاربون