
48    INFORMATION TECHNOLOGY AND LIBRARIES   |   March 2007

Author ID box for 3 column layout

Column Title Editor

Zoomify Image is a mature product
for easily publishing large, high-reso-
lution images on the Web. End users
view these images with existing Web-
browser software as quickly as they
do normal, downsampled images. A
Flash-based Zoomifyer client asyn-
chronously streams image data to the
Web browser as needed, resulting in
response times approaching those of
desktop applications using minimal
bandwidth. The author, a librarian at
Cornell University and the principal
architect of a small, open-source com-
pany, worked closely with Zoomify
to produce a cross-platform, open-
source implementation of that com-
pany’s image-processing software
and discusses how to easily deploy
the product into a widely used Web-
publishing environment. Limitations
are also discussed as are areas of
improvement and alternatives.

Zoomifyer from Zoomify (www
.zoomify.com) enables users
to view large, high-resolu­

tion images within existing Web-
browser software while providing
a rich, interactive user experience.
A small Zoomifyer client, authored
in Macromedia Flash, is embedded
in an HTML page and makes asyn­
chronous requests to the server to
stream image data back to the client
as needed. By streaming the image
data in this way, the image renders as
quickly as a normal, downsampled
image, even for images that are giga­
bytes in size. As the user pans and
zooms, the response time approaches
that of desktop applications while
using the smallest possible band­
width necessary to render the image.
And because Flash has 98.3 per­
cent browser saturation, viewing
“Zoomified” images is seamless for

most users and allows them to view
images interactively in much greater
detail than would otherwise be prac­
tical or even possible.1

Zoomify Image (sourceforge.net/
projects/zoomifyimage) was created
at Cornell University in collabora­
tion with Zoomify to create an open-
source, cross-platform, and scriptable
version of the processing software
that creates the image data displayed
in a Zoomifyer client. This work was
immediately integrated into an inno­
vative content-management system
that was being developed within the
Zope Application Server, a premier
Web application and publishing plat­
form. Authors in this system can
add high-resolution images just as
they normally add downsampled
images, and the image is automat­
ically processed on the server by
Zoomify Image and displayed within
a Zoomifyer client. Zoomify Image is
now in its second major release on
Source Forge and contains user con­
tributed software to easily deploy it
in other environments such as PHP.

Zoomifyer has been used in a
number of applications in many
fields, and can greatly enhance many
research and instructional activities.
Applying Zoomifyer to digital-image
collections is obvious, allowing
libraries to deliver an unprecedented
level of detail in images published
to the Web. New applications also
suggest themselves, such as serving
high-resolution images taken from
tissue samples in a medical lab or
using Zoomifyer in advanced geo­
spatial image applications, particu­
larly when advanced client features
such as annotations are used.

The Zoomifyer approach also has
positive implications for preservation
and copyright protection. Zoomify
Image generates cached derivatives
of master image files so the image
masters are never directly accessed
in the application or sent over the
Internet. Image data are stored and
transmitted to the client in small
chunks so that end users do not have

access to the full data of the original
image.

Deploying
Zoomify Image

Dependencies and winstal-
lation

Zoomify Image was designed ini­
tially to be a faithful, cross-platform
port of Zoomify’s image-processing
software. It was developed in close
cooperation with Zoomify to pro­
vide a scriptable method for invok­
ing the image-preparation process
for Zoomifyer clients so this technol­
ogy could be used in more environ­
ments.

Zoomify Image is written in the
Python programming language and
uses the third-party Python Imaging
Library (PIL) with JPEG support,
both of which are also open source
and cross-platform. It has been tested
in the following environments:

■	 Python 2.1.3
■	 PIL 1.1.3

and

■	 Python 2.4.3
■	 PIL 1.1.4

Installers for Python and PIL exist
for all major platforms and can be
obtained at python.org and www
.pythonware.com/products/pil.

The installation documentation
that comes with PIL will help you
locate the appropriate JPEG libraries
if they are missing from your system.
For MacOSX, you can find pre-built
binary installers for Python, PIL and
Zope at sourceforge.net/projects/
mosxzope.

Introducing Zoomify Image Adam Smith

Adam Smith (ajs17@cornell.edu) is a
Systems Librarian at Cornell University
Library, Ithaca, New York.

Introducing Zoomify Image   |   Smith    49Introducing Zoomify Image   |   Smith    49

The “EZ” version of the Zoomifyer
client, a Flash-based applet with basic
pan and zoom functionality, is pack­
aged with Zoomify Image for conve­
nience so the software can be used
immediately once installed. The EZ
client is covered by a separate license
and can be easily replaced with more
advanced clients from Zoomify at
www.zoomify.com. (A description of
how to upgrade the Zoomifyer client
is included in this paper.)

After Python and PIL with JPEG
support are installed, download
the Zoomify Image software from
sourceforge.net/projects/zoomify­
image and decompress it.

Using Zoomify Image
from the command line

Begin exploring Zoomify Image by
invoking it on the command line:

python <your_path>/ZoomifyFilePr
ocessor.py <your_image_file>

Or, to process more than one file at
a time:

python <your_path>/ZoomifyFile
Processor.py <image_1> <image_2>
<image_3>

The file format of the images input
to Zoomify Image are typically either
TIFF or JPEG, but can be any of the
many formats that PIL can read.2 An
image called “test.jpg” is included in
the Zoomify Image distribution and
is of sufficient size and complexity to
provide an interesting example.

During processing, Zoomify
Image creates a new directory to
hold the converted image data in the
same location as the image file being
processed. The name of this direc­
tory is based on the file name of the
image being processed, so that, for
example, an image called “test.jpg”
would have a corresponding folder
called “test” containing the converted
image data used by the Zoomifyer
client. If the image file has no file

extension, the directory is named
by appending “_data” to the image
name, so that an image file named
“test” would have a corresponding
directory called “test_data.” If the
process is re-run on the same images,
any previously generated data are
automatically deleted before being
regenerated.

Zoomify provides substantial
documentation and sample code on
its Web site that demonstrates how
to use the data generated by Zoomify
Image in several environments. User-
contributed code is bundled with
Zoomify Image itself, further dem­
onstrating how to dynamically incor­
porate this conversion process into
several environments. An example of
the use of Zoomify Image within the
Zope Application Server is given.

Incorporating Zoomify
Image into the Zope
Application Server

The popular Zope Application Server
contains a number of built-in services
including a Web server, FTP and
WebDAV servers, plug-ins for access­
ing relational databases, and a hier­
archical object-oriented database that
uses a file-system metaphor for stor­
age. This object database provides a
unique opportunity to incorporate
Zoomifyer into Zope seamlessly.

To use Zoomify Image with Zope,
the distribution must be decom­
pressed into your Zope Products
directory. For versions 2.7.x and up,
this is at:

<zope_instance_home>/Products/

In Zope versions prior to the 2.7.x
series, the Products directory is at:

 <zope_home>/lib/python/
Products/

Restart Zope and now within
the Web-based Zope Management
Interface (ZMI), the ability to add

Zoomify Image objects appears.
After selecting this option, a form
is presented that is identical to the
form used for adding ordinary Image
objects within Zope. When an image
is uploaded using this form, Zope
automatically invokes the Zoomify
Image conversion process on the
server and links the generated data
to the default Zoomifyer client that
comes with the distribution. If the
image is subsequently edited within
ZMI to upload a new version, any
existing conversion data for that
image are automatically deleted, and
the new conversion data are gener­
ated to replace them, just as when
invoked on the command line.

Again, the uploaded image can be
in any format that Zope recognizes as
having a content-type of “image/...”
and that PIL can read. The only
potential “gotcha” in this process is
that in the versions of the Zoomifyer
client the author has tested, Zoomify
Image objects that have file names
(in Zope terminology, the file name
is the object’s “id” property) with
extensions other than “.jpg” are not
displayed properly by the Zoomifyer
client. So, when uploading a TIFF
image, for example, the id given
to the Zoomify Image object should
either not contain an extension, or it
should be changed from image.tif to
something like image_tif. This bug
has been reported to Zoomify and
may be fixed in newer versions of the
Flash-based viewing software at the
time of publication.

To view the image within the
Zoomifyer client, simply call the
“view” method of the object from
within a browser. So, for a Zoomify
Image object uploaded to:

http://<your_domain>/test/test.jpg

go to this URL:

http://<your_domain>/test/test.
jpg/view

Or, to include this view of the
image within a Zope Page Template

50    INFORMATION TECHNOLOGY AND LIBRARIES   |   March 200750    INFORMATION TECHNOLOGY AND LIBRARIES   |   March 2007

(ZPT), simply call the tag method of
the Zoomify Image just as you would
a normal Image object in Zope. So, in
a ZPT, use this:

<tal:block replace=”here/test.jpg/
tag” />

It is possible that the Zoomify
Image conversion process will not
have had time to complete when
someone tries to view the image. The
Zoomify Image object will attempt to
degrade gracefully in this situation
by trying to display a downsampled
version of the image that is gener­
ated part way through the conver­
sion process, or, if that is also not
available, finally informing the user
that the image is not yet ready to be
viewed. This logic is built into the tag
method.

To add larger images more effi­
ciently, or to add images in bulk, the
Zoomify Image distribution contains
detailed documentation to quickly
configure Zope to accept images via
FTP or WebDAV and automatically
process them through Zoomify Image
when they are uploaded.

Finally, the default Zoomifyer cli­
ent can be overridden by uploading a
custom Zoomifyer client into a loca­
tion where the Zoomify Image object
can “acquire” it, and giving it a Zope
id of “zoomifyclient.swf”.

How it works

To be viewed by a Zoomifyer cli­
ent, an image must be processed to
produce tiles of the image at differ­
ent scales, or tiers. An XML file that
describes these tiles is also necessary.
Zoomify Image provides a cross-
platform method of producing these
tiled images and the XML file that
describes them.

Beginning at 100-percent scale,
the image is successively scaled in
half to produce each tier, until both
the width and height of the final tier
are, at most, 256 pixels each. Each tier

is further divided into tiles that are,
at most, 256 pixels wide by 256 pixels
tall, as seen in figure 1.

These tiles are created left to
right, top to bottom. Tiles are saved
as images with the naming conven­
tion indicated in figure 2.

The numbering is zero-based, so
that the smallest tier is represented
by one tile that is at most 256 x
256 pixels wide with the name “0-0-
0.jpg.”

Tiles are saved in directories in
groups of 256, and those directories
also follow a zero-based naming con­
vention starting with “TileGroup0.”
Lower-numbered tile groups contain

lower-numbered tiles, so 0-0-0.jpg is
always in TileGroup0.

Zoomifyer clients understand
this tile-naming scheme and only
request tiles from the server that are
necessary to stitch together the por­
tion of the image being viewed at a
particular scale.

Limitations

Zoomify Image was developed to
meet two goals:

	 1.	 to provide a cross-platform
port of the Zoomifyer con­

Figure 1. Tiers and tiles for a 2048 x 2048 pixel image

Figure 2. Tile image naming scheme

Introducing Zoomify Image   |   Smith    51Introducing Zoomify Image   |   Smith    51

verter for use in UNIX/Linux
systems, and

	 2.	 to make the converter script­
able, and ultimately integrate it
into open-source content-man­
agement software, particularly
Zope.

This Zoomifyer port was writ­
ten in Python, a mature, high-level
programming language with an
execution model similar to Java.
Although Zoomify Image continues
to be optimized, compared to the
official Zoomify conversion software,
it is slower and more limited in the
sizes of images it can reasonably
process. Anecdotally, Zoomify Image
has been used effectively on images
hundreds of megabytes large, but
significant performance degradation
has been reported in the multi-giga­
byte range.

Because of these limitations in
Zoomify Image, the official Zoomify
image-processing software is recom­
mended for converting very large
images manually in a Windows or
Macintosh environment. The Zoomify
Image product is recommended in
the following circumstances:

■	 The conversion must be per­
formed on a UNIX/Linux
machine.

■	 The conversion process must be
scriptable, such as for batch pro­
cessing or being run dynamically.

■	 Images sizes are not in the multi-
gigabyte range.

If a scriptable, cross-platform
version of the Zoomifyer converter
is needed, but performance is an
issue, several things can be done to
extend the current limits of the soft­
ware. Obviously, upgrading hard­
ware, particularly RAM, is effective

and relatively inexpensive. Running
the latest versions of Python and
PIL will also help. Each new version
of Python makes significant perfor­
mance improvements, and this was
a primary goal of version 2.5, which
was released in September 2006.

The author believes that the cur­
rent weak link in the performance
chain is related to how Zoomify Image
is loading image data into memory
with PIL during processing. In the
current distribution, a Python script
contributed by Gawain Avers, which
is based partially on the Zoomify
Image approach, uses ImageMagick
instead of PIL for image manipula­
tion and is better able to process
multi-gigabyte images. The author
would like to add the ability to des­
ignate the image library at runtime in
future versions of Zoomify Image.

Future development

Beyond improving the performance
of the core-processing algorithm, the
author would also like to explore
opportunities for more efficiently
processing images within Zope, such
as spawning a background thread
for processing images so the Zope
Web server can immediately respond
to the client’s image-submission
request. The author would also like
to improve the tag method to display
data more flexibly in the Zoomifyer
client and ensure consistent behav­
ior with Zope’s default Image tag
method. Finally, Zoomify Image
could also benefit from the addi­
tion of a simple configuration file to
control such runtime properties as
image quality and which third-party
image-processing library to use, for
example.

Conclusion

Zoomify Image is mature, open-
source software that makes it pos­
sible to publish large, high-resolution
images to the Web. It is designed
to be convenient to use in a variety
of architectures and can be viewed
within existing browser software.
Download it for free, begin using it
in minutes, and explore its unique
possibilities.

References

	 1.	 Adobe Systems, Macromedia Flash
Player Statistics, http://www.adobe.com/
products/player_census/flashplayer/
(accessed March 1, 2007).
	 2.	 PythonWare, Python Imaging Library
Handbook: Image File Formats, http://
www.pythonware.com/library/pil/
handbook/formats.htm (accessed Aug. 6,
2006).

Resources

Macromedia Flash Player Statistics
(http://www.adobe.com/
products/player_census/flash­
player/) (accessed Jan. 2, 2007).

Python Imaging Library (PIL) (http://
www.pythonware.com/products/
pil/) (accessed Jan. 2, 2007).

Python Programming Language Official
Web site (http://www.python.org/)
(accessed Jan. 2, 2007).

Zoomify Image (http://sourceforge.net/
projects/zoomifyimage/) (accessed
Jan. 2, 2007).

Zoomify (http://www.zoomify.com/)
(accessed Jan. 2, 2007).

Zope Community (http://www.zope
.org/) (accessed Jan. 2, 2007).

Zope installers for MacOSX (http://
sourceforge.net/projects/
mosxzope/) (accessed Jan. 2, 2007).

