APPLICATION OF DIGITAL CELLULAR RADIO FOR MOBILE LOCATION ESTIMATION IIUM Engineering Journal, Vol. 18, No. 2, 2017 Kakde et al. 128 IMPLEMENTATION OF DECODING ARCHITECTURE FOR LDPC CODE USING A LAYERED MIN-SUM ALGORITHM SANDEEP KAKDE 1* , ATISH KHOBRAGADE 1 , SHRIKANT AMBATKAR 1 AND PRANAY NANDANWAR 1 1 Department of Electronics, Faculty of Engineering, YeshwantraoChavan College of Engineering, Nagpur, India. *Corresponding author: sandip.kakde@gmail.com (Received: 25 th April 2016; Accepted: 3 rd April 2017; Published on-line: 1 st Dec. 2017) ABSTRACT: LDPC codes provide remarkable error correction performance and therefore enlarge the design space for communication systems. This paper shows comparison of different digital modulation techniques and found that BPSK modulation technique is better than other modulation techniques in terms of Bit Error Rate. It also gives error performance of LDPC decoder over AWGN channel using Min-Sum algorithm. VLSI Architecture is proposed which uses the value re-use property of min- sum algorithm and gives a high throughput. The proposed work has been implemented and tested on Xilinx Virtex 5 FPGA.The MATLAB result of LDPC decoder for low bit error rate gives a bit error rate in the range of 10 -1 to 10 -3.5 at SNR=1 to 2 for 20 iterations. Thus, it gives good bit error rate performance. The latency of the parallel design of the LDPC decoder has also decreased. It has attained a maximum frequency of 141.22 MHz and throughput of 2.02 Gbps while consuming less area. ABSTRAK: Kod LDPC adalah sistem prestasi pembetulan ralat yang luar biasa dan dengan ini meluaskan peluang reka sistem komunikasi. Kertas ini menyediakan perbandingan perbezaan pelbagai teknik digital modulasi dan didapati teknik modulasi BPSK adalah lebih baik daripada teknik modulasi lain dalam bentuk Kadar Ralat Bit (Bit Error Rate). Ia juga memberi prestasi ralat LDPC penyahkod yang bagus berbanding saluran AWGN menggunakan algoritma Min-Sum. Struktur VLSI telah dicadangkan dengan mengguna semula nilai pakai dan menghasilkan nilai penghantaran yang tinggi. Kerja cadangan ini telah dibina dan diuji mengguna Xilinx Virtex 5 FPGA. Keputusan MATLAB penyahkod LDPC bagi kadar ralat bit telah berhasil pada kadar 10 -1 to 10 -3.5 dan SNR=1 kepada 2 dengan 20 kali iterasi. Jadi ia berhasil memberikan prestasi kadar ralat bit yang bagus. Latensi pada reka serentak LDPC penyahkod juga telah menurun. Ia berhasil mencapai 141.22 MHz frekunsi maksimum dan penghantaran sebanyak 2.02 Gbps pada luas kawasan yang sedikit. KEYWORDS: low-density parity-check (LDPC) codes; min-sum algorithm (MSA); TDMP;offset min-sum algorithm (OMS); bit error rate (BER); SNR; AWGN 1. INTRODUCTION Currently, Low Density Parity Check codes (LDPC) have gained major attention because of their performance near to the Shannon limit and remarkable error correction capability. LDPC codes were invented by Gallager in 1962 [1] and got more attention when they were rediscovered by McKay and Neal in 1996 [2]. LDPC codes can achieve very low bit error rate (BER) for low signal to noise ratio (SNR) applications [1]. LDPC codes has got several advantages such as low hardware complexity, inherit parallelism, no IIUM Engineering Journal, Vol. 18, No. 2, 2017 Kakde et al. 129 error floor at high SNRs and high throughput potential. They have been used in several wireless standards such as IEEE 802.16e, IEEE 802.11n and DVB S-2 because of their excellent error correcting performance. A LDPC code is a linear block code which is defined by a sparse parity check matrix (H-matrix), as shown in Fig 1. In matrix representation, consider a parity check matrix with n x m dimension. 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 H             Fig. 1: Example of parity check matrix. Consider Wr as weight of rows (i.e. number of 1‟s in each row) and Wc as weight of columns (i.e. the number of 1‟s in each column). Now for the matrix to be called a Low- Density matrix two conditions must be satisfied: Wc<