International Journal of Analysis and Applications ISSN 2291-8639 Volume 1, Number 2 (2013), 106-112 http://www.etamaths.com A NOTE ON: MULTI-STEP APPROXIMATION SCHEMES FOR THE FIXED POINTS OF FINITE FAMILY OF ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS MOGBADEMU, ADESANMI ALAO Abstract. In this paper, using an analytical technique we obtain a strong convergence for a modified three- step iterative scheme due to Suantai [6] for asymptotically pseudocontractive mappings in real Banach spaces. Our result is an improvement and a correction of Rafiq’s [4] results. 1. Introduction Let E be an arbitrary real Banach Space and let J : E → 2E ∗ be the normalized duality mapping defined by J(x) = {f ∈ E∗ :< x,f >= ‖x‖2 = ‖f‖2},∀x ∈ E where E∗ denotes the dual space of E and < .,. > denotes the generalized duality pairing between E and E∗. The single-valued normalized duality mapping is de- noted by j. Let K be a nonempty closed convex subset of E and T : K → K be a map. The mapping T is said to be uniformly L- Lipschitzian if there exists a constant L > 0 such that ‖Tnx−Tny‖≤ L‖x−y‖ for any x,y ∈ K and ∀n ≥ 1. The mapping T is said to be asymptotically pseudocontractive if there exists a sequence (kn) ⊂ [1,∞) with limn→∞kn = 1 and for any x,y ∈ K there exists j(x−y) ∈ J(x−y) such that < Tnx−Tny,j(x−y) >≤ kn‖x−y‖2,∀n ≥ 1. The concept of asymptotically pseudocontractive mappings was introduced by Schu [5]. Ofoedu [3] used the modified Mann iteration process introduced by Schu [5] , xn+1 = (1 −αn)xn + αnTnxn n ≥ 0, to obtain a strong convergence theorem for uniformly Lipschitzian asymptotically pseudo-contractive mapping in real Banach space setting. This result itself is a generalization of many of the previous results (see [3] and the references therein). 2010 Mathematics Subject Classification. 47H10, 46A03. Key words and phrases. Noor iteration; uniformly Lipschitzian; asymptotically pseudocontrac- tive ; three-step iterative scheme ; Banach spaces. c©2013 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 106 A NOTE 107 Recently, Rafiq [4] employed the iterative scheme introduced by Suantai [6] to es- tablish a strong convergence result for a modified three-step iterative scheme when dealing with asymptotically pseudocontractive mappings. In fact, he proved the following theorem : Theorem 1.1 ([4]). Let K be a nonempty closed convex subset of E, T : K → K be the asymptotically pseudocontractive mapping with T(K) bounded and the sequence kn ⊂ [1,∞), limn→∞kn = 1 such that F(T) = {x ∈ K : Tx = x} 6= φ. Further let T be uniformly continuous and {an}n≥,{bn}n≥0,{cn}n≥0,{a′n}n≥0, {b′n}n≥0,{c′n}n≥0,{a′′n}n≥0 be real sequences in [0, 1]; an +bn +cn = 1 = a′n +b′n +c′n satisfying the following conditions: (i) limn→∞(bn + c ′ n) = 0 = limn→∞ b ′ n = limn→∞ c ′ n = limn→∞a ′′ n (ii) ∑ n≥0(bn + an) = ∞ . For arbitrary x0 ∈ K, let {xn}∞n=1 be the iterative sequence defined by xn+1 = anxn + bnT nyn + cnT nzn (1.1) yn = a ′ nxn + b ′ nT nzn + c ′ nT nxn. zn = (1 −a′′n)xn + a ′′Tnxn Suppose for any ρ ∈ F(T) there exists a strictly increasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0 such that < Tnx−ρ,j(x−ρ) >≤ kn‖x−ρ‖2 −ψ(‖x−ρ‖) for all x ∈ K. Then {xn}n≥0 converges strongly to a fixed point of T . We observed some mistakes in the proof of the theorem above. For instance, in equation (10) of Rafiq [4] the author set; dn = ‖Tnyn −Tnxn+1‖, en = ‖Tnzn − Tnxn+1‖. He further obtained from equations (12) and (14) that limn→∞‖yn − xn+1‖ = 0, limn→∞‖zn − xn+1‖ = 0. And, using the uniform continuity of T , he concluded that dn = limn→∞‖Tnyn − Tnxn+1‖ = 0, en = limn→∞‖Tnzn − Tnxn+1‖ = 0. This conclusion is, however not correct. For example, let Tx = 4x ∀x ∈ R and suppose xn+1 = (1 − 1n) ,yn = zn = (1 + 1 n ) for all n ≥ 1, obviously dn = limn→∞‖Tnyn − Tnxn+1‖ 6= 0, en = limn→∞‖Tnzn −Tnxn+1‖ 6= 0. Thus, the result of Rafiq [4] needs to be improve. In this paper, an improvement and a correction to the main result of Rafiq [4] is presented. The following lemmas are needed. Lemma 1.1 [3, 4] . Let E be real Banach Space and J : E → 2E ∗ be the normalized duality mapping. Then, for any x,y ∈ E ‖x + y‖2 ≤‖x‖2 + 2 < y,j(x + y) >,∀j(x + y) ∈ J(x + y). Lemma 1.2 [7]. Let {αn} be a non- negative sequence which satisfies the following inequality αn+1 ≤ (1 −λn)αn + σn, where λn ∈ (0, 1),∀n ∈ N, ∑∞ n=1 λn = ∞ and σn = o(λn). Then limn→∞αn = 0. 2. Main results Theorem 2.1. Let K be a nonempty closed convex subset of E, T : K → K be asymptotically pseudocontractive and uniformly Lipschitzian map with Lipschitzian constant L > 0 and the sequence kn ⊂ [1,∞), limn→∞kn = 1 such that F(T) = 108 MOGBADEMU {x ∈ K : Tx = x} 6= φ. Let {an}n≥0,{bn}n≥0,{cn}n≥0,{a′n}n≥0, {b′n}n≥0,{c′n}n≥0,{a′′n}n≥0 be real sequences in [0, 1] satisfying : (i) an + bn + cn = 1 = a ′ n + b ′ n + c ′ n (ii) limn→∞ bn = limn→∞ b ′ n = limn→∞ cn = 0 = limn→∞ c ′ n (iii) ∑ n≥0(bn + cn) = ∞. For arbitrary x0 ∈ K, let {xn} ∞ n=1 be the iterative sequence defined by (1.1). Suppose for any ρ ∈ F(T) there exists a strictly increasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0 such that < Tnxn −ρ,j(xn −ρ) >≤ kn‖xn −ρ‖2 −ψ(‖xn −ρ‖) for all x ∈ K. Then {xn}n≥0 converges strongly to a fixed point of T . Proof: From Lemma 1.2, the equation (1.1) and the definition of the asymptoti- cally pseudocontractive and uniformly Lipschitzian map, we have ‖xn+1 −ρ‖2 = ‖(1 − bn − cn)(xn −ρ) + bn(Tnyn −ρ) + cn(Tnzn −ρ)‖2 ≤ (1 − (bn + cn))2‖xn −ρ‖2 +2〈bn(Tnyn −ρ) + cn(Tnzn −ρ),j(xn+1 −ρ)〉 ≤ (1 − (bn + cn))2‖xn −ρ‖2 +2bn〈Tnyn −Tnxn+1,j(xn+1 −ρ)〉 +2bn〈Tnxn+1 −ρ,j(xn+1 −ρ)〉 +2cn〈Tnxn+1 −ρ,j(xn+1 −ρ)〉 +2cn〈Tnzn −Tnxn+1,j(xn+1 −ρ)〉 ≤ (1 − (bn + cn))2‖xn −ρ‖2 +2bn(kn‖xn+1 −ρ‖2 −ψ(‖xn −ρ‖)) +2bn‖Tnyn −Tnxn+1‖‖xn+1 −ρ‖ +2cn‖Tnzn −Tnxn+1‖‖xn+1 −ρ‖ +2cn(kn‖xn+1 −ρ‖2 −ψ(‖xn −ρ‖)) ≤ (1 − (bn + cn))2‖xn −ρ‖2 + 2kn(bn + cn)‖xn+1 −ρ‖2 −2(bn + cn)ψ(‖xn+1 −ρ‖) +2bn‖Tnyn −Tnxn+1‖‖xn+1 −ρ‖ +2cn‖Tnzn −Tnxn+1‖‖xn+1 −ρ‖ (2.1) ≤ (1 − (bn + cn))2‖xn −ρ‖2 + 2kn(bn + cn)‖xn+1 −ρ‖2 −2(bn + cn)ψ(‖xn+1 −ρ‖) +2bn‖Tnyn −Tnxn+1‖‖xn+1 −ρ‖ +2cn‖Tnzn −Tnxn+1‖‖xn+1 −ρ‖ ≤ (1 − δn)2‖xn −ρ‖2 + 2knδn‖xn+1 −ρ‖2 −2δnψ(‖xn+1 −ρ‖) + 2bnL‖yn −xn+1‖‖xn+1 −ρ‖ +2cnL‖zn −xn+1‖‖xn+1 −ρ‖, where 0 ≤ δn = bn + cn < 1. We note that A NOTE 109 ‖yn −xn+1‖ = ‖xn+1 −yn‖ = ‖(1 − bn − cn)(xn −yn) + bn(Tnyn −yn) +cn(T nzn −yn)‖ ≤ (1 − bn − cn)‖xn −yn‖ + bn‖Tnyn −ρ + ρ−yn‖ +cn‖Tnzn −ρ + ρ−yn‖ ≤ (1 − bn − cn)‖xn −yn‖ + bn(1 + L)‖yn −ρ‖ +cn(L‖zn −ρ‖ + ‖yn −ρ‖) = (1 − bn − cn)‖xn −yn‖ + bn(1 + L)(‖yn −xn + xn −ρ‖) +cnL(‖zn −xn + xn −ρ‖) + cn(‖yn −xn + xn −ρ‖) ≤ (1 − bn − cn)‖xn −yn‖ +bn(1 + L)(‖yn −xn‖ + ‖xn −ρ‖) +cnL(‖zn −xn‖ + ‖xn −ρ‖) +cn(‖yn −xn‖ + ‖xn −ρ‖) ≤ (1 + bnL)‖xn −yn‖ + δn(1 + L)‖xn −ρ‖ +cnL‖zn −xn‖ (2.2) = (1 + bnL)‖xn −yn‖ + δn(1 + L)‖xn −ρ‖ +cnL(‖zn −ρ + ρ−xn‖) ≤ (1 + bnL)‖xn −yn‖ + δn(1 + L)‖xn −ρ‖ +cnL(‖zn −ρ‖ + ‖ρ−xn‖) = (1 + bnL)‖xn −yn‖ + [δn(1 + L) + cnL]‖xn −ρ‖ +cnL‖zn −ρ‖ ≤ (1 + bnL)‖xn −yn‖ + [δn(1 + L) + cnL]‖xn −ρ‖ +cnL(1 + a ′′ nL)‖xn −ρ‖ = (1 + bnL)‖xn −yn‖ + [δn(1 + L) +cnL(2 + a ′′ nL)]‖xn −ρ‖. Observe that (2.3) ‖xn −yn‖ = ‖yn −xn‖ = ‖(1 − b′n − c′n)xn + b′nTnzn + c′nTnxn −xn‖ = ‖b′n(Tnzn −xn) + c′n(Tnxn −xn)‖ ≤ b′nL‖zn −ρ‖ + (b′n + (1 + L)c′n)‖xn −ρ‖ ≤ b′nL(1 + a′′nL)‖xn −ρ‖ + (b′n + (1 + L)c′n)‖xn −ρ‖ = [b′nL(1 + a ′′ nL) + (b ′ n + (1 + L)c ′ n)]‖xn −ρ‖. Substituting (2.3) into (2.2) then, (2.4) ‖xn+1 −yn‖ ≤ d1n‖xn −ρ‖ 110 MOGBADEMU where d1n = (1 + bnL)b ′ nL(1 + a ′′ nL) + b ′ n + (1 + L)(c ′ n + δn) + cnL(2 + a ′′ nL). In a similar way (2.5) ‖zn −xn+1‖ = ‖xn+1 −zn‖ = ‖(1 − bn − cn)(xn −zn) + bn(Tnyn −zn) +cn(T nzn −zn)‖ ≤ (1 − bn − cn)‖xn −zn‖ + bnL‖yn −ρ‖ + bn‖zn −ρ‖ +cn(1 + L)‖zn −ρ‖ = (1 −δn)‖xn −zn‖ + bnL‖yn −xn + xn −ρ‖ +bn‖zn −ρ‖ + cn(1 + L)‖zn −ρ‖ ≤ (1 − δn)(‖xn −ρ‖ + ‖zn −ρ‖) + bnL‖yn −xn‖ +bnL‖xn −ρ‖ + bn‖zn −ρ‖ + cn(1 + L)‖zn −ρ‖ ≤ (1 − δn)(‖xn −ρ‖ + (1 + a′′nL)‖xn −ρ‖) +bnL[b ′ nL(1 + a ′′ nL) + (b ′ n + (1 + L)c ′ n)]‖xn −ρ‖ +bnL‖xn −ρ‖ + bn(1 + a′′nL)‖xn −ρ‖ +cn(1 + L)(1 + a ′′ nL)‖xn −ρ‖ ≤ cn(‖xn −ρ‖ + (1 + a′′nL)‖xn −ρ‖) +bnL[b ′ nL(1 + a ′′ nL) + (b ′ n + (1 + L)c ′ n)]‖xn −ρ‖ +bnL‖xn −ρ‖ + bn(1 + a′′nL)‖xn −ρ‖ +cn(1 + L)(1 + a ′′ nL)‖xn −ρ‖ = d2n‖xn −ρ‖, where (2.6) d2n = cn(2 + a ′′ nL) + bn(1 + L[b ′ nL(1 + a ′′ nL) + (b ′ n + (1 + L)c ′ n)]) +(1 + a′′nL)(bn + cnL(1 + L)). Substituting (2.3) and (2.5) into (2.1) we have the equation that follows (2.7) ‖xn+1 −ρ‖2 = (1 − δn)2‖xn −ρ‖2 + 2knδn‖xn+1 −ρ‖2 −2δnψ(‖xn+1 −ρ‖) + 2bnLd1n‖xn −ρ‖‖xn+1 −ρ‖ +2cnLd 2 n‖xn −ρ‖‖xn+1 −ρ‖ ≤ (1 − δn)2‖xn −ρ‖2 + 2knδn‖xn+1 −ρ‖2 −2δnψ(‖xn+1 −ρ‖) + bnLd1n(‖xn −ρ‖2 + ‖xn+1 −ρ‖2) +cnLd 2 n(‖xn −ρ‖2 + ‖xn+1 −ρ‖2) ≤ (1 − δn)2‖xn −ρ‖2 + 2knδn‖xn+1 −ρ‖2 −2δnψ(‖xn+1 −ρ‖) + δnLd1n(‖xn −ρ‖2 + ‖xn+1 −ρ‖2) +δnLd 2 n(‖xn −ρ‖2 + ‖xn+1 −ρ‖2) + 2δnLd2n. Setting, (2.8) An = (1 − (2knδn + δnL(d1n + d2n))) Bn = ((1 −δn)2 + δnL(d1n + d2n)) (2.9) Cn = (2(1 −kn) −δn − 2L(d1n + d2n)) Dn = 2Ld 2 n. Suppose we set infn≥N ψ(‖xn+1−ρ‖) 1+‖xn+1−ρ‖2 = r. Then r = 0. If it is not the case, we assume that r > 0. Let 0 < r < min{1,r}, then ψ(‖xn+1−ρ‖) 1+‖xn+1−ρ‖2 ≥ r, i.e., (2.10) ψ(‖xn+1 −ρ‖) ≥ r + r‖xn+1 −ρ‖2 ≥ r‖xn+1 −ρ‖2. A NOTE 111 Since limn→∞knδn = 0, there exists a natural number N0 such that 1 2 < An < 1, for all n > N0. Thus equation (2.7) becomes, (2.11) ‖xn+1 −p‖2 ≤ BnAn‖xn −p‖ 2 − 2δn ψ(‖xn+1−ρ‖) An + δnDn An ≤ (1 − δnCn)‖xn −p‖2 − 2δnψ(‖xn+1 −ρ‖) + 2δnDn. Substituting (2.10) into (2.11), we have (2.12) ‖xn+1 −p‖2 ≤ 1−δnCn1+2δnr ‖xn −p‖ 2 + 2δnDn 1+2δnr ≤ (1 − δn (Cn+2r) 1+2δnr )‖xn −p‖2 + 2δnDn1+2δnr Since limn→∞δn = limn→∞Cn = 0, we choose N1 > N0 such that (Cn+2r) 1+2δnr > r, for all n > N1. It follows from (2.12) that (2.13) ‖xn+1 −p‖2 ≤ (1 −δnr)‖xn −p‖2 + 2δnDn1+2δnr for all n > N1. If we set bn = ‖xn−ρ‖, It follows from Lemma 1.2 that, limn→∞ bn = 0, which is a contradiction. Thus, there exists an infinite subsequence such that limn→∞ bnj0+1 = 0. Next, we prove that limn→∞ bnj0+m = 0 by induction. Let ∀ � ∈ (0, 1), choose nj0 > N such that bnj0+1 < �, Cnj0+1 > ψ(�) 4 , Dnj0+1 < ψ(�) 2 . First, we want to prove bnj0+2 < �. Suppose it is not the case. Then bnj0+2 ≥ �, this implies ψ(bnj0+2) ≥ ψ(�). Using (2.11) we now obtain the following (2.14) b2nj0+2 ≤ b 2 nj0+1 − δn ψ(�) 4 �2 − 2δnψ(�) + 2δn ψ(�) 2 ≤ b2nj0+1 − δnψ(�) < �2, which is a contracdiction. Hence bnj0+2 < � holds and inductively we can show that bnj0+i < �, ∀i ≥ 1 holds. This implies that limn→∞ bn = 0, i.e., limn→∞‖xn−ρ‖ = 0. References [1] S. S. Chang, Some results for asymptotically pseudocontractive mappings and asymptoti- cally nonexpansive mappings, Proc. Amer. Math. Soc., 129(2000), 845-853. [2] S. S. Chang, Y. J. Cho, J. K. Kim, Some results for uniformly L-Lipschitzian mappings in Banach spaces, Applied Mathematics Letters, 22(2009), 121-125. [3] E.U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseu- docontractive mapping in real Banach space, J. Math. Anal. Appl., 321(2006), 722-728. [4] A. Rafiq, Multi-step approximation schemes for the fixed points of finite family of asymp- totically pseudocontractive mappings, General Mathematics, vol.19 nos. 4(2011), 41C49. [5] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158(1999), 407-413. [6] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically non- expansive mappings, J. Math. Anal. Appl., 311(2005), 506-517. [7] X. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc.113(1991), 727-731. 112 MOGBADEMU [8] B. Xu, M. A. Noor, Fixed point iterations for asymptotically nonexpansive map- pings in Banach spaces, J. Math. Anal. Appl., 267, 2002, 444-453. Department of Mathematics, University of Lagos, Lagos Nigeria