International Journal of Analysis and Applications Volume 16, Number 6 (2018), 882-893 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-16-2018-882 IDEAL CONVERGENT SEQUENCE SPACES WITH RESPECT TO INVARIANT MEAN AND A MUSIELAK-ORLICZ FUNCTION OVER n-NORMED SPACES SUNIL K. SHARMA∗ Department of Mathematics, Model Institute of Engineering & Technology, Kot Bhalwal 181122, J & K, INDIA ∗Corresponding author: sunilksharma42@gmail.com Abstract. In the present paper we defined I-convergent sequence spaces with respect to invariant mean and a Musielak-Orlicz function M = (Mk) over n-normed spaces. We also make an effort to study some topological properties and prove some inclusion relation between these spaces. 1. Introduction and preliminaries Let σ be an injective mapping from the set of the positive integers to itself such that σp(n) 6= n for all positive integers n and p, where σp(n) = σ(σp−1(n)). An invariant mean or a σ-mean is a continuous linear functional defined on the space `∞ such that for all x = (xn) ∈ `∞: (1) If xn ≥ 0 for all n, then φ(x) ≥ 0, (2) φ(e) = 1, (3) φ(Sx) = φ(x), where Sx = (xσ(n)). Vσ denotes the set of bounded sequences all of whose invariant means are equal which is also called as the space of σ-convergent sequences. In [26], it is defined by Vσ = { x ∈ `∞ : lim k tkn(x) = `, uniformly in n,` = σ − lim x } , Received 2017-09-21; accepted 2017-12-07; published 2018-11-02. 2010 Mathematics Subject Classification. 40A05,40A35, 46A45. Key words and phrases. I-convergent, invariant mean, Orlicz function, Musielak-Orlicz function, n-normed space, A- transform. c©2018 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 882 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-16-2018-882 Int. J. Anal. Appl. 16 (6) (2018) 883 where tkn(x) = xn+xσ1(n)+···+xσk(n) k+1 . σ-mean is called a Banach limit if σ is the translation mapping n → n + 1. In this case, Vσ becomes the set of almost convergent sequences which is denoted by ĉ and defined in [11] as ĉ = { x ∈ `∞ : lim k dkn(x) exists uniformly in n } , where dkn(x) = xn+xn+1+···+xn+k k+1 . The space of strongly almost converegnt sequences was introduced by Maddox [12] as follow: ĉ = { x ∈ `∞ : lim k dkn(|x− `e|) exists uniformly in n for some ` } . The notion of ideal convergence was first introduced by P. Kostyrko [8] as a generalization of statistical convergence which was further studied in topological spaces by Das, Kostyrko, Wilczynski and Malik see [1]. More applications of ideals can be seen in ([1], [2]). Mursaleen and Sharma [19] continue in this direction and introduced I-convergence of generalized sequences with respect to Musielak-Orlicz function. A family I ⊂ 2X of subsets of a non empty set X is said to be an ideal in X if (1) φ ∈I (2) A,B ∈I imply A∪B ∈I (3) A ∈I, B ⊂ A imply B ∈I, while an admissible ideal I of X further satisfies {x}∈I for each x ∈ X see [8]. A sequence (xn)n∈N in X is said to be I-convergent to x ∈ X, if for each � > 0 the set A(�) = { n ∈ N : ||xn −x|| ≥ � } belongs to I. A sequence (xn)n∈N in X is said to be I-bounded to x ∈ X if there exists an K > 0 such that {n ∈ N : |xn| > K} ∈ I. For more details about ideal convergence sequence spaces (see [7], [9], [15], [16], [17], [18], [21], [25], [26], [27]) and references therein. Let A = Aij be an infinite matrix of complex numbers aij, where i,j,∈ N. We write Ax = (Ai(x)) if Ai(x) = ∞∑ j=1 aijxj converges for each i ∈ N. Throughout the paper, by tkn(Ax), we mean tkn(Ax) = An(x) + Aσ1(n)(x) + · · · ,Aσk(n)(x) k + 1 , for all k,n ∈ N. A sequence space X is called as solid (or normal) if (αkxk) ∈ X whenever (xk) ∈ X and (αk) is a sequence of scalars such that |αk| ≤ 1 for all k ∈ N. Let X be a sequence space and K = {k1 < k2 < · · ·}⊆ N. The sequence space ZXK = {(xkn) ∈ w : (xn) ∈ X} is called K-step space of X. Int. J. Anal. Appl. 16 (6) (2018) 884 A canonical preimage of a sequence (xkn) ∈ ZXK is a sequence (yn) ∈ w defined by yn =   xn, if n ∈ N;0, otherwise. A sequence space X is monotone if it contains the canonical preimages of all its step spaces. An Orlicz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞. Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to define the following sequence space. Let w be the space of all real or complex sequences x = (xk), then `M = { x ∈ w : ∞∑ k=1 M (|xk| ρ ) < ∞ } which is called as an Orlicz sequence space. The space `M is a Banach space with the norm ||x|| = inf { ρ > 0 : ∞∑ k=1 M (|xk| ρ ) ≤ 1 } . It is shown in [10] that every Orlicz sequence space `M contains a subspace isomorphic to `p(p ≥ 1). The ∆2−condition is equivalent to M(Lx) ≤ kLM(x) for all values of x ≥ 0, and for L > 1. A sequence M = (Mk) of Orlicz function is called a Musielak-Orlicz function see ([13],[20]). A sequence N = (Nk) defined by Nk(v) = sup{|v|u− (Mk) : u ≥ 0}, k = 1, 2, · · · is called the complementary function of a Musielak-Orlicz function M. For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its subspace hM are defined as follows tM = { x ∈ w : IM(cx) < ∞ for some c > 0 } , hM = { x ∈ w : IM(cx) < ∞ for all c > 0 } , where IM is a convex modular defined by IM(x) = ∞∑ k=1 Mk(xk),x = (xk) ∈ tM. We consider tM equipped with the Luxemburg norm ||x|| = inf { k > 0 : IM (x k ) ≤ 1 } or equipped with the Orlicz norm ||x||0 = inf {1 k ( 1 + IM(kx) ) : k > 0 } . For more details about sequence spaces defined by Orlicz function see ([22], [23], [24]) and reference therein. The concept of 2-normed spaces was initially developed by Gähler[3] in the mid of 1960’s, while that of Int. J. Anal. Appl. 16 (6) (2018) 885 n-normed spaces one can see in Misiak [14]. Since then, many others have studied this concept and obtained various results, see Gunawan ([4],[5]) and Gunawan and Mashadi [6]. Let n ∈ N and X be a linear space over the field K, where K is field of real or complex numbers of dimension d, where d ≥ n ≥ 2. A real valued function ||·, · · · , ·|| on Xn satisfying the following four conditions: (1) ||x1,x2, · · · ,xn|| = 0 if and only if x1,x2, · · · ,xn are linearly dependent in X; (2) ||x1,x2, · · · ,xn|| is invariant under permutation; (3) ||αx1,x2, · · · ,xn|| = |α| ||x1,x2, · · · ,xn|| for any α ∈ K, and (4) ||x + x′,x2, · · · ,xn|| ≤ ||x,x2, · · · ,xn|| + ||x′,x2, · · · ,xn|| is called a n-norm on X, and the pair (X, ||·, · · · , ·||) is called a n-normed space over the field K. For example, we may take X = Rn being equipped with the Euclidean n-norm ||x1,x2, · · · ,xn||E = the vol- ume of the n-dimensional parallelopiped spanned by the vectors x1,x2, · · · ,xn which may be given explicitly by the formula ||x1,x2, · · · ,xn||E = |det(xij)|, where xi = (xi1,xi2, · · · ,xin) ∈ Rn for each i = 1, 2, · · · ,n. Let (X, ||·, · · · , ·||) be a n-normed space of dimension d ≥ n ≥ 2 and {a1,a2, · · · ,an} be linearly independent set in X. Then the following function ||·, · · · , ·||∞ on Xn−1 defined by ||x1,x2, · · · ,xn−1||∞ = max{||x1,x2, · · · ,xn−1,ai|| : i = 1, 2, · · · ,n} defines an (n− 1)-norm on X with respect to {a1,a2, · · · ,an}. A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to converge to some L ∈ X if lim k→∞ ||xk −L,z1, · · · ,zn−1|| = 0 for every z1, · · · ,zn−1 ∈ X. A sequence (xk) in a n-normed space (X, ||·, · · · , ·||) is said to be Cauchy if lim k,p→∞ ||xk −xp,z1, · · · ,zn−1|| = 0 for every z1, · · · ,zn−1 ∈ X. If every cauchy sequence in X converges to some L ∈ X, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space. In the present paper, we define some new sequence spaces by using the concept of ideal convergence, invariant mean, Musielak-Orlicz function, n-normed and A transform as follows: I− cσ0 (A,M,p, ||·, · · · , ·||) ={ x ∈ w : { k ∈ N : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≥ � } ∈I, for all n ∈ N } , Int. J. Anal. Appl. 16 (6) (2018) 886 I− cσ(A,M,p, ||·, · · · , ·||) ={ x ∈ w : { k ∈ N : [ Mk ( || tkn(A(x) −L) ρ ,z1, · · · ,zn−1|| )]pk ≥ � } ∈I, for all n ∈ N & for some L ∈ C } , I− `σ∞(A,M,p, ||·, · · · , ·||) ={ x ∈ w : ∃ K > 0 such that { k ∈ N : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≥ K } ∈I, for all n ∈ N } . If we take p = (pk) = 1, we get the spaces I− cσ0 (A,M, ||·, · · · , ·||) ={ x ∈ w : { k ∈ N : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )] ≥ � } ∈I, for all n ∈ N } , I− cσ(A,M, ||·, · · · , ·||) ={ x ∈ w : { k ∈ N : [ Mk ( || tkn(A(x) −L) ρ ,z1, · · · ,zn−1|| )] ≥ � } ∈I, for all n ∈ N & for some L ∈ C } , I− `σ∞(A,M, ||·, · · · , ·||) ={ x ∈ w : ∃ K > 0 such that { k ∈ N : [ Mk ( || tknA(x) ρ ,z1, · · · ,zn−1|| )] ≥ K } ∈I, for all n ∈ N } . The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk = H, D = max(1, 2H−1) then |ak + bk|pk ≤ D{|ak|pk + |bk|pk} (1.1) for all k and ak,bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C. The main goal of this paper is to introduce the sequence spaces I−cσ0 (A,M,p, ||·, · · · , ·||), I−cσ(A,M,p, ||·, · · · , ·||) and I−`σ∞(A,M,p, ||·, · · · , ·||) defined by a Musielak-Orlicz function M = (Mk) over n-normed spaces. We also make an effort to study some topological properties and prove some inclusion relation between these spaces. 2. Main Results Theorem 2.1 Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence of positive real numbers. Then the spaces I − cσ0 (A,M,p, ||·, · · · , ·||), I − cσ(A,M,p, ||·, · · · , ·||) and I − `σ∞(A,M,p, ||·, · · · , ·||) are linear. Proof. Let x,y ∈ I − cσ0 (A,M,p, ||·, · · · , ·||) and let α,β be scalars. Then there exist positive numbers ρ1 and ρ2 such that for every � > 0 D1 = { k ∈ N : [ Mk ( || tkn(A(x)) ρ1 ,z1, · · · ,zn−1|| )]pk ≥ � 2D } ∈I, (2.1) D1 = { k ∈ N : [ Mk ( || tkn(A(y)) ρ2 ,z1, · · · ,zn−1|| )]pk ≥ � 2D } ∈I, (2.2) Int. J. Anal. Appl. 16 (6) (2018) 887 Let ρ3 = max { 2|α|ρ1, 2|β|ρ2 } . Since M = (Mk) is non-decreasing, convex function and so by using inequal- ity (1.1), we have[ Mk ( ||tkn(A(αx+βy)) ρ3 ,z1, · · · ,zn−1|| )]pk ≤ [ Mk ( || tkn(αA(x)) ρ3 ,z1, · · · ,zn−1|| )]pk + [ Mk ( || tkn(βA(y)) ρ3 ,z1, · · · ,zn−1|| )]pk ≤ [ Mk ( || tkn(A(x)) ρ1 ,z1, · · · ,zn−1|| )]pk + [ Mk ( || tkn(A(y)) ρ2 ,z1, · · · ,zn−1|| )]pk Now by (2.1) and (2.2), we have{ k ∈ N : [ Mk ( || tkn(A(αx + βy)) ρ3 ,z1, · · · ,zn−1|| )]pk > � } ⊂ D1 ∪D2. Therefore αx+βy ∈I−cσ0 (A,M,p, ||·, · · · , ·||). Hence I−cσ0 (A,M,p, ||·, · · · , ·||) is a linear space. Similarly we can prove that I− cσ(A,M,p, ||·, · · · , ·||) and I− `σ∞(A,M,p, ||·, · · · , ·||) are linear spaces. � Theorem 2.2 Let M = (Mk) be a Musielak-Orlicz function. Then I− cσ0 (A,M,p, ||·, · · · , ·||) ⊂I− c σ(A,M,p, ||·, · · · , ·||) ⊂I− `σ∞(A,M,p, ||·, · · · , ·||). Proof. The first inclusion is obvious. For second inclusion, let x ∈ I − cσ(A,M,p, ||·, · · · , ·||). Then there exists ρ1 > 0 such that for every � > 0 A1 = { k ∈ N : [ Mk ( || tkn(A(x) −L) ρ1 ,z1, · · · ,zn−1|| )]pk ≥ � } ∈I. Let us define ρ = 2ρ1. Since M = (Mk) is non-decreasing and convex, we have Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| ) ≤ Mk ( || tkn(A(x) −L) ρ1 ,z1, · · · ,zn−1|| ) + Mk ( || tkn(L) ρ1 ,z1, · · · ,zn−1|| ) . Suppose that k /∈ A1. Hence by above inequality and (1.1), we have[ Mk ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≤ D {[ Mk ( || tkn(A(x) −L) ρ1 ,z1, · · · ,zn−1|| )]pk + [ Mk ( || tkn(L) ρ1 ,z1, · · · ,zn−1|| )]pk} < D { � + [ Mk ( || tkn(L) ρ ,z1, · · · ,zn−1|| )]pk} . Because of the fact that [ Mk ( ||tkn(L) ρ1 ,z1, · · · ,zn−1|| )]pk ≤ max { 1, [ Mk ( ||tkn(L) ρ1 ,z1, · · · ,zn−1|| )]H} , we have [ Mk ( || tkn(L) ρ ,z1, · · · ,zn−1|| )]pk < ∞. Int. J. Anal. Appl. 16 (6) (2018) 888 Put K = D { � + [ Mk ( ||tkn(L) ρ ,z1, · · · ,zn−1|| )]pk} . It follows that { k ∈ N : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk > K } ∈I which means x ∈I− `σ∞(A,M,p, ||·, · · · , ·||). This completes the proof of the theorem. � Theorem 2.3 Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence of positive real numbers. Then I− `σ∞(A,M,p, ||·, · · · , ·||) is a paranormed space with paranorm defined by g(x) = inf { ρ > 0 : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≤ 1 } . Proof. It is clear that g(x) = g(−x). Since Mk(0) = 0, we get g(0) = 0. Let us take x,y ∈ I − cσ∞(A,M,p, ||·, · · · , ·||). Let B(x) = { ρ > 0 : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≤ 1 } , B(y) = { ρ > 0 : [ Mk ( || tkn(A(y)) ρ ,z1, · · · ,zn−1|| )]pk ≤ 1 } . Let ρ1 ∈ B(x) and ρ2 ∈ B(y). If ρ = ρ1 + ρ2, then we have[ Mk ( ||tkn(A(x+y)) ρ ,z1, · · · ,zn−1|| )] ≤ ( ρ1 ρ1 + ρ2 )[ Mk ( || tkn(A(x)) ρ1 ,z1, · · · ,zn−1|| )] + [ Mk ( || tkn(A(y)) ρ2 ,z1, · · · ,zn−1|| )] . Thus [ Mk ( ||tkn(A(x+y)) ρ1+ρ2 ,z1, · · · ,zn−1|| )]pk ≤ 1 and g(x + y) ≤ inf { (ρ1 + ρ2) > 0 : ρ1 ∈ B(x), ρ2 ∈ B(y) } ≤ inf { ρ1 > 0 : ρ1 ∈ B(x) } + inf { ρ2 > 0 : ρ2 ∈ B(y) } = g(x) + g(y). Let ηs → η where η,ηs ∈ C and let g(xs −x) → 0 as s → ∞. We have to show that g(ηsxs −ηx) → 0 as s →∞. Let B(xs) = { ρs > 0 : [ M ( || tkn(A(x s)) ρs ,z1, · · · ,zn−1|| )]pk ≤ 1 } , B(xs −x) = { ρ′s > 0 : [ M ( || tkn(A(x s −x)) ρ′s ,z1, · · · ,zn−1|| )]pk ≤ 1 } . Int. J. Anal. Appl. 16 (6) (2018) 889 If ρs ∈ B(xs) and ρ′s ∈ B(xs −x) then we observe that[ Mk ( ||tkn(A(η sxs−ηx)) ρs|ηs−η|+ρ ′ s|η| ,z1, · · · ,zn−1|| ) ≤ [ Mk ( || tkn(A(η sxs −ηxs)) ρs|ηs −η| + ρ ′ s|η| + |(ηxs −ηx)| ρs|ηs −η| + ρ ′ s|η| ,z1, · · · ,zn−1|| )] ≤ |ηs −η|ρs ρs|ηs −η| + ρ ′ s|η| [ Mk ( || tkn(A(x s)) ρs ,z1, · · · ,zn−1|| )] + |η|ρ ′ s ρs|ηs −η| + ρ ′ s|η| [ Mk ( || tkn(A(x s −x)) ρ ′ s ,z1, · · · ,zn−1|| ) . From the above inequality, it follows that [ Mk ( || tkn(A(η sxs −ηx)) ρs|ηs −η| + ρ ′ s|η| ,z1, · · · ,zn−1|| )]pk ≤ 1 and consequently, g(ηsxs −ηx) ≤ inf {( ρs|ηs −η| + ρ ′ s|η| ) > 0 : ρs ∈ B(xs),ρ ′ s ∈ B(x s −x) } ≤ (|ηs −η|) > 0 inf { ρ > 0 : ρs ∈ B(xs) } + (|η|) > 0 inf { (ρ ′ s) pn H : ρ ′ s ∈ B(x s −x) } −→ 0 as s −→∞. This completes the proof of the theorem. � Theorem 2.4 Let M′ = (M′k) and M ′′ = (M′′k ) are Musielak-Orlicz functions that satisfies the ∆2- condition. Then (i) I− cσ0 (A,M′,p, ||·, · · · , ·||) ⊆I− cσ0 (A,M′ ◦M′′,p, ||·, · · · , ·||) (ii) I− cσ(A,M′,p, ||·, · · · , ·||) ⊆I− cσ(A,M′ ◦M′′,p, ||·, · · · , ·||) (iii) I− lσ∞(A,M′,p, ||·, · · · , ·||) ⊆I− lσ∞θ (A,M ′ ◦M′′,p, ||·, · · · , ·||). Proof. (i) We prove the theorem in two parts. Firstly, let M′k ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| ) > δ. Since M′ is nondecreasing, convex and satisfies ∆2-condition, we have[ M′′k ( M′k ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| ))]pk ≤ (Kδ−1M′′2 (2) pk) [ M′k ( || tkn(Ax) ρ ,z1, · · · ,zn−1|| )]pk ≤ max{1, (Kδ−1M′′k (2) H))H [ M′k ( || tkn(Ax) ρ ,z1, · · · ,zn−1 )]pk , Int. J. Anal. Appl. 16 (6) (2018) 890 where K ≥ 1 and δ < 1. From the last inequality, the inclusion{ k ∈ N : [ M′′k ( M′k ( ||tkn(Ax) ρ ,z1, · · · ,zn−1|| ))]pk ≥ � } ⊆ { k ∈ N : [ M′k ( || tkn(Ax) ρ ,z1, · · · ,zn−1 )]pk ≥ � max{1, (Kδ−1M′′k (2)H)} } is obtained. If x ∈I−cσ0 (M′,A,p, ||·, · · · , ·), then the set in the right side of the above inclusion belongs to the ideal and so { k ∈ N : [ M′′k ( M′k ( || tkn(Ax) ρ ,z1, · · · ,zn−1|| ))]pk ≥ � } ∈I. Secondly, suppose that M′k ( ||tkn(Ax) ρ ,z1, · · · ,zn−1|| ) ≤ δ. Since M′′k is continuous, we have M′′k ( M′k ( || tkn(Ax) ρ ,z1, · · · ,zn−1|| )) < � for all � > 0 which implies I− lim k [ M′′k ( M′k ( || tkn(Ax) ρ ,z1, · · · ,zn−1|| ))]pk = 0 as� → 0. This completes the proof of (i) part. Similarly, we can prove other parts. � Theorem 2.5 Let M′ = (M′k) and M ′′ = (M′′k ) are Musielak-Orlicz functions that satisfies the ∆2- condition. Then (i) I− cσ0 (A,M,p, ||·, · · · , ·||) ∩I− cσ0 (A,M′,p, ||·, · · · , ·||) ⊆I− cσ0 (A,M′ + M,p, ||·, · · · , ·||) (ii) I− cσ(A,M,p, ||·, · · · , ·||) ∩I− cσ(A,M′,p, ||·, · · · , ·||) ⊆I− cσ(A,M′ + M,p, ||·, · · · , ·||) (iii) I− lσ∞(A,M,p, ||·, · · · , ·||) ∩I− lσ∞(A,M′,p, ||·, · · · , ·||) ⊆I− lσ∞(A,M′ + M,p, ||·, · · · , ·||). Proof. (i) Let x ∈ I − cσ0 (A,M,p, ||·, · · · , ·||) ∩I − cσ0 (A,M′,p, ||·, · · · , ·||). Then there exists K1 > 0 and K2 > 0 such that A1 = { k ∈ N : [ Mk ( || tkn(A(x)) ρ1 ,z1, · · · ,zn−1|| )]pk ≥ K1 } ∈I and A2 = { k ∈ N : [ M′k ( || tkn(A(x)) ρ1 ,z1, · · · ,zn−1|| )]pk ≥ K2 } ∈I for some ρ > 0. Let k /∈ A1 ∪A2. Then we have[ (Mk + M ′ k) ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≤ D {( Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| ))pk + ( M′k ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| ))pk < {K1 + K2}. Int. J. Anal. Appl. 16 (6) (2018) 891 k /∈ B = { k ∈ N : [ (M′k + Mk) ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| ))pk > K}. We have A1 ∪ A2 ∈ I and so B ⊂ A1 ∪A2 which implies B ∈ I. This means that x ∈ I − cσ0 (A,M′ + M,p, ||·, · · · , ·||). This completes the proof of (i) part of the theorem. Similarly, we can prove (ii) and (iii) part. � Theorem 2.6 If sup k [ Mk(t) ]pk < ∞ for all t > 0, then we have I− cσ(A,M,p, ||·, · · · , ·||) ⊆I− `σ∞(A,M,p, ||·, · · · , ·||). Proof. Let x ∈I− cσ(A,M,p, ||·, · · · , ·||). By using inequality (1.1), we have [ Mk ( || tkn(A(x)) ρ )]pk ≤ D {[ Mk ( || tkn(A(x) −L) ρ ,z1, · · · ,zn−1|| )]pk + [ Mk ( || tkn(L) ρ ,z1, · · · ,zn−1|| )]pk} , where ρ = 2ρ1. Hence, we have { k ∈ N : [ Mk ( || tkn(A(x)) ρ )]pk ≥ K } ⊆ { k ∈ N : [ Mk ( || tkn(A(x) −L) ρ1 ,z1, · · · ,zn−1 )]pk ≥ � } for all n and some K > 0. Since the set in the right side of the above inclusion belongs to the ideal, all of its subsets are in the ideal. Hence { k ∈ N : [ Mk ( || tkn(A(x)) ρ )]pk ≥ K } ∈I which completes the proof. � Theorem 2.7 Let 0 < pk ≤ qk < ∞ for each k ∈ N and ( qk pk ) be bounded. Then following inclusions hold (i) I− cσ0 (A,M,q, ||·, · · · , ·||) ⊆I− cσ0 (A,M,p, ||·, · · · , ·||) (ii) I− cσ(A,M,q, ||·, · · · , ·||) ⊆I− cσ(A,M,p, ||·, · · · , ·||). Proof. (i) Let x ∈ I − cσ0 (A,M,q, ||·, · · · , ·||). Write αk = pk qk . By hypothesis, we have 0 < α ≤ αk ≤ 1. If[ Mk ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]qk ≥ 1, the inequality [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≤ [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]qk holds. This implies the inclusion{ k ∈ N : [ Mk ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≥ � } ⊆ { k ∈ N : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]qk ≥ � } Int. J. Anal. Appl. 16 (6) (2018) 892 and so the result is obvious. Conversely, if [ Mk ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]qk < 1, we obtain the following inclusion{ k ∈ N : [ Mk ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≥ � } ⊆ { k ∈ N : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]qk ≥ � 1 α } since then the inequality [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≤ ([ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]qk)α holds. Hence we conclude that x ∈I−cσ0 (A,M,p, ||·, · · · , ·||). This completes the proof of (i) part. Similarly, we can prove (ii) part. � Theorem 2.8 If 0 < inf pk ≤ pk ≤ 1 for each k ∈ N. Then the following inclusions hold: (i) I− cσ0 (A,M,p, ||·, · · · , ·||) ⊆I− cσ0 (A,M, ||·, · · · , ·||) (ii) I− cσ(A,M,p, ||·, · · · , ·||) ⊆I− cσ(A,M, ||·, · · · , ·||). Proof. Let x ∈ I − cσ0 (A,M,p, ||·, · · · , ·||). Suppose that k /∈ {[ Mk ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1 )]pk ≥ � } for 0 < � < 1. By hypothesis, the inequality Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| ) ≤ [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk holds. Then we have k /∈ { k ∈ N : Mk ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| ) ≥ � } which implies{ k ∈ N : Mk ( ||tkn(A(x)) ρ ,z1, · · · ,zn−1|| ) ≥ � } ⊆ { k ∈ N : [ Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| )]pk ≥ � } . Hence x ∈I− cσ0 (A,M, ||·, · · · , ·||) since the set { k ∈ N : Mk ( || tkn(A(x)) ρ ,z1, · · · ,zn−1|| ) ≥ � } ∈I. This completes the proof of (i) part. Similarly, we can prove (ii) part. � Corollary 2.9 If 0 < inf pk ≤ pk ≤ 1 for each k ∈ N. Then the following inclusions hold: (i) I− cσ0 (A,M, ||·, · · · , ·||) ⊆I− cσ0 (A,M,p, ||·, · · · , ·||) (ii) I− cσ(A,M, ||·, · · · , ·||) ⊆I− cσ(A,M,p, ||·, · · · , ·||). Proof. The proof is obvious by Theorem 2.8. � Int. J. Anal. Appl. 16 (6) (2018) 893 References [1] P. Das, P. Kostyrko, W. Wilczynski and P. Malik, I and I* convergence of double sequences, Math. Slovaca, 58 (2008), 605-620. [2] P. Das and P.Malik, On the statistical and I- variation of double sequences, Real Anal. Exch. 33 (2)(2007-2008), 351-364. [3] S. Gähler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), 1-43. [4] H. Gunawan, On n-Inner Product, n-Norms, and the Cauchy-Schwartz Inequality, Sci. Math. Jap., 5 (2001), 47-54. [5] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., 64 (2001), 137-147. [6] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639. [7] E. E. Kara, M. Daştan and M. Ïlkhan, On almost ideal convergence with respect to an Orlicz function, Konuralp J. Math. 4 (2016), 87-94. [8] P. Kostyrko, T. Salat and W. Wilczynski, I-Convergence, Real Anal. Exch. 26 (2) (2000), 669-686. [9] V. Kumar, On I and I* convergence of double sequences, Math. Commun., 12 (2007), 171-181. [10] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10(1971), 345-355. [11] G. G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80(1948), 167-190. [12] I. J. Maddox, Spaces of strongly summable sequence, Q. J. Math; 18(1967), 345-355. [13] L. Maligranda,Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989. [14] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989), 299-319. [15] M. Mursaleen and A. Alotaibi, On I-convergence in radom 2-normed spaces, Math. Slovaca, 61(6)(2011), 933-940. [16] M. Mursaleen, S. A. Mohiuddine and O. H. H. Edely, On ideal convergence of double sequences in intuitioistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010), 603-611. [17] M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12(64)(4) (2010), 359-371. [18] M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca, 62(2012), 49-62. [19] M. Mursaleen and S. K. Sharma, Spaces of ideal convergent sequences, World Sci. J. 2014(2014), Art. ID 134534. [20] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg, (1983). [21] K. Raj and S. K. Sharma, Ideal convergent sequence spaces defined by a Musielak-Orlicz function, Thai. J. Math., 11 (2013), 577-587. [22] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions, Acta Univ. Sapientiae Math., 3 (2011), 97-109. [23] K. Raj and S. K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-function, Cubo, 14 (2012), 167-189. [24] K. Raj and S. K. Sharma, Some multiplier sequence spaces defined by a Musielak-Orlicz function in n-normed spaces, N. Z. J. Math. 42 (2012), 45-56. [25] A. Şahiner, M. Gürdal, S. Saltan and H. Gunawan, On ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477-1484. [26] P. Schaefer, Invariant matrices and invariant means, Proc. Amer. Math. Soc.; 36(1972), 104-110. [27] B. C. Tripathy and B. Hazarika, Some I-convergent sequence spaces defined by Orlicz functions, Acta Math. Appl. Sin. Engl. Ser. 27 (2011), 149-154. 1. Introduction and preliminaries 2. Main Results References