International Journal of Analysis and Applications Volume 16, Number 4 (2018), 605-613 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-16-2018-605 HERMITE-HADAMARD TYPE INEQUALITIES FOR QUASI-CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS ERHAN SET∗, İLKER MUMCU Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey ∗Corresponding author: erhanset@yahoo.com Abstract. The paper deals with quasi-convex functions, Katugampola fractional integrals and Hermite- Hadamard type integral inequalities. The main idea of this paper is to present new Hermite-Hadamard type inequalities for quasi-convex functions using Katugampola fractional integrals, Hölder inequality and the identities in the literature. 1. Introduction A function f : I ⊆ R → R is said to be convex if the inequality f (λu + (1 −λ) v) ≤ λf (u) + (1 −λ) f (v) holds for all u,v ∈ I and λ ∈ [0, 1]. This definition has been used in the following inequality that is called Hermite-Hadamard inequality: Let f : I ⊆ R → R be a convex function and a,b ∈ I with a < b, then f ( a + b 2 ) ≤ 1 b−a ∫ b a f (x) dx ≤ f (a) + f (b) 2 . (1.1) This inequality has attracted many mathematicians. Especially, in the last three decades, numerous gener- alizations, variants, and extensions of this inequality have been presented (see, e.g., [1, 3, 13, 14, 20] and the references cited therein). Received 2017-10-26; accepted 2018-01-03; published 2018-07-02. 2010 Mathematics Subject Classification. 26A33, 26D10, 33B20. Key words and phrases. Hermite-Hadamard inequality; Riemann-Liouville fractional integrals; Katugampola fractional integrals. c©2018 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 605 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-16-2018-605 Int. J. Anal. Appl. 16 (4) (2018) 606 The notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a function f : [a,b] → R is said quasi-convex on [a,b] if f (λu + (1 −λ) v) ≤ max{f(x),f(y)}, for any x,y ∈ [a,b] and λ ∈ [0, 1]. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex (see [4]). Let f ∈ L1[a,b] := L(a,b). The Riemann-Liouville integrals Jαa+f and Jαb−f of order α ∈ R + are defined, respectively, by Jαa+f(x) = 1 Γ(α) ∫ x a (x− t)α−1 f(t) dt (x > a) and Jαb−f(x) = 1 Γ(α) ∫ b x (t−x)α−1 f(t) dt (x < b) where Γ is the familiar Gamma function (see, e.g., [21, Section 1.1]). It is noted that J1a+f(x) and J 1 b−f(x) become the usual Riemann integrals. In the case of α = 1, the fractional integral reduces to classical integral. For further results related to Hermite-Hadamard type inequalities involving fractional integrals on can see [7, 11–19]. The beta function B(α,β) is defined by (see, e.g., [21, Section 1.1] [10, p18]) B(α, β) =   ∫ 1 0 tα−1(1 − t)β−1 dt (<(α) > 0; <(β) > 0) Γ(α) Γ(β) Γ(α + β) ( α, β ∈ C\Z−0 ) . (1.2) The hypergeometric function [6]: 2F1(a,b; c; z) = 1 β(b,c− b) ∫ 1 0 tb−1(1 − t)c−b−1(1 −zt)−adt, c > b > 0, |z| < 1. A hypergeometric function can be written using Euler’s hypergeometric transformations (t → 1 − t) in equivalent form: 2F1(a,b; c; z) = (1 −z)−a2F1 ( a,c− b; c; z z − 1 ) (1.3) Lemma 1.1. [9] For 0 < α ≤ 1 and 0 ≤ a < b, we have |aα − bα| ≤ (b−a)α. In [11], Sarıkaya et. al. proved a new version of Hermite-Hadamard’s inequalities in Riemann-Liouville fractional integral form as follows: Int. J. Anal. Appl. 16 (4) (2018) 607 Theorem 1.1. Let f : [a,b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a,b]. If f is a convex function on [a,b], then the following inequalities for fractional integrals holds: f ( a + b 2 ) ≤ Γ(α + 1) 2(b−a)α [Jαa+f(b) + J α b−f(a)] ≤ f(a) + f(b) 2 (1.4) with α > 0. In [8], Özdemir et. al. gave following results for quasi-convex functions via Riemann-Liouville fractional integrals. Theorem 1.2. Let f : [a,b] → R, be a positive function with 0 ≤ a < b and f ∈ L1[a,b]. If f is a quasi-convex function [a,b], then the following inequality for fractional integrals holds: Γ(α + 1) 2(b−a)α [Jαa+f(b) + J α b−f(a)] ≤ max{f(a),f(b)} (1.5) with α > 0. Theorem 1.3. Let f : [a,b] → R, be a differentiable mapping on (a,b) with a < b. If |f′| is quasi-convex on [a,b] with α > 0, then the following inequality holds:∣∣∣∣f(a) + f(b)2 − Γ(α + 1)2(b−a)α [Jαa+f(b) + Jαb−f(a)] ∣∣∣∣ ≤ b−a α + 1 ( 1 − 1 2α ) max{f′(a),f′(b)}. (1.6) Theorem 1.4. Let f : [a,b] → R, be a differentiable mapping on (a,b) such that f′ ∈ L1[a,b]. If |f′|q is quasi-convex on [a,b], and p > 1, then the following inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)2 − Γ(α + 1)2(b−a)α [Jαa+f(b) + Jαb−f(a)] ∣∣∣∣ ≤ b−a 2(αp + 1)1/p ( 1 − 1 2α ) (max{|f′(a)|q, |f′(b)|q})1/q . (1.7) where 1 p + 1 q = 1 and α ∈ [0, 1]. Theorem 1.5. Let f : [a,b] → R, be a differentiable mapping on (a,b) such that f′ ∈ L1[a,b]. If |f′|q is quasi-convex on [a,b], and q ≥ 1, then the following inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)2 − Γ(α + 1)2(b−a)α [Jαa+f(b) + Jαb−f(a)] ∣∣∣∣ ≤ b−a α + 1 ( 1 − 1 2α ) (max{|f′(a)|q, |f′(b)|q})1/q . (1.8) with α ∈ [0, 1]. Katugampola gave a new fractional integral that generalizes the Riemann-Liouville and the Hadamard fractional integrals into a single form. Int. J. Anal. Appl. 16 (4) (2018) 608 Definition 1.1. [5] Let [a,b] ⊂ R be a finite interval. Then, the left- and right-side Katugampola fractional integrals of order (α > 0) of f ∈ Xpc (a,b) are defined: ρIαa+f(x) = ρ1−α Γ(α) ∫ x a tρ−1 (xρ − tρ)1−α f(t)dt and ρIαb−f(x) = ρ1−α Γ(α) ∫ b x tρ−1 (tρ −xρ)1−α f(t)dt with a < x < b and ρ > 0, if the integral exist. Theorem 1.6. [5] Let α > 0 and ρ > 0. Then for x > a, 1. limρ→1 ρIαa+f(x) = Jαa+f(x), 2. limρ→0+ ρIαa+f(x) = Hαa+f(x). Similar results also hold for right-sided operators. In [2], Chen and Katugampola proved the following lemma: Lemma 1.2. Let f : [aρ,bρ] → R be a differentiable mapping on (aρ,bρ) with 0 ≤ a < b. Then the following equality holds if the fractional integrals exist: f(aρ) + f(bρ) 2 − αραΓ(α + 1) 2(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ] = bρ −aρ 2 ∫ 1 0 [(1 − tρ)α − tρα]tρ−1f′(tρaρ + (1 − tρ)bρ)dt (1.9) where g(x) = xρ. The main purpose of this paper is to establish Hermite-Hadamard’s inequalities for quasi-convex functions via Katugampola fractional integral. We also obtain Hermite-Hadamard type inequalities of these classes functions. 2. Main Results Theorem 2.1. Let α > 0 and ρ > 0. Let f : [aρ,bρ] → R be a positive function with 0 ≤ a < b and f ∈ Xpc (aρ,bρ). If f is a quasi-convex function on [aρ,bρ], then the following inequalities holds: ραΓ(α + 1) 2(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ] ≤ max{f(aρ),f(bρ)} (2.1) where g(x) = xρ. Proof. Since f is quasi-convex function on [aρ,bρ], we get f(tρaρ + (1 − tρ)bρ) ≤ max{f(aρ),f(bρ)} Int. J. Anal. Appl. 16 (4) (2018) 609 and f((1 − tρ)aρ + tρbρ) ≤ max{f(aρ),f(bρ)}. By adding these inequalities we have 1 2 [f(tρaρ + (1 − tρ)bρ) + f((1 − tρ)aρ + tρbρ)] ≤ max{f(aρ),f(bρ)}. (2.2) Multiplying both sides of (2.2) by tαρ−1 and integrating the resulting inequality with respect to t over [aρ,bρ], we obtain ∫ 1 0 tαρ−1f(tρaρ + (1 − tρ)bρ)dt + ∫ 1 0 tαρ−1f((1 − tρ)aρ + tρbρ)dt = ∫ b a ( bρ −xρ bρ −aρ )α−1 f(xρ) xρ−1 bρ −aρ dx + ∫ b a ( xρ −aρ bρ −aρ )α−1 f(xρ) xρ−1 bρ −aρ dx = 1 (bρ −aρ)α ∫ b a xρ−1 (bρ −xρ)1−α f(xρ)dx + 1 (bρ −aρ)α ∫ b a xρ−1 (xρ −aρ)1−α f(xρ)dx = Γ(α) ρ1−α(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ] ≤ 2 ρα max{f(aρ),f(bρ)} So we get desired result. The proof is completed. � Remark 2.1. In Theorem 2.1, taking limit ρ → 1 we obtain inequality of (1.5). Theorem 2.2. Let α > 0 and ρ > 0. Let f : [aρ,bρ] → R be a differentiable mapping on [aρ,bρ] with 0 ≤ a < b. If |f′| is a quasi-convex function on [aρ,bρ], then the following inequalities holds: ∣∣∣∣f(aρ) + f(bρ)2 − αρ αΓ(α + 1) 2(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ]∣∣∣∣ = bρ −aρ ρ(α + 1) ( 1 − 1 2ρ(α+1) ) max{|f′(aρ)| |f′(bρ)|} (2.3) where g(x) = xρ. Int. J. Anal. Appl. 16 (4) (2018) 610 Proof. Using Lemma 1.2 and quasi-convex of |f′| with modulus, we get ∣∣∣∣f(aρ) + f(bρ)2 − αρ αΓ(α + 1) 2(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ]∣∣∣∣ ≤ bρ −aρ 2 ∫ 1 0 |(1 − tρ)α − tρα|tρ−1|f′(tρaρ + (1 − tρ)bρ)|dt ≤ bρ −aρ 2 ∫ 1 0 |(1 − tρ)α − tρα|tρ−1max{|f′(aρ)| |f′(bρ)|}dt = bρ −aρ 2 max{|f′(aρ)| |f′(bρ)|} × {∫ 1/21/ρ 0 [(1 − tρ)α − tρα]tρ−1dt + ∫ 1 1/21/ρ [tρα + (1 − tρ)α]tρ−1dt } = bρ −aρ ρ(α + 1) ( 1 − 1 2α ) max{|f′(aρ)| |f′(bρ)|} where ∫ 1/21/ρ 0 [(1 − tρ)α − tρα]tρ−1dt + ∫ 1 1/21/ρ [tρα + (1 − tρ)α]tρ−1dt = 1 ρ {∫ 1/2 0 [(1 −u)α −uα] du + ∫ 1 1/2 [uα − (1 −u)α] du } = 2 ρ(α + 1) ( 1 − 1 2α ) . (2.4) The proof is completed. � Remark 2.2. In Theorem 2.2, taking limit ρ → 1 we obtain inequality of (1.6). Theorem 2.3. Let α > 0 and ρ > 0. Let f : [aρ,bρ] → R be a differentiable mapping on [aρ,bρ] with 0 ≤ a < b. If |f′|q is a quasi-convex function on [aρ,bρ] and s > 1, then the following inequalities holds: ∣∣∣∣f(aρ) + f(bρ)2 − αρ αΓ(α + 1) 2(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ]∣∣∣∣ = bρ −aρ 2 (max{|f′(aρ)|q, |f′(bρ)|q})1/q (K1 + K2)1/s where K1 = 1 ρ2s+ 1−s ρ B(s + 1 −s ρ ,αs + 1), K2 = αs + 1 2ρ 2F1 ( 1 −s + s− 1 ρ , 1; αs + 2; 1 2 ) , 1 s + 1 q = 1 and g(x) = xρ. Int. J. Anal. Appl. 16 (4) (2018) 611 Proof. From Lemma 1.1, Lemma 1.2, Hölder inequality and quasi-convex of |f′| with proporties of modulus, we have ∣∣∣∣f(aρ) + f(bρ)2 − αρ αΓ(α + 1) 2(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ]∣∣∣∣ ≤ bρ −aρ 2 ∫ 1 0 |(1 − tρ)α − tρα|tρ−1|f′(tρaρ + (1 − tρ)bρ)|dt ≤ bρ −aρ 2 (∫ 1 0 |(1 − tρ)α − tρα|sts(ρ−1)dt )1/s (∫ 1 0 |f′(tρaρ + (1 − tρ)bρ)|qdt )1/q ≤ bρ −aρ 2 (∫ 1 0 |1 − 2tρ|αsts(ρ−1)dt )1/s (max{|f′(aρ)|q, |f′(bρ)|q})1/q = bρ −aρ 2 (max{|f′(aρ)|q, |f′(bρ)|q})1/q × {∫ 1/21/ρ 0 (1 − 2tρ)αsts(ρ−1)dt + ∫ 1 1/21/ρ (2tρ − 1)αsts(ρ−1)dt }1/s = bρ −aρ 2 (max{|f′(aρ)|q, |f′(bρ)|q})1/q (K1 + K2)1/s (2.5) where K1 = ∫ 1/21/ρ 0 (1 − 2tρ)αsts(ρ−1)dt = 1 ρ2s+ 1−s ρ ∫ 1 0 us−1+ 1−s ρ (1 −u)αsdu = 1 ρ2s+ 1−s ρ B ( s + 1 −s ρ ,αs + 1 ) (2.6) K2 = ∫ 1 1/21/ρ (2tρ − 1)αsts(ρ−1)dt = 1 2s+ 1−s ρ ρ ∫ 1 0 uαs(1 + u)s−1+ 1−s ρ du = αs + 1 2ρ 2F1 ( 1 −s + s− 1 ρ , 1; αs + 2; 1 2 ) (2.7) So, if we use (2.6), (2.7) in (2.5), we obtain desired result. � Remark 2.3. In Theorem 2.3, taking limit ρ → 1 we obtain inequality of (1.7). Theorem 2.4. Let α > 0 and ρ > 0. Let f : [aρ,bρ] → R be a differentiable mapping on [aρ,bρ] with 0 ≤ a < b. If |f′|q is a quasi-convex function on [aρ,bρ] and q ≥ 1, then the following inequalities holds: ∣∣∣∣f(aρ) + f(bρ)2 − αρ αΓ(α + 1) 2(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ]∣∣∣∣ ≤ bρ −aρ ρ(α + 1) ( 1 − 1 2α ) (max{|f′(aρ)|q, |f′(bρ)|q})1/q where g(x) = xρ. Int. J. Anal. Appl. 16 (4) (2018) 612 Proof. From Lemma 1.2, quasi-convex of |f′| and using power-mean inequality with proporties of modulus, we have ∣∣∣∣f(aρ) + f(bρ)2 − αρ αΓ(α + 1) 2(bρ −aρ)α [ ρIαa+(f ◦g)(b) + ρIαb−(f ◦g)(a) ]∣∣∣∣ ≤ bρ −aρ 2 ∫ 1 0 |(1 − tρ)α − tρα|tρ−1|f′(tρaρ + (1 − tρ)bρ)|dt ≤ bρ −aρ 2 (∫ 1 0 |(1 − tρ)α − tρα|tρ−1dt )1−1/q × (∫ 1 0 |(1 − tρ)α − tρα|tρ−1|f′(tρaρ + (1 − tρ)bρ)|qdt )1/q ≤ bρ −aρ 2 (∫ 1 0 |(1 − tρ)α − tρα|tρ−1dt )1−1/q ×(max{|f′(aρ)|q, |f′(bρ)|q})1/q (∫ 1 0 |(1 − tρ)α − tρα|tρ−1dt )1/q = bρ −aρ 2 (∫ 1 0 |(1 − tρ)α − tρα|tρ−1dt ) (max{|f′(aρ)|q, |f′(bρ)|q})1/q Using (2.4) we get desired result. � Remark 2.4. In Theorem 2.4, taking limit ρ → 1 we obtain inequality of (1.8). 3. Acknowledgement This research is supported by Ordu University Scientific Research Projects Coordination Unit (BAP). Project Number: YKD-17224 References [1] M.U. Awan, M.A. Noor, M.V. Mihai and K.I. Noor, Fractional Hermite-Hadamard inequalities for differentiables- Godunova-Levin functions, Filomat, 30(12) (2016), 3235C-3241. [2] H. Chen, U.N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446, 1274-1291. [3] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Mono- graphs, Victoria University, 2000. [4] D.A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Ann. Univ. Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87. [5] U.N. Katugampola, New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6(4), (2014), 1-15. [6] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Else- vier; (2006). [7] M. A. Noor, K. I. Noor, and M. U. Awan, Generalized convexity and integral inequalities, Appl. Math. Inform. Sci., 9(1) (2015),233-243. [8] M. E. Özdemir, Ç. Yıldız, The Hadamards inequality for quasi-convex functions via fractional integrals, Annals of the University of Craiova, Ann. Univ. Craiova, Math. Comp. Sci. Series, 40(2) (2013), 167-173. Int. J. Anal. Appl. 16 (4) (2018) 613 [9] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integral and series. In: Elementary Functions, vol. 1. Nauka, Moscow; (1981). [10] E.D. Rainville, Special Functions, The Mcmillan Company, New York, 1960. [11] M. Z. Sarıkaya, E. Set, H. Yaldız, N. Başak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. [12] E. Set, M.Z. Sarikaya, M.E. Özdemir, H. Yildirim, The Hermite-Hadamards inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inf., 10(2) (2014), 69-83. [13] E. Set, İ. İşcan, F. Zehir, On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals, Konuralp J. Math., 3(1) (2015), 42-55. [14] E. Set, A.O. Akdemir, İ. Mumcu, Hermite-Hadamard’s Inequality and its Extensions for Conformable Fractional Integrals of Any Order α > 0, ResearchGate, https://www.researchgate.net/publication/303382221. [15] E. Set, B. Çelik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6(1) (2016), 137-149. [16] E. Set, A.O. Akdemir, B. Çelik, On Generalization of Fejer Type Inequalities via fractional integral operator, ResearchGate, https://www.researchgate.net/publication/311452467. [17] E. Set, A.O. Akdemir, İ. Mumcu, Ostrowski type inequalities involving special functions via conformable fractional integrals, J. Adv. Math. Stud., 10(3) (2017), 386-395. [18] E. Set, M.A. Noor, M.U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Ineq. Appl., 2017(169) (2017), 1-10. [19] E. Set,J. Choi, A. Gözpinar, Hermite-Hadamard type inequalities for the generalized k-fractional integral operators, J. Ineq. Appl., 2017 (2017), Art. ID 206. [20] E. Set, M.E. Özdemir, M.Z. Sarıkaya, Inequalities of Hermite-Hadamard type for functions whose derivatives absolute values are m-convex, AIP Conf. Proc., 1309(1) (2010), 861-863. [21] H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012. 1. Introduction 2. Main Results 3. Acknowledgement References