International Journal of Analysis and Applications Volume 16, Number 3 (2018), 400-413 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-16-2018-400 ON WEAKLY 2-ABSORBING SEMI-PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS PAIROTE YIARAYONG∗ AND MANOJ SIRIPITUKDET Department of Mathematics, Faculty of Science, Naresuan University, Phitsanuloke 65000, Thailand ∗Corresponding author: pairote0027@hotmail.com Abstract. Let R be a commutative ring with identity and let M be a unitary R-module. We say that a proper submodule N of M is a weakly 2-absorbing semi-primary submodule if a1,a2 ∈ R,m ∈ N with 0 6= a1a2m ∈ N, then a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. In this paper, we study weakly 2-absorbing semi-primary submodules and we prove some basic properties of these submodules. Also, we give a characterization of weakly 2-absorbing semi-primary submodules and we investigate weakly 2-absorbing semi-primary submodules of some well-known modules. 1. Introduction Throughout this paper, we assume that all rings are commutative with 1 6= 0. Let R be a commutative ring and let M be an R-module. We will denote by (N : M) a residual of N by M, that is, the set of all r ∈ R such that rM ⊆ N. Clearly, √ I = {r ∈ R : rn ∈ I for some positive integer n} denotes the radical ideal of R. In 2003, Anderson and Smith [1] introduced the concept of a weakly prime ideal of a commutative ring. They said that a proper ideal P of the commutative ring R is weakly prime if a, b ∈ R and 0 6= ab ∈ P , then a ∈ P or b ∈ P . A weakly primary ideals were first introduced and studied by Atani and Farzalipour in [2]. Recall that a proper ideal P of R is called a weakly primary ideal of R as in [2] if for a, b ∈ R with 0 6= ab ∈ P , then a ∈ P or bn ∈ P for some positive integer n. Clearly, a weakly prime ideal of R is also a 2010 Mathematics Subject Classification. 13A15,13F05. Key words and phrases. weakly 2-absorbing semi-primary submodule; 2-absorbing semi-primary submodule; absorbing semi- primary triple-zero; weakly 2-absorbing primary ideal. c©2018 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 400 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-16-2018-400 Int. J. Anal. Appl. 16 (3) (2018) 401 weakly primary ideal of R. The concept of weakly 2-absorbing ideals, which is a generalization of 2-absorbing ideals, was introduced by Badawi and Darani in [3]. Recall from [3] that a proper ideal I of R is said to be a weakly 2-absorbing ideal of R if whenever a, b, c ∈ R with 0 6= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. In [4], Badawi et. al. defined a proper ideal I of a commutative ring R to be a weakly 2-absorbing primary ideal if whenever a, b, c ∈ R and 0 6= abc ∈ I, then ab ∈ I or ac ∈ √ I or bc ∈ √ I. The concept of weakly prime submodule was introduced and studied by Behboodi and Koohi [5]. We recall that a proper submodule N of M is called a weakly prime submodule, if 0 6= rm ∈ N, where r ∈ R, m ∈ M, then m ∈ N or r ∈ (N : M). The idea of decomposition of submodules into weakly primary submodules were introduced by Atani and Farzalipour in [2]. A weakly primary submodule N of M to be a proper submodule of M and if r ∈ R, m ∈ M and 0 6= rm ∈ N, then m ∈ N or rn ∈ (N : M) for some positive integer n. Clearly, every primary submodule of a module is a weakly primary submodule. In [6], the concept of weakly 2-absorbing submodule generalized to 2-absorbing submodule of a module over a commutative ring. A proper submodule N of M is called a weakly 2-absorbing submodule, if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N, then ab ∈ (N : M) or am ∈ N or bm ∈ N. In 2016, Mostafanasab et al. [11] introduced the concept of weakly 2-absorbing primary submodules of modules over commutative rings with identities. Recall that a proper submodule N of M is called a weakly 2-absorbing primary submodule of M as in [11] if whenever 0 6= abm ∈ N for some a, b ∈ R and m ∈ M, then ab ∈ (N : M) or am ∈ M −rad(N) or bm ∈ M − rad(N). The concept of weakly classical prime submodule, which is a generalization of classical prime submodule, was introduced by Mostafanasab et al. in [10]. Recall from [10] that a proper submodule N of M is said to be a weakly classical prime submodule of M if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N, then am ∈ N or bm ∈ N. The concept of weakly classical primary submodule, a generalization of primary submodules was introduced and investigated in [9]. He weakly classical primary submodule N of M to be a proper submoduleof R and if a, b ∈ R and 0 6= abm ∈ N, then am ∈ N or mbn ∈ N for some positive integer n. Motivated and inspired by the above works, the purposes of this paper are to introduce generalization- s of weakly 2-absorbing primary submodule to the context of weakly 2-absorbing semi-primary submod- ule. A proper submodule N of M to be a weakly 2-absorbing semi-primary submodule of M if whenever 0 6= a1a2m ∈ N for a1, a2 ∈ R, m ∈ M, then a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. Some characterizations of weakly 2-absorbing semi-primary submodules are obtained. More- over, we investigate relationships between 2-absorbing semi-primary and weakly 2-absorbing semi-primary submodules of modules over commutative rings. Int. J. Anal. Appl. 16 (3) (2018) 402 2. Properties of weakly 2-Absorbing Semiprimary Submodules The results of the following theorems seem to play an important role to study weakly 2-absorbing semi- primary submodules of modules over commutative rings; these facts will be used frequently and normally we shall make no reference to this definition. Definition 2.1. A proper submodule N of an R-module M is called a weakly 2-absorbing semi-primary (2-absorbing semi-primary) submodule, if for each m ∈ M and a1, a2 ∈ R, 0 6= a1a2m ∈ N(a1a2m ∈ N), then a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. Remark 2.1. It is easy to see that every weakly 2-absorbing primary submodule (2-absorbing semi-primary) submodule is weakly 2-absorbing semi-primary submodule. The following example shows that the converse of Definition 2.1 is not true. Example 2.1. Let R = Z and M = Z. Consider the submodule N = 12Z of M. It is easy to see that N is a 2-absorbing semi-primary submodule of M. Notice that 2 · 2 · 3 ∈ N, but 2 · 3 6∈ N and (2 · 2)n 6∈ (N : M) for all positive integer n. Therefore N is not a 2-absorbing primary submodule of M. Example 2.2. Let R = Z and M = Z30. Consider the submodule N = {[0]} of M. It is easy to see that N is a weakly 2-absorbing semi-primary submodule of M. Notice that (2·3)[5] ∈{[0]}, but 2·3 6∈ √ (N : M), 2[5] 6∈ {[0]} and 3n[5] 6∈ {[0]} for all positive integer n. Therefore N is not a 2-absorbing semi-primary submodule of M. Theorem 2.1. Let N be a proper submodule of an R-module M. Then the following statements hold: (1) If N is a weakly 2-absorbing semi-primary submodule of M, then (N : m) is a weakly 2-absorbing primary ideal of R for every m ∈ M −N. (2) For every m ∈ M − N if (N : m) is a weakly primary ideal of R, then N is a weakly 2-absorbing semi-primary submodule of M. Proof. 1. Let a1, a2, a3 ∈ R such that 0 6= a1a2a3 ∈ (N : m). Clearly, 0 6= a1a3(a2m) ∈ N. By Definition 2.1, a1a3 ∈ √ (N : M) ⊆ √ (N : m) or a1a2m ∈ N or an3 a2m ∈ N for some positive integer n. Therefore a1a2 ∈ (N : m) or a2a3 ∈ √ (N : m) or a1a3 ∈ √ (N : m). Hence (N : m) is a weakly 2-absorbing primary ideal of R. 2. Let a1, a2 ∈ R such that 0 6= a1a2m ∈ N. Then 0 6= a1a2 ∈ (N : m). By assumption, a1 ∈ (N : m) or an2 ∈ (N : m) for some positive integer n. Therefore a1m ∈ N or an2 m ∈ N for some positive integer n. Hence N is a weakly 2-absorbing semi-primary submodule of M. � But the converse of the above theorem is not true. For every m ∈ M − N, if (N : m) is weakly 2- absorbing primary ideal, then N may not be weakly 2-absorbing semi-primary. Let M = Z × Z × Z be an Int. J. Anal. Appl. 16 (3) (2018) 403 Z-module. Consider the submodule N = {0}× 6Z × Z of M. Clearly, (N : (m1, m2, m3)) = {0} is a weakly 2-absorbing primary ideal of R, where (m1, m2, m3) ∈ M −N. Notice that (0, 0, 0) 6= (2 ·3)(0, 1, 1) ∈ N, but 2 · 3 6∈ √ (N : M), 2(0, 1, 1) 6∈ N and 3n(0, 1, 1) 6∈ N for all positive integer n. Therefore N is not a weakly 2-absorbing semi-primary submodule of M. Theorem 2.2. If N is a weakly 2-absorbing semi-primary submodule of an R-module M, then (N : r) is a weakly 2-absorbing semi-primary submodule of M containing N for every r ∈ R − (N : M). Proof. Let a1, a2 ∈ R and m ∈ M such that 0 6= a1a2m ∈ (N : r). Then 0 6= a1a2(rm) = ra1a2m ∈ N. By Definition 2.1, a1a2 ∈ √ (N : M) or a1rm ∈ N or an2 rm ∈ N for some positive integer n. Therefore a1a2 ∈ √ (N : M) or a1m ∈ (N : r) or an2 ∈ (N : r) for some positive integer n. Hence (N : r) is a weakly 2-absorbing semi-primary submodule of M. � Theorem 2.3. Let {0} be a 2-absorbing semi-primary submodule of an R-module M. Then N is a weakly 2-absorbing semi-primary submodule of M if and only if N is a 2-absorbing semi-primary submodule of M. Proof. Suppose that N is a 2-absorbing semi-primary submodule of M. Clearly, N is a weakly 2-absorbing semi-primary submodule of M. Conversely, assume that N is a weakly 2-absorbing semi-primary submodule of M. Let a1, a2 ∈ R and m ∈ M such that a1a2m ∈ N. If a1a2m 6∈ {0}, then 0 6= a1a2m ∈ N. By Definition 2.1, a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. Now if a1a2m ∈ {0}, then a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. Hence N is a 2-absorbing semi-primary submodule of M. � Theorem 2.4. Let M and Ḿ be two R-modules and f : M → Ḿ be an epimorphism of an R-module. If N is a weakly 2-absorbing semi-primary submodule of M such that kerf ⊆ N, then f(N) is a weakly 2-absorbing semi-primary submodule of Ḿ. Proof. Let a1, a2 ∈ R and ḿ ∈ Ḿ such that 0 6= a1a2ḿ ∈ f(N). Thus 0 6= a1a2ḿ = ḿ0 for some ḿ0 ∈ f(N). Since f is an epimorphism, there exist m ∈ M and m0 ∈ N such that ḿ = f(m) and ḿ0 = f(m0). This implies that 0 6= a1a2f(m) = f(m0). Therefore f(a1a2m−m0) = 0 and so a1a2m−m0 ∈ kerf ⊆ N. Also, 0 6= a1a2m ∈ N, because if a1a2m = 0, then m0 ∈ kerf. It follows that f(m0) = 0, a contradiction. Now, since N is a weakly 2-absorbing semi-primary, we have a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. Therefore a1a2 ∈ √ (f(N) : Ḿ) or a1ḿ ∈ f(N) or an2 ḿ ∈ f(N) for some positive integer n. Hence f(N) is a 2-absorbing semi-primary submodule of Ḿ. � Theorem 2.5. Let M be an R-module and N ⊆ K be two submodules of M. If K is a weakly 2-absorbing semi-primary submodule of M, then K/N is a weakly 2-absorbing semi-primary submodule of M/N. Int. J. Anal. Appl. 16 (3) (2018) 404 Proof. Let a1, a2 ∈ R and m ∈ M such that N 6= a1a2(m + N) ∈ (K/N). Then 0 6= a1a2m ∈ K. By Definition 2.1, a1a2 ∈ √ (K : M) or a1m ∈ K or an2 m ∈ K for some positive integer n. Therefore a1a2 ∈ √ (K/N : M/N) or a1(m + N) ∈ K/N or an2 (m + N) ∈ K/N for some positive integer n. Hence K/N is a weakly 2-absorbing semi-primary submodule of M/N. � Theorem 2.6. Let M be an R-module and N ⊆ K be two submodules of M. Suppose that N is a weakly 2- absorbing semi-primary submodule of M. If K/N is a weakly 2-absorbing semi-primary submodule of M/N, then K is a weakly 2-absorbing semi-primary submodule of M. Proof. Let a1, a2 ∈ R and m ∈ M such that 0 6= a1a2m ∈ K. If a1a2m ∈ N, then 0 6= a1a2m ∈ N. By Definition 2.1, a1a2 ∈ √ (N : M) ⊆ √ (K : M) or a1m ∈ N ⊆ K or an2 m ∈ N ⊆ K for some positive integer n. If a1a2m 6∈ N, then N 6= a1a2(m + N) ∈ N. Again, by Definition 2.1, a1a2 ∈ √ (K/N : M/N) or a1(m + N) ∈ K/N or an2 (m + N) ∈ K/N for some positive integer n. Thus a1a2 ∈ √ (K : M) or a1m ∈ K or an2 m ∈ K for some positive integer n. Hence K is a weakly 2-absorbing semi-primary submodule of M. � Corollary 2.1. Then N is a weakly 2-absorbing semi-primary submodule of an R-module M if and only if N/{0} is a weakly 2-absorbing semi-primary submodule of an R-module M/{0}. Proof. It is straightforward by Theorem 2.5 and Theorem 2.6. � Theorem 2.7. Let N be a submodule of an R-module M and S be a multiplicative subset of R. If N is a weakly 2-absorbing semi-primary submodule of M such that (N : M) ∩ S = ∅, then S−1N is a weakly 2-absorbing semi-primary submodule of S−1M. Proof. Clearly, S−1N is a proper submodule of S−1M. Let a1, a2 ∈ R, s1, s2, s3 ∈ S and m ∈ M such that 0 6= a1 s1 a2 s2 m s3 ∈ S−1N. Then there exists s ∈ S such that sa1a2m ∈ N. If sa1a2m = 0, then a1s1 a2 s2 m s3 = sa1 ss1 a2 s2 m s3 = 0 1 , a contradiction. If sa1a2m 6= 0, then 0 6= a1a2(sm) ∈ N. By Definition 2.1, a1a2 ∈ √ (N : M) or a1sm ∈ N or an2 sm ∈ N for some positive integer n. Thus a1 s1 a2 s2 ∈ √ (S−1N : S−1M) or a1 s1 m s3 = a1sm s1s3s ∈ S−1N or ( a2 s2 )n m s3 = an2 sm sn2 s3s ∈ S−1N for some positive integer n. Hence S−1N is a weakly 2-absorbing semi-primary submodule of S−1M. � Theorem 2.8. Let N be a submodule of an R-module M and S be a multiplicative subset of R. If S−1N is a weakly 2-absorbing semi-primary submodule of S−1M such that S ∩ Zd(N) = ∅ and S ∩ Zd(M/N) = ∅, then N is a weakly 2-absorbing semi-primary submodule of M. Proof. Let a1, a2 ∈ R and m ∈ M such that 0 6= a1a2m ∈ N. Then a11 a2 1 m 1 ∈ S−1N. If a1 1 a2 1 m 1 = 0 1 , then there exists s ∈ S such that sa1a2m = 0 which is a contradiction. If a11 a2 1 m 1 6= 0 1 , then 0 1 6= a1 1 a2 1 m 1 ∈ S−1N. By Definition 2.1, a1 1 a2 1 ∈ √ (S−1N : S−1M) or a1 1 m 1 ∈ S−1N or ( a2 1 )n m 1 ∈ S−1N for some positive integer Int. J. Anal. Appl. 16 (3) (2018) 405 n. If a1 1 a2 1 ∈ √ (S−1N : S−1M), then ( a1 1 a2 1 )n ∈ (S−1N : S−1M) for some positive integer n. Thus there exists s ∈ S such that s(a1a2)nM ⊆ N for some positive integer n. Since S ∩ Zd(M/N) = ∅, we have (a1a2) nM ⊆ N so a1a2 ∈ √ (N : M). If a1 1 m 1 ∈ S−1N, there exists s ∈ S such that sa1m ∈ N. Thus s(a1m + N) = sa1m + N = N. But S ∩ Zd(M/N) = ∅, a1m ∈ N. If ( a21 ) n am 1 ∈ N, there exists s ∈ S such that such that san1 m ∈ N for some positive integer n. Thus s(an2 m + N) = san2 m + N = N for some positive integer n. Since S ∩Zd(M/N) = ∅, we have an2 m ∈ N for some positive integer n. Therefore N is a weakly 2-absorbing semi-primary submodule of M. � Theorem 2.9. Let N be a proper submodule of an R-module M. The following conditions are equivalent: (1) N is a weakly 2-absorbing semi-primary submodule of M. (2) For every a1, a2 ∈ R − (N : M) if a1a2 ∈ R − √ (N : M), then (N : a1a2) ⊆ (0 : a1a2) ∪ (N : a1) ∪ (N : an2 ) for some positive integer n. (3) For every a1, a2 ∈ R − (N : M) if R is a u-ring and a1a2 ∈ R − √ (N : M), then (N : a1a2) ⊆ (0 : a1a2) or (N : a1a2) ⊆ (N : a1) or (N : a1a2) ⊆ (N : an2 ) for some positive integer n. Proof. (1 ⇒ 2) Let m ∈ (N : a1a2). Then a1a2m ∈ N. If a1a2m = 0, then m ∈ (0 : a1a2) ⊆ (0 : a1a2) ∪ (N : a1) ∪ (N : an2 ) for some positive integer n. If a1a2m 6= 0, then 0 6= a1a2m ∈ N. By Definition 2.1, a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. But a1a2 ∈ R − √ (N : M), m ∈ (N : a1) or m ∈ (N : an2 ) for some positive integer n. Therefore m ∈ (N : a1) ∪ (N : an2 ) for some positive integer n. Hence (N : a1a2) = (0 : a1a2) ∪ (N : a1) ∪ (N : an2 ) for some positive integer n. (2 ⇔ 3) It is obvious. (2 ⇒ 1) Let a1, a2 ∈ R such that 0 6= a1a2m ∈ N. Then m ∈ (N : a1a2) and m 6∈ (N : 0). By assumption, m ∈ (0 : a1a2) ∪ (N : a1) ∪ (N : an2 ) for some positive integer n. Clearly, a1m ∈ N or an2 m ∈ N for some positive integer n. Hence N is a weakly 2-absorbing semi-primary submodule of M. � Corollary 2.2. Let N be a proper submodule of an R-module M. The following conditions are equivalent: (1) N is a weakly 2-absorbing semi-primary submodule of M. (2) For every a ∈ R − (N : M) and every ideal I of R such that I 6⊆ (N : M), if aI 6⊆ √ (N : M), then (N : aI) ⊆ (0 : aI) ∪ (N : a) ∪ (N : In) for some positive integer n. (3) For every a ∈ R − (N : M) and every ideal I of R such that I 6⊆ (N : M), if R is a u-ring and aI 6⊆ √ (N : M), then (N : aI) ⊆ (0 : aI) or (N : aI) ⊆ (N : a) or (N : aI) ⊆ (N : In) for some positive integer n. (4) For every ideals I, J of R such that I, J 6⊆ (N : M), if IJ 6⊆ √ (N : M), then (N : IJ) ⊆ (0 : IJ) ∪ (N : I) ∪ (N : Jn) for some positive integer n. (5) For every ideals I, J of R such that I, J 6⊆ (N : M), if R is a u-ring and IJ 6⊆ √ (N : M), then (N : IJ) ⊆ (0 : IJ) or (N : IJ) ⊆ (N : I) or (N : IJ) ⊆ (N : Jn) for some positive integer n. Int. J. Anal. Appl. 16 (3) (2018) 406 Proof. It is clear from Theorem 2.9. � Theorem 2.10. Let N be a proper submodule of an R-module M. The following conditions are equivalent: (1) N is a weakly 2-absorbing semi-primary submodule of M. (2) For every a ∈ R − (N : M) and m ∈ M, if am 6∈ N, then (N : am) ⊆ (0 : am) ∪ ( √ ((N : M) : a) ∪ √ (N : m). Proof. (1 ⇒ 2) Let a ∈ R − (N : M) and m ∈ M such that am 6∈ N. Assume that r ∈ (N : am). Then ram ∈ N. If ram 6= 0, then 0 6= ram ∈ N. By Definition 2.1, ar ∈ √ (N : M) or am ∈ N or rnm ∈ N for some positive integer n. Since am 6∈ N, we have r ∈ ( √ (N : M) : a) or r ∈ √ (N : m). This implies that r ∈ ( √ (N : M) : a) ∪ √ (N : m) ⊆ (0 : am) ∪ ( √ ((N : M) : a) ∪ √ (N : m). Thus (N : am) ⊆ (0 : am)∪( √ ((N : M) : a)∪ √ (N : m). If ram = 0, then r ∈ (0 : am) ⊆ (0 : am)∪( √ ((N : M) : a)∪ √ (N : m). Therefore (N : am) ⊆ (0 : am) ∪ ( √ ((N : M) : a) ∪ √ (N : m). (2 ⇒ 1) It is clear. � Corollary 2.3. Let N be a proper submodule of an R-module M. The following conditions are equivalent: (1) N is a weakly 2-absorbing semi-primary submodule of M. (2) For every ideal I of R such that I ⊆ R − (N : M) and m ∈ M, if Im 6⊆ N, then (N : Im) ⊆ (0 : Im) ∪ ( √ (N : M) : I) ∪ √ (N : m). Proof. It is clear from Theorem 2.10. � Definition 2.2. Let N be a proper submodule of M. If N is a 2-absorbing semi-primary submodule and a1a2m = 0, a1a2 6∈ √ (N : M), a1m 6∈ N and an2 m 6∈ N for all positive integer n, then (a1, a2, m) is called a absorbing semi-primary triple-zero of N where a1, a2 ∈ R, m ∈ M. Theorem 2.11. Let N be a weakly 2-absorbing semi-primary submodule of an R-module M. Suppose that K is a submodule of M and a1, a2 ∈ R such that N ⊆ K and a1a2K ⊆ N. If (a1, a2, m) is not a absorbing semi-primary triple-zero of N for every m ∈ K, then a1a2 ∈ √ (K : M) or a1K ⊆ N or an2 K ⊆ N for some positive integer n. Proof. Assume that a1a2 6∈ √ (K : M), a1K 6⊆ N and an2 K 6⊆ N for all positive integer n. Then there are k1, k2 ∈ K such that a1k1 6∈ N and an2 k2 6∈ N for all positive integer n. If a1a2k1 6= 0, then 0 6= a1a2k1 ∈ N. By Definition 2.1, an12 k1 ∈ N for some positive integer n1. So let a1a2k1 = 0. By Definition 2.2, a n2 2 k1 ∈ N for some positive integer n2. Now if a1a2k2 6= 0, then 0 6= a1a2k2 ∈ N. Again, by Definition 2.1, ak2 ∈ N. Next let a1a2k2 = 0. Now by Definition 2.2, a1k2 ∈ N. Let n0 = max{n1, n2}. Then an02 k1, a1k2 ∈ N. Since a1a2K ⊆ N, we have a1a2(k1 + k2) ∈ N. If a1a2(k1 + k2) 6= 0, then 0 6= a1a2(k1 + k2) ∈ N. Thus by Definition 2.1, a1(k1 + k2) ∈ N or an32 (k1 + k2) ∈ N for some positive integer n3. This implies that a1k1 ∈ N Int. J. Anal. Appl. 16 (3) (2018) 407 or an42 k2 ∈ N where n4 = max{n0, n3} and we get a contradiction. Assume that a1a2(k1 + k2) = 0. New since (a1, a2, k1 + k2) is not a absorbing semi-primary triple-zero of N, we have a1(k1 + k2) ∈ N or an52 (k1 + k2) ∈ N for some positive integer n5. Clearly, a1k1 ∈ N or a n6 2 k2 ∈ N, where n6 = max{n0, n5}, which again is a contradiction. Hence a1a2 ∈ √ (K : M) or a1K ⊆ N or an2 K ⊆ N for some positive integer n. � Theorem 2.12. Let N be a weakly 2-absorbing semi-primary submodule of an R-module M. Suppose that (a1, a2, m) is a absorbing semi-primary triple-zero of N for some a1, a2 ∈ R and m ∈ M. Then (1) a1a2N = {0}; (2) a1(N : M)m = {0}; (3) (N : M)a2m = {0}; (4) (N : M)2m = {0}; (5) a1(N : M)N = {0}; (6) (N : M)a2N = {0}. Proof. 1. Suppose that a1a2N 6= {0}. Then there exists m0 ∈ N such that a1a2m0 6∈ {0}. Thus a1a2m + a1a2m0 6= 0 so 0 6= a1a2(m + m0) ∈ N. By Definition 2.1, a1a2 ∈ √ (N : M) or a1(m + m0) ∈ N or an2 (m + m0) ∈ N for some positive integer n. Therefore a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. This is a contradiction. Hence a1a2N = {0}. 2. Suppose that a1(N : M)m 6= {0}. Then there exists r ∈ (N : M) such that a1rm 6= 0. Since rm ∈ N, we have 0 6= a1(a2 + r)m ∈ N. By Definition 2.1, a1(a2 + r) ∈ √ (N : M) or a1m ∈ N or (a2 + r)nm ∈ N for some positive integer n. Thus a1a2 ∈ √ (N : M) or a1m ∈ N or an2 ∈ N for some positive integer n. This is a contradiction. Hence a1(N : M)m = {0}. 3. The proof is similar to part 2. 4. Assume that (N : M)2m 6= {0}. Then there exist r, s ∈ (N : M) such that rsm 6= 0. Then by parts 1 and 2, (a1 + r)(a2 + s)m 6= 0. Clearly, 0 6= (a1 + r)(a2 + s)m ∈ N. By Definition 2.1, (a1 + r)(a2 + s) ∈ √ (N : M) or (a1 + r)m ∈ N or (a2 + s)nm ∈ N for some positive integer n. Therefore a1a2 ∈ √ (N : M) or a1m ∈ N or an2 ∈ N for some positive integer n. This is a contradiction. Hence (N : M)2m = {0}. 5. Suppose that a1(N : M)N 6= {0}. Then there exist r ∈ (N : M) and m0 ∈ N such that a1rm0 6= 0. Therefore by parts 1 and 2 we conclude that a1(a2 + r)(m + m0) 6= 0. Clearly, 0 6= a1(a2 + r)(m + m0) ∈ N. By Definition 2.1, a1(a2 + r) ∈ √ (N : M) or a1(m + m0) ∈ N or (a2 + r)n(m + m0) ∈ N for some positive integer n. Therefore a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N for some positive integer n. This is a contradiction. Hence a1(N : M)N = {0}. 6. The proof is similar to part 5. � Int. J. Anal. Appl. 16 (3) (2018) 408 Theorem 2.13. Let M be an R-module. If N is a weakly 2-absorbing semi-primary submodule of M that is not 2-absorbing semi-primary, then (N : M)2N = {0}. Proof. Suppose that N is a weakly 2-absorbing semi-primary submodule of M that is not 2-absorbing semi-primary submodule. Then there exists a absorbing semi-primary triple-zero (a1, a2, m) of N for some a1, a2 ∈ R and m ∈ M. Assume that (N : M)2N 6= {0}. Then there exist r, s ∈ (N : M) and m0 ∈ N such that rsm0 6= 0. Since (a1 + r)(a2 + s)(m + m0) 6= 0, we have 0 6= (a1 + r)(a2 + s)(m + m0) ∈ N. By Definition 2.1, (a1 + r)(a2 + s) ∈ √ (N : M) or (a1 + r)(m + n) ∈ N or (a2 + s)n(m + n) ∈ N for some positive integer n. Therefore a1a2 ∈ √ (N : M) or a1m ∈ N or an2 m ∈ N. This is a contradiction. Hence (N : M)2N = {0}. � Corollary 2.4. Let M be a multiplication R-module. If N is a weakly 2-absorbing semi-primary submodule of M that is not 2-absorbing semi-primary submodule, then N3 = {0}. Proof. Suppose that N is a weakly 2-absorbing semi-primary submodule of M that is not 2-absorbing semi- primary submodule. By assumption, N = (N : M)M. Then by Theorem 2.13, N3 = (N : M)3M = (N : M)2((N : M)M) = (N : M)2N = {0}. � Lemma 2.1. Suppose that N is a weakly 2-absorbing semi-primary submodule of an R-module M and (0 : m2) is a 2-absorbing primary ideal of a ring R where m2 ∈ M − N. For all m1 ∈ M, if rs ∈ (N : m1) − √ (N : m2), then (N : rsm2) ⊆ (N : rm2) ∪ √ (N : snm2) for some positive integer n. Proof. Suppose that rs ∈ (N : m1) − (N : m2) where m1 ∈ M and m2 ∈ M − N. Let a ∈ (N : rsm2). Then (ars)m2 = a(rsm2) ∈ N so ars ∈ (N : m2). If arsm2 6= 0, then 0 6= ars ∈ (N : m2). By assumption, ar ∈ (N : m2) or as ∈ √ (N : m2) or rs ∈ √ (N : m2). By the assumption, ar ∈ (N : m2) or as ∈ √ (N : m2). Thus a ∈ (N : rm2) or a ∈ √ (N : snm2) for some positive integer n. This implies that (N : rsm2) ⊆ (N : rm2)∪ √ (N : snm2) for some positive integer n. Now if arsm2 = 0, then ars ∈ (0 : m2). Thus ar ∈ (0 : m2) or as ∈ √ (N : m2) or rs ∈ √ (N : m2). Therefore (N : rsm2) ⊆ (N : rm2)∪ √ (N : snm2) for some positive integer n. � Proposition 2.1. Let N be an irreducible submodule of an R-module M. For all r ∈ R if (N : r) = (N : r2), then N is a weakly 2-absorbing semi-primary submodule of M. Proof. Let a1, a2 ∈ R and m ∈ M such that 0 6= a1a2m ∈ N. Suppose that a1a2 6∈ √ (N : M), a1m 6∈ N and an2 m 6∈ N for all positive integer n. Clearly, N ⊆ (N + a1a2M)∩(N + Ra1m)∩(N + Ran2 m) for all positive integer n. Let m0 ∈ (N + a1a2M) ∩ (N + Ra1m) ∩ (N + Ran2 m). This implies that m0 ∈ N + a1a2M, m0 ∈ N +Ra1m and m0 ∈ N +Ran2 m. Then there exist r1, r2 ∈ R, m1 ∈ M and n1, n2 ∈ N such that n1+a1a2m1 = m0 = n2 + r1a1m = m0 = n3 + b n 2 m. Since a1n1 + a 2 1a2m1 = a1m0 = a1n2 + r1a 2 1m = a1m0 = a1n3 + a1b n 2 m, Int. J. Anal. Appl. 16 (3) (2018) 409 we have a21r1m ∈ N. It follows that r1m ∈ (N : a21). By the assumption, r1m ∈ (N : a1), so that r1a1m ∈ N. Thus N = (N +a1a2M)∩(N +Ra1m)∩(N +Ran2 m). Now since N is an irreducible, we have N +a1a2M ⊆ N or a1m ∈ N + Ra1m ⊆ N or an2 m ∈ N + Ran2 m ⊆ N, a contradiction. Hence N is a weakly 2-absorbing semi-primary submodule of M. � Theorem 2.14. Let Mi be an Ri-module and Ni be a proper submodule of Mi, for i = 1, 2. If N1 × M2 is a weakly 2-absorbing semi-primary submodule of M1 × M2, then N1 is a weakly 2-absorbing semi-primary submodule of M1. Proof. Suppose that N1×M2 is a weakly 2-absorbing semi-primary submodule of M1×M2. Let a1, a2 ∈ R1 and m ∈ M1 such that 0 6= a1a2m ∈ N1. Then (0, 0) 6= (a1, 0)(a2, 0)(m, 0) = (a1a2m, 0) ∈ N1 × M2. By Definition 2.1, (a1a2, 0) = (a1, 0)(a2, 0) ∈ √ (N1 ×M2 : M1 ×M2) or (a1m, 0) = (a1, 0)(m, 0) ∈ N1 × M2 or (an2 m, 0) = (a2, 0) n(m, 0) ∈ N1 × M2 for some positive integer n. This implies that a1a2 ∈ √ (N1 : M1) or a1m ∈ N1 or an2 m ∈ N1 for some positive integer n. Hence N1 is a weakly 2-absorbing semi-primary submodule of M1. � Corollary 2.5. Let Mi be an Ri-module and Ni be a proper submodule of Mi, for i = 1, 2. If M1 × N2 is a weakly 2-absorbing semi-primary submodule of M1 × M2, then N2 is a weakly 2-absorbing semi-primary submodule of M2. Proof. It is clear from Theorem 2.14. � Corollary 2.6. Let Mi be an Ri-module and Ni be a proper submodule of Mi, for i = 1, 2, . . . , k. If M1 × M2×. . .×Mj−1×Nj×Mj+1×. . .×Mk is a weakly 2-absorbing semi-primary submodule of M1×M2×. . .×Mk, then Nj is a weakly 2-absorbing semi-primary submodule of Mj. Proof. It is clear from Theorem 2.14 and Corollary 2.5. � Theorem 2.15. Let Mi be an R-module and let Ni be a proper submodule of Mi, for i = 1, 2. Then the following conditions are equivalent: (1) N1 ×M2 is a weakly 2-absorbing semi-primary submodule of M1 ×M2. (2) (a) N1 is a weakly 2-absorbing semi-primary submodule of M1. (b) For each a1, a2 ∈ R and m ∈ M1 such that a1a2m = 0, if a1a2 6∈ √ (N1 : M1) and a1m 6∈ N1, a n 2 m 6∈ N1 for all positive integer n, then a1a2 ∈ (0 : M2). Proof. (1 ⇒ 2). (a). This follows from Theorem 2.14. (b). Let a1a2m = 0, a1m 6∈ N1 and an2 m 6∈ N1 for all positive integer n, where a1, a2 ∈ R and m ∈ M1. Suppose that a1a2 6∈ (0 : M2). There exists m2 ∈ M2 such that a1a2m2 6= 0. Thus (0, 0) 6= a1a2(m, m2) = Int. J. Anal. Appl. 16 (3) (2018) 410 (a1a2m, a1a2m2) ∈ N1 × M2. By part 1, i.e., a1a2 ∈ √ (N1 ×M2 : M1 ×M2) or a1(m, m2) ∈ N1 × M2 or an2 (m, m2) ∈ N1 × M2 for some positive integer n. Thus a1a2 ∈ √ (N1 : M1) or a1m ∈ N1 or an2 m ∈ N1 which is a contradiction. Hence a1a2 ∈ (0 : M2). (2 ⇒ 1). Let a1, a2 ∈ R and (m1, m2) ∈ M1 ×M2 such that (0, 0) 6= (a1a2m1, a1a2m2) = a1a2(m1, m2) ∈ N1 × M2. If a1a2m1 6= 0, then 0 6= a1a2m1 ∈ N1. By part (a), a1a2 ∈ √ (N1 : M1) or a1m1 ∈ N1 or an2 m1 ∈ N1 for some positive integer n. So a1a2 ∈ √ (N1 ×M2 : M1 ×M2) or a1(m1, m2) = (a1m1, a1m2) ∈ N1×M2 or an2 (m1, m2) = (an2 m1, an2 m2) ∈ N1×M2, and thus we are done. If a1a2m1 = 0, then a1a2m2 6= 0. Therefore a1a2 6∈ (0 : M2). By part (b), a1a2 ∈ √ (N1 : M1) or a1m1 ∈ N1 or an2 m1 ∈ N1 for some positive integer n. Thus a1a2 ∈ √ (N1 ×M2 : M1 ×M2) or a1(m1, m2) ∈ N1 ×M2 or an2 (m1, m2) ∈ N1 ×M2. Hence N1 ×M2 is a weakly 2-absorbing semi-primary submodule of M1 ×M2. � Corollary 2.7. Let Mi be an R-module and let Ni be a proper submodule of Mi, for i = 1, 2. Then the following conditions are equivalent: (1) M1 ×N2 is a weakly 2-absorbing semi-primary submodule of M1 ×M2. (2) (a) N2 is a weakly 2-absorbing semi-primary submodule of M2. (b) For each a1, a2 ∈ R and m ∈ M2 such that a1a2m = 0, if a1a2 6∈ √ (N2 : M2), a1m 6∈ N2 and an2 m 6∈ N2 for all positive integer n, then a1a2 ∈ (0 : M1). Proof. This follows from Theorem 2.15. � Corollary 2.8. Let Mi be an R-module and let Ni be a proper submodule of Mi, for i = 1, 2, . . . , k. Then the following conditions are equivalent: (1) M1 × M2 × . . . × Mi−1 × Ni × Mi+1 × Mk is a weakly 2-absorbing semi-primary submodule of M1 ×M2 × . . .×Mk. (2) (a) Ni is a weakly 2-absorbing semi-primary submodule of Mi. (b) For each a1, a2 ∈ R and m ∈ M2 such that a1a2m = 0, if a1a2 6∈ √ (N2 : M2), a1m 6∈ N2 and an2 m 6∈ N2 for all positive integer n, then there exists j ∈{1, 2, . . . , k} such that a1a2 ∈ (0 : Mj). Proof. This follows from Theorem 2.15. � Theorem 2.16. Let Ni be a proper submodule of an Ri-module Mi, for i = 1, 2. Then the following conditions are equivalent: (1) N1 is a 2-absorbing semi-primary submodule of M1. (2) N1 ×M2 is a 2-absorbing semi-primary submodule of M1 ×M2. (3) N1 ×M2 is a weakly 2-absorbing semi-primary submodule of M1 ×M2, where M2 6= {0}. Proof. (1 ⇒ 2). This is clear, by Theorem 2.15. Int. J. Anal. Appl. 16 (3) (2018) 411 (2 ⇒ 3). The proof is clear. (3 ⇒ 1). Suppose that N1 × M2 is a weakly 2-absorbing semi-primary submodule of M1 × M2, where M2 6= {0}. Let a1, a2 ∈ R1 and m ∈ M1 such that a1a2m ∈ N1. By assumption, there exists m2 ∈ M2 such that m2 6= 0. Since (a1, 1)(a2, 1)(m, m2) = (a1a2m, m2) 6= (0, 0) , we have (0, 0) 6= (a1, 1)(a2, 1)(m, m2) ∈ N1 × M2. By Definition 2.1, (a1, 1)(a2, 1) ∈ √ (N1 ×M2 : M1 ×M2) or (a1, 1)(m, m2) ∈ N1 × M2 or (a2, 1) n(m, m2) ∈ N1 × M2 for some positive integer n. Therefore a1a2 ∈ √ (N1 : M1) or a1m ∈ N1 or an2 m ∈ N1 for some positive integer n and hence N1 is a 2-absorbing semi-primary submodule of M1. � Corollary 2.9. Let Ni be a proper submodule of an Ri-module Mi, for i = 1, 2. Then the following conditions are equivalent: (1) N2 is a 2-absorbing semi-primary submodule of M1. (2) M1 ×N2 is a 2-absorbing semi-primary submodule of M1 ×M2. (3) M1 ×N2 is a weakly 2-absorbing semi-primary submodule of M1 ×M2, where M1 6= {0}. Proof. This follows from Theorem 2.16. � Corollary 2.10. Let Ni be a proper submodule of an Ri-module Mi, for i = 1, 2, . . . , k. Then the following conditions are equivalent: (1) Ni is a 2-absorbing semi-primary submodule of M1. (2) M1×M2×. . .×Mi−1×Ni×Mi+1×Mk is a 2-absorbing semi-primary submodule of M1×M2×. . .×Mk. (3) M1 × M2 × . . . × Mi−1 × Ni × Mi+1 × Mk is a weakly 2-absorbing semi-primary submodule of M1 ×M2 × . . .×Mk, where Mj 6= {0}. Proof. This follows from Theorem 2.16 and Corollary 2.9. � Theorem 2.17. Let Ni be a proper submodule of an Ri-module Mi, for i = 1, 2. If N1 × N2 is a weakly 2-absorbing semi-primary submodule of M1 ×M2, then (1) N1 is a weakly 2-absorbing semi-primary submodule of M1. (2) N2 is a weakly 2-absorbing semi-primary submodule of M2. Proof. (1). Suppose that N1×N2 is a weakly 2-absorbing semi-primary submodule of M1×M2. Let a1, a2 ∈ R1 and m ∈ M1 such that 0 6= a1a2m ∈ N1. Clearly, (0, 0) 6= (a1, 1)(a2, 1)(m, m2) = (a1a2m, m2) ∈ N1×N2. By Definition 2.1, (a1a2, 1) = (a1, 1)(a2, 1) ∈ √ (N1 ×N2 : M1 ×M2) or (a1m, m2) = (a1, 1)(m, m2) ∈ N1×N2 or (an2 m, m2) = (a2, 1)n(m, m2) ∈ N1×N2 for some positive integer n. Therefore a1a2 ∈ √ (N1 : M1) or a1m ∈ N1 or an2 m ∈ N1 for some positive integer n. Hence N1 is a weakly 2-absorbing semi-primary submodule of M1. (2). This follows from part 1. � Int. J. Anal. Appl. 16 (3) (2018) 412 Example 2.3. Let M = Z×Z be an Z-module. Consider the submodule N = 5Z×12Z of M. It is easy to see that 5Z and 12Z are weakly 2-absorbing semi-primary submodule of M. Notice that (0, 0) 6= 2 · 3(5, 2) ∈ N, but 2 · 3 6∈ √ (M : N), 2(5, 2) 6∈ N, and (2 · 3)n 6∈ (N : M) for all positive integer n. Therefore N is not a weakly 2-absorbing semi-primary submodule of M. This example shows that the converse of Theorem 2.17 is not true. Theorem 2.18. Let Ni be a submodule of an Ri-module Mi, for i = 1, 2, 3. If N is a weakly 2-absorbing semi-primary submodule of M1×M2×M3, then N = {(0, 0, 0)} or N is a 2-absorbing semi-primary submodule of M1 ×M2 ×M3. Proof. Suppose that N is a weakly 2-absorbing semi-primary submodule of M1 × M2 × M3 that is not 2-absorbing semi-primary. We will show that N = {(0, 0, 0)}. Now suppose that N1 × N2 × N3 = N 6= {0}×{0}×{0}. Thus Ni 6= {0}, for some i = 1, 2, 3. We claim that N1 6= {0}. There exists m1 ∈ N1 such that m1 6= 0. To show that N2 = M2 or N3 = M3. Assume that N2 6= M2 and N3 6= M3. Thus there exist m2 ∈ M2 and m3 ∈ M3 such that m2 6∈ N2 and m3 6∈ N3. Since (1, 0, 1)(1, 1, 0)(m1, m2, m3) = (m1, 0, 0) 6= (0, 0, 0), we have (0, 0, 0) 6= (1, 0, 1)(1, 1, 0)(m1, m2, m3) ∈ N1 ×N2 ×N3. By Definition 2.1, we get (1, 0, 1)(1, 1, 0) ∈√ (N1 ×N2 ×N3 : M1 ×M2 ×M3) or (1, 0, 1)(m1, m2, m3) ∈ N or (1, 1, 0)n(m1, m2, m3) ∈ N, for some positive integer n. So m2 ∈ N2 or m3 ∈ N3, a contradiction. Therefore N = N1 × M2 × N3 or N = N1×N2×M3. If N = N1×M2×N3, then (0, 1, 0) ∈ (N : M1×M2×M3). By Theorem 2.13, {0}×M2×{0} = (0, 1, 0)2N ⊆ (N : N1 ×M2 ×N3)2N = {(0, 0, 0)}, which is a contradiction. Hence N = {(0, 0, 0)}. � Theorem 2.19. Let Ni be a submodule of an Ri-module Mi, for i = 1, 2, 3. If N 6= {(0, 0, 0)} and N is a 2-absorbing semi-primary submodule of M1 × M2 × M3, then N is a weakly 2-absorbing semi-primary submodule of M1 ×M2 ×M3. Proof. Similar to the proof of Theorem 2.18 � The above theorem shows the relationship between 2-absorbing semi-primary and weakly 2-absorbing semi-primary submodules in R1×R2×R3-modules. From the above theorem, we have the following corollary. Corollary 2.11. Let Ni be a submodule of an Ri-module Mi, for i = 1, 2, 3 with N 6= {(0, 0, 0)}. Then N is a weakly 2-absorbing semi-primary submodule of M1 ×M2 ×M3 if and only if N is a weakly 2-absorbing semi-primary submodule of M1 ×M2 ×M3. Proof. This follows from Theorem 2.18. � Corollary 2.12. Let Ni be a submodule of an Ri-module Mi, for i = 1, 2, . . . , k ≥ 3 with N 6= {(0, 0, . . . , 0)}. Then N is a weakly 2-absorbing semi-primary submodule of M1×M2× . . .×Mk if and only if N is a weakly 2-absorbing semi-primary submodule of M1 ×M2 × . . .×Mk. Int. J. Anal. Appl. 16 (3) (2018) 413 Proof. This follows from Theorem 2.19. � References [1] D. Anderson and E. Smith, Weakly prime ideals. Houston J. Math., 29 (2003), 831 – 840. [2] S.E. Atani and F. Farzalipour, On weakly primary ideals. Georgian Math. J., 12 (3) (2005), 423 – 429. [3] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings. Houston J. Math., 39 (2013), 441 – 452. [4] A. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings. J. Korean Math. Soc., 52(1)(2015), 97 – 111. [5] M. Behboodi and H. Koohy, Weakly prime modules. Vietnam J. Math., 32 2 (2004), 185 – 195. [6] A.Y. Darani and F. Soheilnia, On 2-absorbing and weakly 2- absorbing submodules. Thai J. Math., 9, (2011), 577 – 584. [7] Z.A. El-Bast and P.F. Smith, Multiplication modules. Comm. Algebra, 6(4)(1988), 755 – 779. [8] M. Larsen and P. McCarthy, Multiplicative theory of ideals. Academic Press, New York, London (1971). [9] H. Mostafanasab, On weakly classical primary submodules. Bull. Belg. Math. Soc., 22(5)(2015), 743 – 760. [10] H. Mostafanasab, U. Tekir and K.H. Oral, Weakly classical prime submodules. Math. J., 56 (2016), 1085 – 1101. [11] H. Mostafanasab, E. Yetkin, U. Tekir and A.Y. Darani, On 2-absorbing primary submodules of modules over commutative rings. An. St. Univ. Ovidius Constanta, 24(1)(2016), 335 – 351. [12] Sh. Payrovi and S. Babaei, On the 2-absorbing submodules. Iran. J. Math. Sci. Inform., 10(1) (2015), 131 –137. [13] R. Sharp, Steps in commutative algebra. Cambridge University Press, Cambridge-New York-Sydney (2000). [14] N. Zamani, φ-prime submodules. Glasgow Math. J., 52(2) (2010), 253 – 259. 1. Introduction 2. Properties of weakly 2-Absorbing Semiprimary Submodules References