International Journal of Analysis and Applications Volume 16, Number 6 (2018), 783-792 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-16-2018-783 ANALYTIC FUNCTIONS RELATED WITH MOCANU CLASS AKHTER RASHEED1,∗, SAQIB HUSSAIN2, MUHAMMAD ASAD ZAIGHUM1 AND ZAHID SHAREEF 3 1Department of Mathematics and Statistics, Riphah International University, Islamabad, Pakistan 2Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Pakistan 3Division of Engineering, Higher Colleges of Technology, P.O. Box 4114, Fujairah, UAE ∗Corresponding author: akhter@ciit.net.pk Abstract. In this article, we define a new class of analytic functions. This class generalizes the mocanu class. We obtain relationships of this class with other subclasses of analytic functions and derived many interesting results. 1. Introduction Let A denote the class of functions f analytic in ∆ = {z ∈ C : |z| < 1}, normalized by f (0) = 0 and f ′ (0) = 1. So each f ∈A has series representation of form f (z) = z + ∞∑ n=2 anz n. (1.1) A function f ∈A is in class S if and only if f (z1) = f (z2) implies z1 = z2, for all z1, z2 ∈ ∆. An analytic function f is subordinate to an analytic function g (written as f ≺ g) if and only if there exists an analytic function w with w (0) = 0 and |w (z)| < 1 for z ∈ ∆ such that f (z) = g (w (z)) . Received 2018-01-24; accepted 2018-03-14; published 2018-11-02. 2010 Mathematics Subject Classification. 30C45, 30C50. Key words and phrases. convex functions; strongly starlike functions; subordination. c©2018 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 783 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-16-2018-783 Int. J. Anal. Appl. 16 (6) (2018) 784 For 0 ≤ α ≤ 1, Mocanu [15] introduced the class Mα of functions f ∈ A such that f(z)f ′ (z) z 6= 0 for all z ∈ ∆ and Re { (1 −α) zf′ (z) f (z) + α (zf′ (z)) ′ f′ (z) } > 0, z ∈ ∆. (1.2) Mocanu defined the class Mα geometrically as a class of functions that maps the circle centered at the origin on α−convex arcs and derived the condition (1.2). The class Mα was extensively studied in literature by several authors, for instance, see [4–6, 18–21]. For particular values of α, we obtain a number of interesting classes of analytic functions having nice geometry, for instance M0 = S∗ and M1 = C are well known classes of starlike and convex univalent functions introduced by Alexander [1]. By S∗ (δ) and C (δ) , 0 ≤ δ < 1, we mean the subclasses of starlike and convex function of order δ given by (1.3) and (1.4) respectively. Re { zf′ (z) f (z) } > δ, z ∈ ∆, (1.3) and Re { 1 + zf′′ (z) f′ (z) } > δ, z ∈ ∆. (1.4) We denote the classes of uniformly starlike and uniformly convex functions by UST and UCV, see [7,13,14]. A function f ∈S is uniformly starlike if f maps every circular arc γ contained in ∆ with center ζ ∈ ∆ onto a starlike arc with respect to f (ζ). A function f ∈ S is uniformly convex if f maps every circular arc γ contained in ∆ with center ζ ∈ ∆ onto a convex arc. In 1999, Kanas and Wisnoiska [9] introduced the class k −UCV, (k ≥ 0) of k-uniformly convex functions as: f ∈ k −UCV ⇐⇒ f ∈A and Re { 1 + zf′′ (z) f′ (z) } > k ∣∣∣∣zf′′ (z)f′ (z) ∣∣∣∣ , z ∈ ∆, (1.5) where its geometric definition and connections with the conic domains were considered. It is worth mentioning that 1 −UCV = UCV. In recent years many authors investigated interesting properties of these classes. For some details see [2, 8–12, 26, 30] and references cited there in. Let SS∗ (λ) denote the class of strongly starlike functions of order λ as: SS∗ (λ) = { f ∈A : ∣∣∣∣arg zf′ (z)f (z) ∣∣∣∣ < λπ2 } , (1.6) where λ ∈ (0, 1). This class of functions was introduced and discussed by [3, 27]. In our current investigation, we extend the work of J. sokol [25] and introduced a new class of analytic function as: Definition 1.1. Let f ∈A and k ≥ 0, 0 ≤ α ≤ 1. Then f ∈ k −UMα if and only if Re { (1 −α) zf′ (z) f (z) + α (zf′ (z)) ′ f′ (z) } > k ∣∣∣∣∣(zf ′ (z)) ′ f′ (z) − 1 ∣∣∣∣∣ , z ∈ ∆. (1.7) Int. J. Anal. Appl. 16 (6) (2018) 785 For special values of parameters k and α, we obtain a number of known classes of analytic functions. Here we present few of them. (i) 0 −UMα = Mα, [15]. (ii) 0 −UM0 = S∗, [1]. (iii) 1 −UM1 = UCV, [7]. (iv) k −UM1 = k −UCV, [9]. Lemma 1.1. Let u = u1 + iu2 and v = v1 + iv2 and let Ψ (u,v) : C2 ×∆ → C be a complex-valued function satisfying the conditions: (i) Ψ (u,v) is continuous in a domain D ⊂ C2, (ii) (1, 0) ∈ D and Ψ (1, 0) > 0. (iii) Re Ψ (iu2,v1) ≤ 0 whenever (iu2,v1) ∈ D and v1 ≤−12 ( 1 + u22 ) . If h (z) = 1 + c1z + c2z 2 + · · · is a function that is analytic in ∆ such that (h(z),zh′(z)) ∈ D and Re Ψ (h(z),zh′(z)) > 0 for z ∈ ∆, then Re h(z) > 0. This result is due to Miller [16]. Lemma 1.2. Let β > 0 and 0 ≤ γ < 1. Let p (z) + βzp′ (z) p (z) ≺ 1 + (1 − 2γ) 1 −z . Then p (z) ≺ 1 + (1 − 2δ) 1 −z , where δ = (2γ −β) + √ (2γ −β)2 + 8β 4 . (1.8) Lemma 1.3. [17] If −1 ≤ B < A ≤ 1, λ > 0 and the complex number γ satisfies Re{γ}≥−λ (1 −A) / (1 −B) , then the differential equation q (z) + zq′ (z) λq (z) + γ = 1 + Az 1 + Bz , z ∈ ∆, has a univalent solution in E given by q (z) =   zλ+γ(1+Bz)λ(A−B)/B λ z∫ 0 tλ+γ−1(1+Bt)λ(A−B)/Bdt − γ λ , B 6= 0, zλ+γeλAz λ z∫ 0 tλ+γ−1eλAtdt − γ λ , B = 0. Int. J. Anal. Appl. 16 (6) (2018) 786 If h (z) = 1 + c1z + c2z 2 + . . . is analytic in ∆ and satisfies h (z) + zh′ (z) λh (z) + γ ≺ 1 + Az 1 + Bz , z ∈ ∆, then h (z) ≺ q (z) ≺ 1 + Az 1 + Bz , and q (z) is the best dominant. Lemma 1.4. [29] Let ε be a positive measure on [0, 1] . Let g be a complex-valued function defined on ∆×[0, 1] such that g (., t) is analytic in ∆ for each t ∈ [0, 1] and g (z, .) is ε-integrable on [0, 1] for all z ∈ ∆. In addition, suppose that Re g (z,t) > 0, g (−r,t) is real and Re{1/g (z,t)} ≥ 1/g (−r,t) for |z| ≤ r < 1 and t ∈ [0, 1] . If g (z) = 1∫ 0 g (z,t) dε (t) , then Re{1/g (z)}≥ 1/g (−r) . Lemma 1.5. [28, Chapter 14] Let a, b and c 6= 0,−1,−2 . . . be complex numbers. Then, for Re c > Re b > 0, (i) 2F1 (a,b,c; z) = Γ (c) Γ (c− b) Γ (b) 1∫ 0 tb−1 (1 − t)c−b−1 (1 − tz)−a dt. (ii) 2F1 (a,b,c; z) = 2F1 (b,a,c; z) . (iii) 2F1 (a,b,c; z) = (1 −z) −a 2F1 ( a,c− b,c; z z − 1 ) . Lemma 1.6. Let p be analytic in ∆ of the form p (z) = 1 + ∞∑ n=m cnz n, cm 6= 0, with p (z) 6= 0 in ∆. If there exists a point z0, |z0| < 1 such that |arg p (z)| < πϕ2 (|z| < |z0|) and |arg p (z0)| = πϕ 2 for some ϕ > 0, then we have z0p ′(z0) p(z0) = ilϕ, where  l ≥ m 2 ( a + 1 a ) , when arg p (z0) = πϕ 2 , l ≤−m 2 ( a + 1 a ) , when arg p (z0) = −πϕ2 , where (p (z0)) 1/ϕ = ±ia (a > 0) . This result is generalization of the Nunokawa’s lemma [23]. 2. Results and Discussion Theorem 2.1. Let f ∈ k −UMα. Then f ∈S∗ (δ) , where δ = (2γ −β) + √ (2γ −β)2 + 8β 4 , (2.1) with β = α+k 1+k and γ = k 1+k . Int. J. Anal. Appl. 16 (6) (2018) 787 Proof. Let zf′ (z) f (z) = p (z) , where p is analytic in · with p (0) = 1. We obtain Re { (1 −α) p (z) + α ( p (z) + zp′ (z) p (z) )} > k ∣∣∣∣p (z) + zp′ (z)p (z) − 1 ∣∣∣∣ = k ∣∣∣∣1 −p (z) − zp′ (z)p (z) ∣∣∣∣ Re { (1 −α) p (z) + α ( p (z) + zp′ (z) p (z) )} > Re k { (1 −p (z)) − zp′ (z) p (z) } , hence Re { p (z) + zp′ (z) 1 β p (z) } > γ, (2.2) where β = α+k 1+k and γ = k 1+k . The above relation can be written in the following Briot-Bouquet differential subordination p (z) + zp′ (z) 1 β p (z) ≺ 1 + (1 − 2γ) z 1 −z . Now using Lemma 2, we have p ∈S∗ (δ) , where δ is given by (2.1) . � Special Cases (i) For α = 0, k = 1,we have β = γ = 1 2 . Then for f ∈ 1 −UM0, we have f ∈S∗ (δ) , where δ ' 0.64. (ii) For α = 0, we have β = k 1+k and γ = k 1+k . Then δ1 = k + √ 9k2 + 8k 4(k + 1) . In other words for f ∈ k −UM0, we have f ∈S∗ (δ1) . (iii) If α = 1, β = 1, γ = k 1+k , then δ2 = (k − 1) + √ (k − 1)2 + 8 (k + 1)2 4(k + 1) . In other words f ∈ k −UCV implies f ∈S∗ (δ2) . Theorem 2.2. Let f ∈ k −UMα and of the form f (z) = z + ∞∑ n=m+1 anz n, am+1 6= 0. Then f is strongly starlike of order β0, where β0 = min β∈(0,1)   1 − 2aβ cos βπ 2 + ( k2 − 1 )( aβ cos βπ 2 )2 +( βm(a2+1) 2a + aβ sin βπ 2 )2   . (2.3) Int. J. Anal. Appl. 16 (6) (2018) 788 Proof. Let zf′ (z) f (z) = p (z) . Then p is the form p (z) = 1 + ∞∑ n=m cnz n, cm 6= 0. Now using the definition of the class k −UMα, we have Re { (1 −α) p (z) + α ( p (z) + zp′ (z) p (z) )} > k ∣∣∣∣p (z) + zp′ (z)p (z) − 1 ∣∣∣∣ . (2.4) If there exists a point z0 ∈ ∆ such that |arg p (z)| < βπ 2 , |z| < |z0| and |arg p (z0)| = βπ 2 , then from Lemma 1.6, we have z0p ′(z0) p(z0) = ilβ, where (p (z0)) 1/β = ±ia (a > 0) and l :   l ≥ m 2 ( a + 1 a ) , when arg p (z0) = βπ 2 , l ≤−m 2 ( a + 1 a ) , when arg p (z0) = −βπ2 . (2.5) For the case arg p (z0) = βπ 2 , we obtain Re { p (z0) + αz0p ′ (z0) p (z0) } = Re { (ia) β + iαlβ } = aβ cos βπ 2 . (2.6) Also, we have k ∣∣∣∣p (z0) − 1 + z0p′ (z0)p (z0) ∣∣∣∣ = k ∣∣∣(ia)β + ilβ − 1∣∣∣ = k ∣∣∣∣aβ cos βπ2 − 1 + i ( aβ sin βπ 2 + lβ )∣∣∣∣ = k √( aβ cos βπ 2 − 1 )2 + ( aβ sin βπ 2 + lβ )2 . (2.7) Then from l ≥ m ( a2 + 1 ) /2a for β ≥ β0, we have 0 ≤ 1 − 2aβ cos β π 2 + ( k2 − 1 )( aβ cos β π 2 )2 + ( βm ( a2 + 1 ) 2a + aβ sin β π 2 )2 . (2.8) Therefore 0 ≤ 1 − 2aβ0 cos β0 π 2 + ( k2 − 1 )( aβ0 cos β0 π 2 )2 + ( β0m ( a2 + 1 ) 2a + aβ0 sin β0 π 2 )2 . (2.9) By using (2.6) and (2.7) , we have Re { (1 −α) p (zo) + α { p (zo) + zp′ (zo) p (zo) }} < k ∣∣∣∣p (z0) + zp′ (z0)p (z0) − 1 ∣∣∣∣ . which is contradiction, therefore |arg p (z)| < βπ 2 for |z| < 1. Int. J. Anal. Appl. 16 (6) (2018) 789 Similarly we can prove the case arg p (z0) = −βπ2 by using the same method as the above we will get a contradiction. This proves that f is strongly starlike of order β0. � Corollary 2.1. Let f ∈UCV and of the form f (z) = z + ∞∑ n=m+1 anz n, am+1 6= 0. Then f is strongly starlike of order β0, where β0 = min β∈(0,1)  1 − 2aβ cos βπ2 + ( βm ( a2 + 1 ) 2a + aβ cos β π 2 )2  . This result is due to Nunokawa and Sokol [24]. Theorem 2.3. If f ∈ k −UMα, then zf′ (z) f (z) ≺ q (z) = 1 g (z) , (2.10) where g (z) = [ 2F1 ( 1 β (1 −γ) , 1; 1 β + 1; z z−1 )] with β = k+α 1+k and γ = k 1+k . Proof. Let zf′ (z) f (z) = p (z) , where p is analytic in ∆ with p (0) = 1. Now using (1.7), we obtain Re { (1 −α) p (z) + α ( p (z) + zp′ (z) p (z) )} > k ∣∣∣∣p (z) + zp′ (z)p (z) − 1 ∣∣∣∣ = k ∣∣∣∣1 −p (z) − zp′ (z)p (z) ∣∣∣∣ Re { (1 −α) p (z) + α ( p (z) + zp′ (z) p (z) )} > Re k { (1 −p (z)) − zp′ (z) p (z) } . This implies that Re { p (z) + zp′ (z) 1 β p (z) } > γ, where β = k+α 1+k and γ = k 1+k . The above relation can be written in the following Briot-Bouquet differential subordination p (z) + zp′ (z) 1 β p (z) ≺ 1 + (1 − 2γ) z 1 −z . (2.11) Using Lemma 1.3 for λ = 1 β and γ = 0, we have p (z) ≺ q (z) = 1 g (z) = 1 1/β 1∫ 0 t1/β−1 ( 1−tz 1−z )−2(γ−1)/β dt = { 2F1 ( 2 β (1 −γ) , 1; 1 β + 1; z z − 1 )}−1 . which is the required result. � Int. J. Anal. Appl. 16 (6) (2018) 790 Theorem 2.4. If f ∈ k −UMα. Then Re zf′ (z) f (z) > 1 g (−1) = γ0 = { 2F1 ( 2 β (1 −γ) , 1; 1 β + 1; 1 2 )}−1 . In other words k −UMα ⊂S∗ (γ0) , where γ0 = { 2F1 ( 2 β (1 −γ) , 1; 1 β + 1; 1 2 )}−1 . (2.12) Proof. To prove k −UMα ⊂ S∗ (γ0) , we show that inf |z|<1 {Re q (z)} = q (−1) . Now for a = 2 β (1 −γ) , b = 1 β , c = 1 β + 1, we have g (z) = (1 + Bz) a 1∫ 0 tb−1 (1 + Btz) −a dt. = Γ (b) Γ (c) 2F1 ( 1,a,c; z z − 1 ) . (2.13) To prove that inf |z|<1 {Re q (z)} = q (−1) , we need to show that Re{1/g (z)}≥ 1/g (−1) . Now by using Lemma 1.4, (2.13) it can easily follows that g (z) = 1∫ 0 g (z,t) dε (t) , where g (z,t) = 1 −z 1 − (1 − t) z , (0 ≤ t ≤ 1) , dε (t) = Γ (b) Γ (a) Γ (c−a) ta−1 (1 − t)c−a−1 dt, which is a positive measure on [0, 1] . It is clear that Re g (z,t) > 0 and g (−r,t) is real for 0 ≤ |z| ≤ r < 1 and t ∈ [0, 1] . Also Re { 1 g (z,t) } = Re { 1 − (1 − t) z 1 −z } ≥ 1 + (1 − t) r 1 + r = 1 g (−r,t) for |z| ≤ r < 1. Therefore using Lemma 1.4, we have Re{1/g (z)}≥ 1/g (−r) . Now letting r → 1−, it follows Re{1/g (z)}≥ 1/g (−1) . Therefore k −UMα ⊂S∗ (γ0) . � Int. J. Anal. Appl. 16 (6) (2018) 791 References [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17(1915), 12–22. [2] M. Arif, A. Ali and J. Muhammad, Some sufficient conditions for alpha convex functions of order beta, VFAST Trans. Math., 1(2)(2013), 8-12. [3] D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc., 1(2)(1969), 431–443. [4] J. Dziok, Characterizations of analytic functions associated with functions of bounded variation, Ann. Polon. Math., 109(2013), 199–207. [5] J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl., 2013, Article ID 349. [6] J. Dziok, Generalizations of multivalent Mocanu functions, Appl. Math. Computation., 269(2015), 965–971. [7] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1991), 87–92. [8] S. Kanas and A. Wísniowska, Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov., 22(1998), 65–78. [9] S. Kanas and A. Wísniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327–336. [10] S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transform. Spec.Funct., 9(2)(2000), 121–132. [11] A. Lecko and A. Wísniowska, Geometric properties of subclasses of starlike functions, J. Comp. Appl. Math., 155(2003), 383–387. [12] X. Li, D. Ding, L. Xu, C. Qin and S. Hu, J. Funt. Spac, Certain Subclasses of Multivalent Functions Defined by Higher- Order Derivative., 2017, Article ID 5739196. [13] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 2(57)(1992), 165–175. [14] W. Ma and D. Minda, Uniformly convex functions II, Ann. Polon. Math., 3(58)(1993), 275–285. [15] P. T. Mocanu, Une propriété de convexité g énéralisée dans la théorie de la représentation conforme. Mathematica (Cluj, 1929) 11(34)(1969), 127-133. [16] S. S. Miller, Differential inequalities and Carathéodory functions, Bull. Amer. Math. Soc., 81(1975), 79 - 81. [17] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential subordination, J. Differential Eqns., 56(1985), 297-309. [18] K. I. Noor and W. Ul-Haq, On some implication type results involving generalized bounded Mocanu variations, Comput. Math. Appl., 63(10)(2012), 1456-1461. [19] K. I. Noor and S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl., 340(2008), 1145–1152. [20] K. I. Noor and A. Muhammad, On analytic functions with generalized bounded Mocanu variation, Appl. Math. Comput., 196(2) (2008), 802-811. [21] K. I. Noor and S. N. Malik, On generalized bounded Mocanu variation associated with conic domain, Math. Comput. Model., 55(2012), 844-852. [22] M. Nunokawa and J. Sokol, Remarks on some starlike functions, J. Inequal. Appl., 593(2013), 1-8. [23] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A., 69(7)(1993), 234-237. [24] M. Nunokawa, J. Sokó l, On order of strongly starlikeness in the class of uniformly convex functions, Math. Nachr., (2015), 1-6.. [25] J. Sokó l and M. Nunokawa, On some class of convex functions, C. R. Acad. Sci. Paris, Ser. I., 353(2015), 427-431. Int. J. Anal. Appl. 16 (6) (2018) 792 [26] J. Soko l and A.Wísniowska, On some classes of starlike functions related with parabola, Folia Sci. Univ. Tech. Resov., 28 (1993), 35-42. [27] J. Stankiewicz, Quelques problémes extrémaux dans les classes des fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie–Sk lodowska, Sect. A., 20(1966), 59-75. [28] E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed. Cambridge Univ. Press., 1958. [29] D. R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc., 21(1980)., 287-290. [30] A. Wísniowska Wajnryb, Some extremal bounds for subclasses of univalent functions, Appl. Math. Comput,. 215(2009), 2634-2641. 1. Introduction 2. Results and Discussion References