International Journal of Analysis and Applications Volume 16, Number 4 (2018), 462-471 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-16-2018-462 CONVEXITY OF INTEGRAL OPERATORS INVOLVING DINI FUNCTIONS SADDAF NOREEN, MUHEY U DIN AND MOHSAN RAZA∗ Department of Mathematics, Government College University Faisalabad, Pakistan ∗Corresponding author: mohsan976@yahoo.com Abstract. In this article, we are mainly interested to find some covexity properties for certain families of integral operators involving Dini functions in the open unit disc. The main tool in the proofs of our results are some functional inequalities of Dini functions. Some particular cases involving Dini functions are also a part of our investigations. 1. INTRODUCTION Let A denote the class of functions f of the form f(z) = z + ∞∑ n=2 anz n, (1.1) which are analytic in the open unit disc U = {z : |z| < 1} and S denote the class of all functions which are univalent in U. Let S∗ (α) , C (α) and K(α) denote the classes of starlike, convex and close-to-convex functions of order α and are defined as: S∗ (α) = { f : f ∈A and Re ( zf′ (z) f (z) ) > α, z ∈U, α ∈ [0, 1) } , C (α) = { f : f ∈A and Re ( 1 + zf′′ (z) f′ (z) ) > α, z ∈U, α ∈ [0, 1) } and K(α) = { f : f ∈A and Re ( zf′ (z) g (z) ) > α, z ∈U, α ∈ [0, 1) , g ∈S∗ } . Received 2018-01-31; accepted 2018-04-06; published 2018-07-02. 2010 Mathematics Subject Classification. 30C45, 33C10, 30C20, 30C75. Key words and phrases. analytic functions; convex functions; integral operators; Bessel functions; Dini functions. c©2018 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 462 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-16-2018-462 Int. J. Anal. Appl. 16 (4) (2018) 463 It is clear that S∗ (0) = S∗, C (0) = C and K(0) = K. Special functions have great importance in pure and applied mathematics. The widely use of these functions have attracted many researchers to work on the different directions. Geometric properties of special func- tions such as Hypergeometric functions, Bessel functions, Struve functions, Mittage-Lefller functions, Wright functions and some other related functions is an ongoing part of research in geometric function theory. We refer for some geometric properties of these functions [1, 2, 5, 6, 11] and references therein. The Bessel function of the first kind Jv is defined by Jv(z) = ∞∑ n=1 (−1)n n!Γ(v + n + 1) (z 2 )2n+v , (1.2) where Γ stands for Euler gamma function. It is a particular solution of the second order linear homogeneous differential equation z2w′′(z) + zw′(z) + (z2 −v2)w(z) = 0, where v ∈ C. For some details see [2, 13]. Bessel functions are indispensable in many branches of pure and applied mathematics. Thus, it is important to study their properties in many aspects. Recently Baricz et al [3] studied the close-to-convexity of Dini functions and some monotonicity properties and functional inequalities for the modified Dini function are discussed in [4]. Further some geometric properties of Dini functions are studied in [3, 4, 7]. Now, we consider the normalized Dini functions qυ : U → C defined as qυ (z) = 2 υΓ (υ + 1) z1− υ 2 ( (1 −υ) Jυ (√ z ) + √ zJ′υ (√ z )) = z + ∞∑ n=1 (−1)n (2n + 1) Γ (υ + 1) 4nn!Γ (υ + n + 1) zn+1, z ∈U. (1.3) The Pochhammer (or Appell) symbol, defined in terms of Euler’s gamma functions is given as (x)n = Γ(x + n)/Γ(x) = x(x + 1)...(x + n− 1). Recently, Deniz et al. [8], Din et al. [9], Din et al. [10] and Srivastava et al. [12] have obtained sufficient conditions for the univalence of certain families of integral operators defined by Bessel, Dini, Struve and Mittage-Leffler functions respectively. The families of integral operators are defined below: Fα1,...,αn,ζ (z) =  ζ z∫ 0 tζ−1 n∏ i=1 ( fi(t) t ) 1 αi dt   1/ζ , (1.4) Gξ,n (z) =  (nξ + 1) z∫ 0 n∏ i=1 (fi (t)) ξ dt   1/(nξ+1) , (1.5) Hδ1,...,δn,µ (z) =  µ z∫ 0 tµ−1 n∏ i=1 (f′i(t)) δi dt   1/µ (1.6) Int. J. Anal. Appl. 16 (4) (2018) 464 and Qλ (z) =  λ z∫ 0 tλ−1 ( ef(t) )λ dt   1/λ . (1.7) In this paper, we are mainly interested in the convexity of the integral operators involving Dini function qv. These integral operators are defined as Fv1,...,vn,α1,...,αn (z) = z∫ 0 n∏ i=1 ( qvi(t) t )αi dt (1.8) and Hv1,...,vn,δ1,...,δn (z) = z∫ 0 n∏ i=1 ( q′vi(t) )δi dt. (1.9) Now we prove some functional inequalities which are useful in establishing our main results. Lemma 1.1. Let v ∈ R and consider the normalized Dini function qυ : U → C, defined by qυ (z) = 2 υΓ (υ + 1) z1− υ 2 ( (1 −υ) Jυ (√ z ) + √ zJ′υ (√ z )) , where Jυ is the Bessel function of first kind. Then the following inequalities hold for all z ∈U. (i) ∣∣∣zq′υ(z)qυ(z) − 1∣∣∣ ≤ 3v+64v2+5v−2, v > −5+√578 , (ii) ∣∣∣zq′′υ(z)q′υ(z) ∣∣∣ ≤ 3v+62v2+v−4, v > −1+√334 . Proof. (i) By using the well known triangle inequality with the equality Γ (v + 1) Γ (v + n + 1) = 1 (v + 1) (v + 2) · · ·(v + n) = 1 (v + 1)n , n ∈ N and the inequality 4nn! (v + 2)n−1 ≥ 4 3 n (2n + 1) (v + 2) n−1 , n ∈ N, we obtain ∣∣∣∣q′υ (z) − qυ (z)z ∣∣∣∣ ≤ 34 (v + 1) ∞∑ n=1 ( 1 v + 2 )n−1 = 3 (v + 2) 4 (v + 1) 2 . Furthermore, if we use the reverse triangle inequality and the inequality 4nn! (v + 2)n−1 ≥ 1 3 (2n + 1) (v + 2) n−1 , n ∈ N, Int. J. Anal. Appl. 16 (4) (2018) 465 then we get ∣∣∣∣qυ (z)z ∣∣∣∣ = ∣∣∣∣∣1 + ∞∑ n=1 (−1)n (2n + 1) Γ (υ + 1) 4nn!Γ (υ + n + 1) ∣∣∣∣∣ ≥ 1 − 3 4 (v + 1) ∞∑ n=0 ( 1 v + 2 )n−1 = 4 (v + 1) 2 − 3 (v + 2) 4 (v + 1) 2 . By combining the above inequalities, we get∣∣∣∣zq′υ (z)qυ (z) − 1 ∣∣∣∣ ≤ 3v + 64v2 + 5v − 2, v > −5 + √ 57 8 . (ii) By using the well known triangle inequality with equality Γ (v + 1) Γ (v + n + 1) = 1 (v + 1) (v + 2) · · ·(v + n) = 1 (v + 1)n , n ∈ N and the inequality 4nn! (v + 2)n−1 ≥ 4 3 (2n + 1) (v + 2) n−1 , n ∈ N, we have |zq′′υ (z)| ≤ ∣∣∣∣∣ ∞∑ n=1 n (n + 1) (2n + 1) Γ (υ + 1) 4nn!Γ (υ + n + 1) ∣∣∣∣∣ ≤ 3 2 (v + 1) ∞∑ n=1 ( 1 v + 2 )n−1 = 3 (v + 2) 2 (v + 1) 2 . Furthermore, if we use the reverse triangle inequality and the inequality 4nn! (v + 2)n−1 ≥ 2 3 ( 2n2 + 3n + 1 ) (v + 2) n−1 , n ∈ N, then we get |q′υ (z)| ∣∣∣∣∣≥ 1 − ∞∑ n=1 (2n + 1) (n + 1) Γ (υ + 1) 4nn!Γ (υ + n + 1) ∣∣∣∣∣ ≥ 1 − 3 2 (v + 1) ∞∑ n=1 ( 1 v + 2 )n−1 = 2v2 + v − 4 4 (v + 1) 2 By combining the above inequalities, it can be easily obtained∣∣∣∣zq′′υ (z)q′υ (z) ∣∣∣∣ ≤ 3v + 62v2 + v − 4, v > −1 + √ 33 4 . � Int. J. Anal. Appl. 16 (4) (2018) 466 2. Convexity of Integral Operators Defined by Generalized Dini Functions The main objective of this paper is to give convexity properties of integral operators involving Dini function. The main results are given as follows. Theorem 2.1. Let v1, . . . ,vn > −5+ √ 57 8 , where n ∈ N. Let qυi : U → C be defined as qυi (z) = 2 υiΓ (υ + 1) z1− υi 2 ( (1 −υi) Jυi (√ z ) + √ zJ′υi (√ z )) . (2.1) Suppose that v = min{v1, . . . ,vn} and α1, . . . ,αn be positive real numbers such that these numbers satisfy the following inequality 0 ≤ 1 − 3v + 6 4v2 + 5v − 2 n∑ i=1 αi < 1. Then, the function Fv1,...,vn,α1,...,αn defined by (1.8), is in the class C (β), where β = 1 − 3v + 6 4v2 + 5v − 2 n∑ i=1 αi. Proof. We observe that qυi,∀i = 1, 2, · · ·n are such that qυi (0) = q′υi (0) − 1 = 0. It is also clear that Fv1,...,vn,α1,...,αn ∈ A. That is Fv1,...,vn,α1,...,αn (0) = F ′v1,...,vn,α1,...,αn (0) − 1 = 0. On the other hand, it is easy to see that F ′v1,...,vn,α1,...,αn (z) = n∏ i=1 ( qvi(z) z )αi . (2.2) Differentiating logarithmically, we get zF ′′v1,...,vn,α1,...,αn (z) F ′v1,...,vn,α1,...,αn (z) = n∑ i=1 αi ( zq′vi (z) qvi (z) − 1 ) . (2.3) This implies that Re { 1 + zF ′′v1,...,vn,α1,...,αn (z) F ′v1,...,vn,α1,...,αn (z) } = n∑ i=1 αiRe ( zq′vi (z) qvi (z) ) + ( 1 − n∑ i=1 αi ) . Now, by using the assertion (i) of Lemma 1.1 for each vi, where i = 1, 2, · · ·n, we obtain Re { 1 + zF ′′v1,...,vn,α1,...,αn (z) F ′v1,...,vn,α1,...,αn (z) } ≥ n∑ i=1 αi ( 1 − 3vi + 6 4v2i + 5vi − 2 ) + ( 1 − n∑ i=1 αi ) = 1 − n∑ i=1 αi 3vi + 6 4v2i + 5vi − 2 . Consider the function φ : ( −5+ √ 57 8 ,∞ ) → R defined as φ (x) = 3x + 6 4x2 + 5x− 2 is decreasing function such that 3vi + 6 4v2i + 5vi − 2 ≤ 3v + 6 4v2 + 5v − 2 , ∀i = 1, 2, · · ·n. Int. J. Anal. Appl. 16 (4) (2018) 467 Therefore Re { 1 + zF ′′v1,...,vn,α1,...,αn (z) F ′v1,...,vn,α1,...,αn (z) } > 1 − 3v + 6 4v2 + 5v − 2 n∑ i=1 αi. Since 0 ≤ 1 − 3v+6 4v2+5v−2 n∑ i=1 αi < 1, therefore Fv1,...,vn,α1,...,αn ∈C (β), where β = 1 − 3v + 6 4v2 + 5v − 2 n∑ i=1 αi, which completes the proof. � By setting α1 = α2 = · · · = αn = α in Theorem 2.1, we obtain the result given below. Corollary 2.1. Let v1, . . . ,vn > −5+ √ 57 8 , where n ∈ N. Let qυi : U → C be defined as qυi (z) = 2 υiΓ (υ + 1) z1− υi 2 ( (1 −υi) Jυi (√ z ) + √ zJ′υi (√ z )) . (2.4) Suppose that v = min{v1, . . . ,vn} and α be positive real numbers such that these numbers satisfy the following inequality 0 ≤ 1 − nα (3v + 6) 4v2 + 5v − 2 < 1. Then, the function Fv1,...,vn,α defined by Fv1,...,vn,α (z) = z∫ 0 n∏ i=1 ( qvi(t) t )α dt is in the class C (β1), where β = 1 − nα (3v + 6) 4v2 + 5v − 2 . The next theorem gives convexity properties of the integral operator defined in (1.9). The key tool in the proof is inequality (ii) of Lemma 1.1. Theorem 2.2. Let v1, . . . ,vn > −1+ √ 33 4 , where n ∈ N. Let qυi : U → C be defined as qυi (z) = 2 υiΓ (υ + 1) z1− υi 2 ( (1 −υi) Jυi (√ z ) + √ zJ′υi (√ z )) . (2.5) Suppose that v = min{v1, . . . ,vn} and δ1, . . . ,δn be positive real numbers such that these numbers satisfy the following inequality 0 ≤ 1 − 3v + 6 2v2 + v − 4 n∑ i=1 δi < 1. Then, the function Hv1,...,vn,δ1,...,δn defined by (1.9), is in the class C (γ), where γ = 1 − 3v + 6 2v2 + v − 4 n∑ i=1 δi. Int. J. Anal. Appl. 16 (4) (2018) 468 Proof. It can easily be observed that, the operator defined in (1.9) belongs to class A, that is Hv1,...,vn,δ1,...,δn (0) = H′v1,...,vn,δ1,...,δn (0) − 1 = 0. Differentiating (1.9), we have H′v1,...,vn,δ1,...,δn (z) = n∏ i=1 ( q′vi(z) )δi . Differentiating logarithmically, we obtain zH′′v1,...,vn,δ1,...,δn (z) H′v1,...,vn,δ1,...,δn (z) = n∑ i=1 δi ( zq′′vi (z) q′vi (z) ) . This implies that Re { 1 + zH′′v1,...,vn,δ1,...,δn (z) H′v1,...,vn,δ1,...,δn (z) } = 1 + n∑ i=1 δiRe ( zq′′vi (z) q′vi (z) ) . Now, by using the assertion (ii) of Lemma 1.1 for each vi, where i = 1, 2, · · ·n, we obtain Re { 1 + zH′′v1,...,vn,δ1,...,δn (z) H′v1,...,vn,δ1,...,δn (z) } > 1 − n∑ i=1 δi ( 3vi + 6 2v2i + vi − 4 ) . Consider the function ϕ : ( −1+ √ 33 4 ,∞ ) → R defined as ϕ (x) = 3x + 6 2x2 + x− 4 is decreasing function such that 3vi + 6 2v2i + vi − 4 ≤ 3v + 6 2v2 + v − 4 , ∀i = 1, 2, · · ·n. It follows that Re { 1 + zH′′v1,...,vn,δ1,...,δn (z) H′v1,...,vn,δ1,...,δn (z) } > 1 − 3v + 6 2v2 + v − 4 n∑ i=1 δi. Since 0 ≤ 1 − 3v + 6 2v2 + v − 4 n∑ i=1 δi < 1, therefore Hv1,...,vn,δ1,...,δn ∈ C (γ), where γ = 1 − 3v + 6 2v2 + v − 4 n∑ i=1 δi, which completes the proof. � By setting δ1 = δ2 = δn = δ in Theorem 2.2, we obtain the result given below. Corollary 2.2. Let v1, . . . ,vn > −1+ √ 33 4 , where n ∈ N. Let qυi : U → C be defined as qυi (z) = 2 υiΓ (υ + 1) z1− υi 2 ( (1 −υi) Jυi (√ z ) + √ zJ′υi (√ z )) . (2.6) Suppose that v = min{v1, . . . ,vn} and δ be positive real numbers such that these numbers satisfy the following inequality 0 ≤ 1 − nδ (3v + 6) 2v2 + v − 4 < 1. Int. J. Anal. Appl. 16 (4) (2018) 469 Then, the function Hv1,...,vn,δ defined as Hv1,...,vn,δ (z) = z∫ 0 n∏ i=1 ( q′vi(t) )δ dt is in the class C (γ1), where γ1 = 1 − nδ (3v + 6) 2v2 + v − 4 . 3. Some particular cases of Dini function By choosing v = 1 2 and v = 3 2 in (1.2), we get the following forms of the normalized Dini function q1 2 (z) = 3 2 √ z ( sin √ z + √ z cos √ z ) , q3 2 (z) = 3 2 √ z ( (z − 1) sin √ z + √ z cos √ z ) . In particular, the results of the above mentioned theorems are given below. Corollary 3.1. Let v > −5+ √ 57 8 and qυ : U → C be defined as qυ (z) = 2 υΓ (υ + 1) z1− υ 2 ( (1 −υ) Jυ (√ z ) + √ zJ′υ (√ z )) . Suppose that α be positive real number such that these numbers satisfy the following inequality 0 ≤ 1 − α (3v + 6) 4v2 + 5v − 2 < 1. Then, the function Fv,α defined by Fv,α (z) = z∫ 0 ( qv(t) t )α dt is in the class C (β2), where β2 = 1 − α (3v + 6) 4v2 + 5v − 2 . In particular, (i) if α ≤ 15, then the function F1 2 ,α : U → C defined by F1 2 ,α (z) = z∫ 0 ( 3 2 ( sin √ t + √ t cos √ t ) √ t )α dt is in the class C (β3), where β3 = 1 − α15. (ii)If α ≤ 29 21 , then the function F3 2 ,α : U → C defined by F3 2 ,α (z) = z∫ 0 ( 3 2 ( (t− 1) sin √ t + √ t cos √ t ) t )α dt is in the class C (β4), where β4 = 1 − 21α29 . Int. J. Anal. Appl. 16 (4) (2018) 470 Corollary 3.2. Let v > −1+ √ 33 4 and qυ : U → C be defined as qυ (z) = 2 υΓ (υ + 1) z1− υ 2 ( (1 −υ) Jυ (√ z ) + √ zJ′υ (√ z )) . Suppose that δ be positive real numbers such that these numbers satisfy the following inequality 0 ≤ 1 − δ (3v + 6) 2v2 + v − 4 < 1. Then, the function Hv,δ defined as Hv,δ (z) = z∫ 0 (q′v(t)) δ dt is in the class C (γ2), where γ2 = 1 − nδ (3v + 6) 2v2 + v − 4 . In particular, (i) if δ ≤ 4 21 , then the function H3 2 ,α : U → C defined by H3 2 ,α (z) = z∫ 0 ( q′3 2 (t )δ dt is in the class C (γ3), where γ3 = 1 − 214 δ. References [1] Á. Baricz, Bessel transforms and Hardy space of generalized Bessel functions, Mathematica, 48(71) (2006), 127-136. [2] Á. Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics Vol. 1994, SpringerVerlag, Berlin, 2010. [3] Á. Baricz, E. Deniz and N. Yagmur, Close-to-convexity of normalized Dini functions, Math. Nech., 289 (2016), 1721-1726. [4] Á. Baricz, S. Ponnusamy and S. Singh, Modified Dini functions: monotonicity patterns and functional inequalities, Acta Math. Hungrica, 149(2016), 120-142. [5] Á. Baricz and R. Szász, The radius of convexity of normalized Bessel functions, Anal. Math., 41(3) (2015) 141-151. [6] D. Bansal and J. K. Prajapat. Certain geometric properties of the Mittag-Leffler functions, Complex Var. Ellipt. Equ., 61(3) (2016), 338-350. [7] E. Deniz, Ş. Gören and M. Çağlar, Starlikeness and convexity of the generalized Dini functions, AIP Conference Proceedings 1833, 020004 (2017); doi: 10.1063/1.4981652. [8] E. Deniz, H. Orhan and H. M. Srivastava, Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanese J. Math. 15(2) (2011), 883-917. [9] M. Din, M. Raza and E. Deniz, Sufficient conditions for univalence of integral operators involving Dini Functions, (Sub- mitted). [10] M. Din, H. M. Srivastava, M. Raza, Univalence of integral operators involving generalized Struve functions, Hacettepe J. Math. Stat., Doi: 10.15672/HJMS.2017.485. [11] H. Orhan and N. Yagmur, Geometric properties of generalized Struve functions, In The International Congress in Honour of Professor Hari M. Srivastava, (2012), 23-26. Int. J. Anal. Appl. 16 (4) (2018) 471 [12] H. M. Srivastava, B. A. Frasin and Virgil Pescar, Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inf. Sci. 11(3) (2017), 635-641. [13] G. N. Watson. A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, Cambridge, London and New York, 1944. 1. INTRODUCTION 2. Convexity of Integral Operators Defined by Generalized Dini Functions 3. Some particular cases of Dini function References