International Journal of Analysis and Applications Volume 17, Number 5 (2019), 734-751 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-17-2019-734 FIXED POINT THEOREMS FOR GENERALIZED F-CONTRACTIONS AND GENERALIZED F-SUZUKI-CONTRACTIONS IN COMPLETE DISLOCATED Sb-METRIC SPACES HAMID MEHRAVARAN, MAHNAZ KHANEHGIR∗ AND REZA ALLAHYARI Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran ∗Corresponding author: khanehgir@mshdiau.ac.ir Abstract. In this paper, first we describe the notion of dislocated Sb-metric space and then we introduce the new notions of generalized F-contraction and generalized F-Suzuki-contraction in the setup of dislocated Sb-metric spaces. We establish some fixed point theorems involving these contractions in complete dislocated Sb-metric spaces. We also furnish some examples to verify the effectiveness and applicability of our results. 1. Introduction and Preliminaries Bakhtin [1] and Czerwik [2] introduced b-metric spaces and proved the contraction principle in this frame- work. In recent times, many authors obtained fixed point results for single-valued or set-valued functions, in the setting of b-metric spaces. In 2012, Sedghi et al. [11] introduced the concept of S-metric space by modifying D-metric and G-metric spaces and proved some fixed point theorems for a self-mapping on a complete S-metric space. After that Özgür and TaŞ studied some generalizations of the Banach contraction principle on S-metric spaces in [8]. They also obtained some fixed point theorems for the Rhoades’ contractive condition on S-metric spaces [7]. Sedghi et al. [10] introduced the concept of Sb-metric space as a generalization of S-metric space and proved some coupled common fixed point theorems in Sb-metric space. Kishore et al. [4] proved some fixed point Received 2019-03-11; accepted 2019-07-24; published 2019-09-02. 2010 Mathematics Subject Classification. 47H09, 47H10. Key words and phrases. Dislocated metric space; Fixed point; Generalized F-contraction; Generalized F-Suzuki-contraction; Sb-Metric space. c©2019 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 734 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-17-2019-734 Int. J. Anal. Appl. 17 (5) (2019) 735 theorems for generalized contractive conditions in partially ordered complete Sb-metric spaces and gave some applications to integral equations and homotopy theory. On the other hand, Wardowski [12] introduced a new contraction, the so-called F-contraction, and ob- tained a fixed point result as a generalization of the Banach contraction principle. Thereafter, Dung and Hang [3] studied the notion of a generalized F-contraction and established certain fixed point theorems for such mappings. Recently, Piri and Kumam [6] extended the fixed point results of [12] by introducing a generalized F-Suzuki-contraction in b-metric spaces. Motivated by the aforementioned works, in this paper, we first introduce the notion of dislocated Sb- metric space and then we describe some fixed point results of [3], [6] by introducing generalized F-contractions and generalized F-Suzuki-contractions in dislocated Sb-metric spaces. We begin with some basic well-known definitions and results which will be used further on. Throughout this paper R, R+, N denote the set of all real numbers, the set of all nonnegative real numbers and the set of all positive integers, respectively. Definition 1.1. [11] Let X be a nonempty set. An S-metric on X is a function S : X3 → R+ that satisfies the following conditions: (S1) 0 < S(x,y,z) for each x,y,z ∈ X with x 6= y 6= z 6= x, (S2) S(x,y,z) = 0 if and only if x = y = z, (S3) S(x,y,z) ≤ S(x,x,a) + S(y,y,a) + S(z,z,a) for each x,y,z,a ∈ X. Then the pair (X,S) is called an S-metric space. Definition 1.2. [10] Let X be a nonempty set and b ≥ 1 be a given real number. Suppose that a mapping Sb : X 3 → R+ satisfies: (Sb1) 0 < Sb(x,y,z) for all x,y,z ∈ X with x 6= y 6= z 6= x, (Sb2) Sb(x,y,z) = 0 if and only if x = y = z, (Sb3) Sb(x,y,z) ≤ b ( Sb(x,x,a) + Sb(y,y,a) + Sb(z,z,a) ) for all x,y,z,a ∈ X. Then Sb is called an Sb-metric on X and the pair (X,Sb) is called an Sb-metric space. Definition 1.3. [10] If (X,Sb) is an Sb-metric space, a sequence {xn} in X is said to be: (1) Cauchy sequence if, for each ε > 0, there exists n0 ∈ N such that Sb(xn,xn,xm) < ε for all m,n ≥ n0. (2) convergent to a point x ∈ X if, for each ε > 0, there exists a positive integer n0 such that Sb(xn,xn,x) < ε or Sb(x,x,xn) < ε for all n ≥ n0, and we denote by lim n→∞ xn = x. Definition 1.4. [10] An Sb-metric space (X,Sb) is called complete if every Cauchy sequence is convergent in X. Int. J. Anal. Appl. 17 (5) (2019) 736 Example 1.1. [9] Let X = R. Define Sb : X3 → R+ by Sb(x,y,z) = |x− z| + |y − z| for all x,y,z ∈ X. Then (X,Sb) is a complete Sb-metric space with b = 2. Definition 1.5. Let (X,Sb) be an Sb-metric space. Then Sb is called symmetric if Sb(x,x,y) = Sb(y,y,x) (1.1) for all x,y ∈ X. It is easy to see that the symmetry condition (1.1) is automatically satisfied by an S-metric [11]. We conclude this section recalling the following fixed point theorems of Dung and Hang [3] and Piri and Kumam [6]. For this, we need some preliminaries. Definition 1.6. [12] Let F be the family of all functions F : (0, +∞) → R such that: (F1) F is strictly increasing, that is for all α,β ∈ (0, +∞) such that α < β, F(α) < F(β), (F2) for each sequence {αn} of positive numbers, lim n→+∞ αn = 0 if and only if lim n→+∞ F(αn) = −∞, (F3) there exists k ∈ (0, 1) such that lim α→0+ αkF(α) = 0. In 2014, Piri and Kumam [5] described a large class of functions by replacing the condition (F3) in the above definition with the following one: (F3′) F is continuous on (0, +∞). They denote by F the family of all functions F : (0, +∞) → R which satisfy conditions (F1), (F2), and (F3′). Example 1.2. (see [5], [13]) The following functions F : (0, +∞) → R are the elements of F. (1) F(α) = − 1√ α , (2) F(α) = −1 α + α, (3) F(α) = 1 1−eα , (4) F(α) = ln α, (5) F(α) = ln α + α. Definition 1.7. [3] Let (X,d) be a metric space. A mapping T : X → X is said to be a generalized F -contraction on (X,d) if there exist F ∈F and τ > 0 such that, for all x,y ∈ X, d(Tx,Ty) > 0 ⇒ τ + F ( d(Tx,Ty) ) ≤ F ( N(x,y) ) , in which N(x,y) = max { d(x,y),d(x,Tx),d(y,Ty), d(x,Ty) + d(y,Tx) 2 , d(T2x,x) + d(T2x,Ty) 2 ,d(T2x,Tx),d(T2x,y),d(T2x,Ty) } . Int. J. Anal. Appl. 17 (5) (2019) 737 Theorem 1.1. [3] Let (X,d) be a complete metric space and let T : X → X be a generalized F -contraction mapping. If T or F is continuous, then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx} converges to x∗. We use FG to denote the set of all functions F : (0, +∞) → R which satisfy conditions (F1) and (F3′) and Ψ to denote the set of all functions ψ : R+ → R+ such that ψ is continuous and ψ(t) = 0 if and only if t = 0 (see [6]). Definition 1.8. [6] Let (X,d) be a b-metric space. A self-mapping T : X → X is said to be a generalized F -Suzuki-contraction if there exists F ∈ FG such that, for all x,y ∈ X with x 6= y, 1 2s d(x,Tx) < d(x,y) ⇒ F ( s5d(Tx,Ty) ) ≤ F ( MT (x,y) ) −ψ ( MT (x,y) ) , in which ψ ∈ Ψ and MT (x,y) = max { d(x,y),d(T2x,y), d(Tx,y) + d(x,Ty) 2s , d(T2x,x) + d(T2x,Ty) 2s , d(T2x,Ty) + d(T2x,Tx),d(T2x,Ty) + d(Tx,x),d(Tx,y) + d(y,Ty) } . Theorem 1.2. [6] Let (X,d) be a complete b-metric space and T : X → X be a generalized F -Suzuki- contraction.Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx} converges to x∗. 2. Main results In this section, we first introduce the concept of dislocated Sb-metric space and then we demonstrate some fixed point results for generalized F-contractions and generalized F-Suzuki-contractions in such spaces. Our results are remarkable for two reasons: first dislocated Sb- metric is more general, second the contractivity condition involves auxiliary functions form a wider class. Definition 2.1. Let X be a nonempty set and b ≥ 1 be a given real number. A mapping Sb : X3 → R+ is a dislocated Sb-metric if, for all x,y,z,a ∈ X, the following conditions are satisfied: (dSb1) Sb(x,y,z) = 0 implies x = y = z, (dSb2) Sb(x,y,z) ≤ b ( Sb(x,x,a) + Sb(y,y,a) + Sb(z,z,a) ) . A dislocated Sb-metric space is a pair (X,Sb) such that X is a nonempty set and Sb is a dislocated Sb-metric on X. In the case that b = 1, Sb is denoted by S and it is called dislocated S-metric, and the pair (X,S) is called dislocated S-metric space. Definition 2.2. Let (X,Sb) be a dislocated Sb-metric space, {xn} be any sequence in X and x ∈ X. Then: (i) The sequence {xn} is said to be a Cauchy sequence in (X,Sb) if, for each ε > 0, there exists n0 ∈ N such that Sb(xn,xn,xm) < ε for each m,n ≥ n0. Int. J. Anal. Appl. 17 (5) (2019) 738 (ii) The sequence {xn} is said to be convergent to x if, for each ε > 0, there exists a positive integer n0 such that Sb(x,x,xn) < ε for all n ≥ n0 and we denote it by lim n→∞ xn = x. (iii) (X,Sb) is said to be complete if every Cauchy sequence is convergent. The following example shows that a dislocated Sb-metric need not be a dislocated S-metric. Example 2.1. Let X = R+, then the mapping Sb : X3 → R+ defined by Sb(x,y,z) = x + y + 4z is a complete dislocated Sb-metric on X with b = 2. However, it is not a dislocated S-metric space. Indeed, we have 4 = Sb(0, 0, 1) � 2Sb(0, 0, 0) + Sb(1, 1, 0) = 2. Definition 2.3. Suppose that (X,Sb) is a dislocated Sb-metric space. A mapping T : X → X is said to be a generalized F -contraction on (X,Sb) if there exist F ∈ F and τ > 0 such that for all x,y ∈ X, Sb(Tx,Tx,Ty) > 0 ⇒ τ + F ( b2Sb(Tx,Tx,Ty) ) ≤ F ( N(x,y) ) , (2.1) where N(x,y) = max { Sb(x,x,y),Sb(Tx,Tx,Ty), Sb(y,y,Tx) 10b8 , Sb(x,x,Ty) 10b9 , Sb(y,y,T 2x) 10b4 } . Our first main result is the following. Theorem 2.1. Let (X,Sb) be a complete dislocated Sb-metric space and T : X → X be a generalized F -contraction mapping satisfying the following condition: max {Sb(y,y,Ty) 5b7 + Sb(Tx,Tx,Ty) 10b7 , Sb(x,x,Ty) 10b9 , Sb(y,y,T 2x) 10b4 } ≤ Sb(Tx,Tx,Ty) for all x,y ∈ X. Then T has a unique fixed point v ∈ X. Proof. Let x0 be an arbitrary point in X and let {xn} be the Picard sequence of T based on x0, that is, xn+1 = Txn for n = 0, 1, 2, . . . . If there exists n0 ∈ N such that Sb(xn0,xn0,xn0+1 ) = 0, then xn0 is a fixed point of T and the existence part of the proof is finished. On the contrary case, assume that Sb(xn,xn,xn+1) > 0 for all n ∈ N∪{0}. Applying the contractivity condition (2.1), we get F ( b2Sb(Txn−1,Txn−1,Txn) ) ≤ F ( N(xn−1,xn) ) − τ. (2.2) Using the definition of N(x,y) and the property (dSb2), we obtain that max { Sb(xn−1,xn−1,xn),Sb(xn,xn,xn+1) } ≤ N(xn−1,xn) (2.3) = max { Sb(xn−1,xn−1,xn),Sb(xn,xn,Txn), Sb(xn,xn,Txn−1) 10b8 , Sb(xn−1,xn−1,Txn) 10b9 , Sb(xn,xn,Txn) 10b4 } ≤ max{Sb(xn−1,xn−1,xn),Sb(xn,xn,Txn), 3Sb(xn,xn,xn+1) 10b7 , Sb(xn−1,xn−1,Txn) 10b9 , Sb(xn,xn,Txn) 10b4 } = max { Sb(xn−1,xn−1,xn),Sb(xn,xn,xn+1) } . Int. J. Anal. Appl. 17 (5) (2019) 739 Then N(xn−1,xn) = max { Sb(xn−1,xn−1,xn),Sb(xn,xn,xn+1) } and so (2.2), becomes F ( b2Sb(Txn−1,Txn−1,Txn) ) ≤ F ( max { Sb(xn−1,xn−1,xn),Sb(xn,xn,xn+1) }) − τ. If we assume that max { Sb(xn−1,xn−1,xn),Sb(Txn−1,Txn−1,Txn) } = Sb(Txn−1,Txn−1,Txn) for some n, then we have F ( b2Sb(Txn−1,Txn−1,Txn) ) ≤ F ( Sb(Txn−1,Txn−1,Txn) ) − τ < F ( Sb(Txn−1,Txn−1,Txn) ) . Using condition (F1) we conclude that Sb(xn,xn,xn+1) < Sb(xn,xn,xn+1), which is a contradiction. There- fore, for each n ∈ N we have max { Sb(xn−1,xn−1,xn),Sb(xn,xn,xn+1) } = Sb(xn−1,xn−1,xn). Applying again (2.2) and condition (F1), we deduce that Sb(xn,xn,xn+1) < Sb(xn−1,xn−1,xn) for each n. Thus { Sb(xn,xn,xn+1) } is a nonnegative decreasing sequence of real numbers. Then there exists A ≥ 0 such that lim n→+∞ Sb(xn,xn,xn+1) = inf n∈N Sb(xn,xn,xn+1) = A. We claim that A = 0. To support the claim, let it be untrue and A > 0. Then, for any ε > 0, it is possible to find a positive integer m so that Sb(xm,xm,Txm) < A + ε. So, from (F1), we get F ( Sb(xm,xm,Txm) ) < F(A + ε). (2.4) It follows from (2.1) that τ + F ( b2Sb(Txm,Txm,T 2xm) ) ≤ F ( N(xm,Txm)). (2.5) By a similar argument as (2.3), it yields that N(xm,Txm) = max { Sb(xm,xm,Txm),Sb(Txm,Txm,T 2xm) } . Hence (2.5), becomes F ( b2Sb(Txm,Txm,T 2xm) ) ≤ F ( max { Sb(xm,xm,Txm),Sb(Txm,Txm,T 2xm) }) − τ. (2.6) Now if, max{Sb(xm,xm,Txm),Sb(Txm,Txm,T2xm)} = Sb(Txm,Txm,T2xm) for some m, then (2.6) gives us a contradiction. Thus, we infer that max { Sb(xm,xm,Txm),Sb(Txm,Txm,T 2xm) } = Sb(xm,xm,Txm), Int. J. Anal. Appl. 17 (5) (2019) 740 and therefore, we have F ( b2Sb(Txm,Txm,T 2xm) ) ≤ F ( Sb(xm,xm,Txm) ) − τ. It implies that F ( b2Sb(T 2xm,T 2xm,T 3xm) ) ≤ F ( Sb(Txm,Txm,T 2xm) ) − τ ≤ F ( b2Sb(Txm,Txm,T 2xm) ) − τ ≤ F ( Sb(xm,xm,Txm) ) − 2τ. Continuing the above process and taking (2.4) into account, we deduce that F ( b2Sb(T nxm,T nxm,T n+1xm) ) ≤ F ( Sb(T n−1xm,T n−1xm,T nxm) ) − τ ≤ F ( b2Sb(T n−1xm,T n−1xm,T nxm) ) − τ ≤ F ( Sb(T n−2xm,T n−2xm,T n−1xm) ) − 2τ . . . ≤ F ( Sb(xm,xm,Txm) ) −nτ < F(A + ε) −nτ, and by passing to the limit as n → +∞ we obtain lim n→+∞ F ( b2Sb(T nxm,T nxm.T n+1xm) ) = −∞. This fact together with the condition (F2) implies that lim n→+∞ Sb(T nxm,T nxm,T n+1xm) = 0. Thus Sb(T nxm,T nxm,T n+1xm) < A for n sufficiently large, which is a contradiction with the definition of A. Then, lim n→+∞ Sb(xn,xn,xn+1) = 0. (2.7) Next, we intend to show that the sequence {xn} is a Cauchy sequence in X. Arguing by contradiction, we assume that there exist ε > 0, and subsequences {xq(n)} and {xp(n)} of {xn} with n < q(n) < p(n) such that Sb(xq(n),xq(n),xp(n)) ≥ ε (2.8) for each n ∈ N. Further, corresponding to q(n), we can choose p(n) in such a way that it is the smallest integer with q(n) < p(n) satisfying the above inequality, then Sb(xq(n),xq(n),xp(n)−1) < ε (2.9) for all n ∈ N. In the light of (2.8) and the condition (2.1), we conclude that F ( b2Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) ) ≤ F ( N(xq(n)−1,xp(n)−1) ) − τ. (2.10) Int. J. Anal. Appl. 17 (5) (2019) 741 By our hypothesis and in view of (dSb2), we get max { Sb(xq(n)−1,xq(n)−1,xp(n)−1),Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) } ≤ N(xq(n)−1,xp(n)−1) = max { Sb(xq(n)−1,xq(n)−1,xp(n)−1),Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1), Sb(xp(n)−1,xp(n)−1,Txq(n)−1) 10b8 , Sb(xq(n)−1,xq(n)−1,TxP(n)−1) 10b9 , Sb(xp(n)−1,xp(n)−1,Txq(n)) 10b4 } ≤ max { Sb(xq(n)−1,xq(n)−1,xp(n)−1),Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1), Sb(xp(n)−1,xp(n)−1,Txp(n)−1) 5b7 + Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) 10b7 , Sb(xq(n)−1,xq(n)−1,TxP(n)−1) 10b9 , Sb(xp(n)−1,xp(n)−1,Txq(n)) 10b4 } ≤ max { Sb(xq(n)−1,xq(n)−1,xp(n)−1),Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) } . It enforces that N(xq(n)−1,xp(n)−1) = max { Sb(xq(n)−1,xq(n)−1,xp(n)−1),Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) } . Suppose that the maximum on the right-hand side is equal to Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) for some n, then from relation (2.10) together with the condition (F1) we get Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) < Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) which is a contradiction. Thus, we find that max { xq(n)−1,xq(n)−1,xp(n)−1),Sb(xq(n),xq(n),xp(n)) } = Sb(xq(n)−1,xq(n)−1,xp(n)−1) for all n. Accordingly, (2.10) becomes F ( b2Sb(Txq(n)−1,Txq(n)−1,Txp(n)−1) ) ≤ F ( Sb(xq(n)−1,xq(n)−1,xp(n)−1) ) − τ (2.11) and so using (F1) we get Sb ( xq(n),xq(n),xp(n) ) < Sb(xq(n)−1,xq(n)−1,xp(n)−1). (2.12) Regarding to (2.8), (2.12) and employing (dSb2) we observe that ε ≤ Sb(xq(n),xq(n),xp(n)) < Sb(xq(n)−1,xq(n)−1,xp(n)−1) ≤ 2bSb(xq(n)−1,xq(n)−1,xq(n)) + bSb(xp(n)−1,xp(n)−1,xq(n)) ≤ 2bSb(xq(n)−1,xq(n)−1,xq(n)) + 2b 2Sb(xp(n)−1,xp(n)−1,xp(n)−1) +b2Sb(xq(n),xq(n),xp(n)−1) ≤ 2bSb(xq(n)−1,xq(n)−1,xq(n)) + 6b 3Sb(xp(n)−1,xp(n)−1,xp(n)) +b2Sb(xq(n),xq(n),xp(n)−1). Combining this result with (2.7) and (2.9) we get ε ≤ lim sup n→+∞ Sb(xq(n),xq(n),xp(n)) ≤ lim sup n→+∞ Sb(xq(n)−1,xq(n)−1,xp(n)−1) ≤ b 2ε. (2.13) Int. J. Anal. Appl. 17 (5) (2019) 742 In view of (2.13) and (2.11) and applying the conditions (F1) and (F3′), we have F(b2ε) ≤ F ( b2 lim sup n→+∞ Sb(xq((n),xq(n),xp(n)) ) ≤ F ( lim sup n→+∞ Sb(xq(n)−1,xq(n)−1,xp(n)−1) ) − τ ≤ F(b2ε) − τ. It is a contradiction with τ > 0, and therefore it follows that {xn} is a Cauchy sequence in X. By completeness of (X,Sb), {xn} converges to some point v ∈ X. Then, for each ε > 0, there exists N1 ∈ N such that Sb(v,v,xn) < ε, (2.14) for all n ≥ N1. We are going to show that v is a fixed point of T. For this aim, we consider two following cases: Case 1. If Sb(Tv,Tv,Txn) = 0 for some n ≥ N1, then from (dSb2) we find that Sb(Tv,Tv,v) ≤ 2bSb(Tv,Tv,Txn) + bSb(v,v,Txn) ≤ bε. Case 2. If Sb(Tv,Tv,Txn) > 0 for all n ≥ N1, then using (2.1), we get F ( b2Sb(Tv,Tv,Txn) ) ≤ F ( N(v,xn) ) − τ. (2.15) From our assumptions, and using (dSb2), it follows that max { Sb(v,v,xn),Sb(Tv,Tv,Txn) } ≤ N(v,xn) = max { Sb(v,v,xn),Sb(Tv,Tv,Txn), Sb(xn,xn,Tv) 10b8 , Sb(v,v,Txn) 10b9 , Sb(xn,xn,T 2v) 10b4 } ≤ max { Sb(v,v,xn),Sb(Tv,Tv,Txn), Sb(xn,xn,Txn) 5b7 + Sb(Tv,Tv,Txn) 10b7 , Sb(v,v,Txn) 10b9 , Sb(xn,xn,T 2v) 10b4 } = max { Sb(v,v,xn),Sb(Tv,Tv,Txn) } . It enforces that N(v,xn) = max { Sb(v,v,xn),Sb(Tv,Tv,Txn) } . Now, if we assume that the maximum on the right-hand side of this equality is equal to Sb(Tv,Tv,Txn), then by replacing it in (2.15), we obtain Sb(Tv,Tv,Txn) < Sb(Tv,Tv,Txn) which is a contradiction. Consequently, for each n ∈ N we have max { Sb(v,v,xn),Sb(Tv,Tv,Txn) } = Sb(v,v,xn). Hence, (2.15) turns into F ( b2Sb(Tv,Tv,Txn) ) ≤ F ( Sb(v,v,xn) ) − τ < F ( Sb(v,v,xn) ) . Employing the condition (F1), we get Sb(Tv,Tv,Txn) < Sb(v,v,xn). (2.16) Int. J. Anal. Appl. 17 (5) (2019) 743 From (dSb2), (2.16) and (2.14), we deduce that Sb(Tv,Tv,v) ≤ 2bSb(Tv,Tv,TxN1 ) + bSb(v,v,TxN1 ) < 3bε. From the arbitrariness of ε in each case, it follows that Sb(Tv,Tv,v) = 0 which implies that Tv = v. Hence, v is a fixed point of T. Finally, we show that T has at most one fixed point. Indeed, if v1,v2 ∈ X are two fixed points of T, such that v1 6= v2, then we obtain F ( b2Sb(Tv1,Tv1,Tv2) ) ≤ F(N(v1,v2) ) − τ, (2.17) From our hypothesis and by using (dSb2), it follows that Sb(v1,v1,v2) ≤ N(v1,v2) ≤ max { Sb(v1,v1,v2),Sb(Tv1,Tv1,Tv2), Sb(v2,v2,Tv2) 5b7 + Sb(Tv1,Tv1,Tv2) 10b7 , Sb(v1,v1,Tv2) 10b9 , Sb(Tv2,Tv2,T 2v1) 10b4 } = max { Sb(v1,v1,v2),Sb(Tv1,Tv1,Tv2) } = Sb(v1,v1,v2). Then (2.17) becomes F ( b2Sb(v1,v1,v2) ) ≤ F(Sb(v1,v1,v2) ) − τ. It gives us a contradiction. Therefore, v1 = v2 and the fixed point is unique. � Now we illustrate our result contained in Theorem 2.1 with help of two examples. Example 2.2. Let (X,Sb) be as in Example 2.1 and let τ > 0 be an arbitrary fixed number. Define the mapping T : X → X by T(x) = e−τ x 8 and take F(α) = ln α + α (α > 0). It is easily verified that N(x,y) = Sb(x,x,y) = 2x + 4y. Assume that x or y is nonzero, then Sb(Tx,Tx,Ty) > 0 and we have τ + F ( b2Sb(Tx,Tx,Ty) ) = τ + ln(e−τ (x + 2y)) + e−τ (x + 2y) = ln(x + 2y) + e−τ (x + 2y) ≤ ln(2x + 4y) + 2x + 4y = F ( Sb(x,x,y) ) = F ( N(x,y) ) . Hence, T is a generalized F -contraction. On the other hand, if we assume that 0 < τ ≤ 0.0250587314, then the following estimate holds: max {Sb(y,y,Ty) 5b7 + Sb(Tx,Tx,Ty) 10b7 , Sb(x,x,Ty) 10b9 , Sb(y,y,T 2x) 10b4 } = max {2y + e−τ y 2 5 × 27 + e−τ ( x 4 + y 2 ) 10 × 27 , 2x + e−τ y 2 10 × 29 , 2y + e−2τ x 16 10 × 24 } ≤ e−τ ( x 4 + y 2 ) = Sb(Tx,Tx,Ty). Thus all conditions of Theorem 2.1 hold and 0 is a unique fixed point of T. Int. J. Anal. Appl. 17 (5) (2019) 744 Example 2.3. Let X = R, and Sb : X3 → R+ be a mapping defined by Sb(x,y,z) = x2 2 + y 2 2 + 2z2. Then (X,Sb) is a complete dislocated Sb-metric with b = 2. Define the mapping T : X → X by T(x) = x 3 and take F(α) = ln α (α > 0). It is easily checked that N(x,y) = Sb(x,x,y) = x2 + 2y2. Assume that x or y is nonzero, then Sb(Tx,Tx,Ty) > 0 and we have τ + F ( b2Sb(Tx,Tx,Ty) ) ≤ F ( N(x,y) ) ⇔ ln( 9 4 ) ≥ τ. Also, we observe that max {Sb(y,y,Ty) 5b7 + Sb(Tx,Tx,Ty) 10b7 , Sb(x,x,Ty) 10b9 , Sb(y,y,T 2x) 10b4 } = max {48y2 + 2x2 23040 , 18x2 + 4y2 92160 , 162y2 + 4x2 25920 } ≤ 10240x2 + 20480y2 92160 = Sb(Tx,Tx,Ty) for all x,y ∈ X. Now, if we assume that 0 < τ ≤ ln( 9 4 ), then all the conditions of Theorem 2.1 hold and 0 is a unique fixed point of T . Now, we describe the concept of generalized F-Suzuki-contraction in the framework of dislocated Sb-metric spaces. Definition 2.4. Let (X,Sb) be a dislocated Sb-metric space. A mapping T : X → X is said to be a generalized F -Suzuki-contraction if there exists F ∈ F such that for all x,y ∈ X 1 2b Sb(x,x,Tx) < Sb(x,x,y) ⇒ F ( 2b3Sb(Tx,Tx,Ty) ) ≤ F ( MT (x,y) ) −ψ ( MT (x,y) ) , (2.18) where ψ ∈ Ψ and MT (x,y) = max { Sb(x,x,y), Sb(y,y,Ty) 10 , Sb(x,x,Tx) 10 ,Sb(Tx,Tx,Ty), Sb(y,y,Tx) 18b , Sb(Tx,Tx,T 2x) 2 } . Our second main result is the following. Theorem 2.2. Let (X,Sb) be a complete dislocated Sb-metric space and T : X → X be a generalized F -Suzuki-contraction satisfying the following condition: max {Sb(y,y,Ty) 10 , Sb(x,x,Tx) 10 , Sb(y,y,Ty) 9 + Sb(Tx,Tx,Ty) 18 , Sb(Tx,Tx,T 2x) 2 } ≤ Sb(Tx,Tx,Ty) for all x,y in X. Then T has a unique fixed point in X. Proof. Let x0 be arbitrary. Define xn = Txn−1 for each n ∈ N. If there exists n ∈ N such that Sb(xn,xn,Txn) = 0, then xn = Txn and xn becomes a fixed point of T, which completes the proof. Therefore, we assume that Sb(xn,xn,Txn) > 0 for all n ∈ N. Taking into account (2.18), we deduce F ( 2b3Sb(Txn,Txn,Txn+1) ) ≤ F ( MT (xn,xn+1) ) −ψ ( MT (xn,xn+1) ) . (2.19) Int. J. Anal. Appl. 17 (5) (2019) 745 Using (dSb2) we get max { Sb(xn,xn,xn+1),Sb(xn+1,xn+1,Txn+1) } ≤ MT (xn,xn+1) ≤ max { Sb(xn,xn,xn+1), Sb(xn+1,xn+1,Txn+1) 10 , Sb(xn,xn,Txn) 10 , Sb(Txn,Txn,Txn+1), Sb(Txn,Txn,Txn+1) 2 , Sb(xn+1,xn+1,xn+2) 6 } = max { Sb(xn,xn,xn+1),Sb(xn+1,xn+1,xn+2) } and combining it with the relation (2.19) we derive F ( 2b3Sb(Txn,Txn,Txn+1) ) ≤ F ( max { Sb(xn,xn,xn+1),Sb(xn+1,xn+1,xn+2 }) −ψ ( max { Sb(xn,xn,xn+1),Sb(xn+1,xn+1,xn+2 }) . (2.20) If max { Sb(xn,xn,xn+1),Sb(xn+1,xn+1,xn+2) } = Sb(xn+1,xn+1,xn+2), then (2.20) becomes F ( 2b3Sb(Txn,Txn,Txn+1) ) ≤ F ( Sb(xn+1,xn+1,xn+2) ) −ψ ( S(xn+1,xn+1,xn+2) ) . By the property of ψ and using condition (F1), we obtain 2b3Sb(Txn,Txn,Txn+1) < Sb(Txn,Txn,Txn+1), which is a contradiction. Hence max { Sb(xn,xn,xn+1),Sb(xn+1,xn+1,xn+2) } = Sb(xn,xn,xn+1), then (2.20) be- comes F ( 2b3Sb(Txn,Txn,Txn+1) ) ≤ F ( Sb(xn,xn,xn+1) ) −ψ ( S(xn,xn,xn+1) ) . (2.21) This together with condition (F1) implies that Sb(Txn,Txn,Txn+1) < Sb(xn,xn,xn+1) for each n ∈ N. Then {Sb(xn,xn,xn+1)} is a nonnegative decreasing sequence of real numbers. Therefore, there exists A ≥ 0 such that lim n→+∞ Sb(xn,xn,xn+1) = A. Letting n → +∞ in (2.21) and using (F3′) and continuity of ψ, we get F(2b3A) ≤ F(A) −ψ(A). It gives us ψ(A) = 0. By property of ψ we deduce that A = 0. Consequently, we have lim n→+∞ Sb(xn,xn,xn+1) = 0. (2.22) Next, we prove that {xn} is a Cauchy sequence in X. If it is not true, then there exist ε > 0 and increasing sequences of natural numbers {p(n)} and {q(n)} such that n < q(n) < p(n), Sb(xq(n),xq(n),xp(n)) ≥ ε, Sb(xq(n),xq(n),xp(n)−1) < ε (2.23) for all n ∈ N. Owing to (2.22), there exists N1 ∈ N such that Sb(xq(n),xq(n),Txq(n)) < ε (2.24) Int. J. Anal. Appl. 17 (5) (2019) 746 for all n ≥ N1. Hence, from (2.23) and (2.24) it follows that 1 2b Sb(xq(n),xq(n),Txq(n)) < 1 2b ε < Sb(xq(n),xq(n),xp(n)) for all n ≥ N1. By using (2.18) we obtain F ( 2b3Sb(Txq(n),Txq(n),Txp(n)) ) ≤ F ( MT (xq(n),xp(n)) ) −ψ ( MT (xq(n),xp(n)) ) . (2.25) From our assumptions and regarding (dSb2), we get max { Sb(xq(n),xq(n),xp(n)),Sb(Txq(n),Txq(n),Txp(n)) } ≤ MT (xq(n),xp(n)) ≤ max { Sb(xq(n),xq(n),xp(n)), Sb(xp(n),xp(n),xp(n)+1) 10 ,Sb(Txq(n),Txq(n),Txp(n)) Sb(xq(n),xq(n),xq(n)+1) 10 , Sb(xq(n)+1,xq(n)+1,xq(n)+2) 2 , Sb(xp(n),xp(n),xp(n)+1) 9 + Sb(xq(n)+1,xq(n)+1,xp(n)+1) 18 } ≤ max { Sb(xq(n),xq(n),xp(n)),Sb(xq(n)+1,xq(n)+1,xp(n)+1) } . Then (2.25) becomes F ( 2b3Sb(Txq(n),Txq(n),Txp(n)) ) ≤ F ( max { Sb(xq(n),xq(n),xp(n)),Sb(xq(n)+1,xq(n)+1,xp(n)+1) }) − ψ ( max { Sb(xq(n),xq(n),xp(n)),Sb(xq(n)+1,xq(n)+1,xp(n)+1) }) . If max { Sb(xq(n),xq(n),xp(n)),Sb(xq(n)+1,xq(n)+1,xp(n)+1) } = Sb(xq(n)+1,xq(n)+1,xp(n)+1) for some n, then we have F ( 2b3Sb(Txq(n),Txq(n),Txp(n)) ) ≤ F ( Sb(xq(n)+1,xq(n)+1,xp(n)+1) ) − ψ ( Sb(xq(n)+1,xq(n)+1,xp(n)+1) ) . Obviously, Sb(xq(n)+1,xq(n)+1,xp(n)+1) > 0 and by the property of ψ and (F1), we get Sb(Txq(n),Txq(n),Txp(n)) < Sb(xq(n)+1,xq(n)+1,xp(n)+1), which is a contradiction. Duo to this fact, we find that max { Sb(xq(n),xq(n),xp(n)),Sb(xq(n)+1,xq(n)+1,xp(n)+1) } = Sb(xq(n),xq(n),xp(n)) for all n. Therefore F ( 2b3Sb(Txq(n),Txq(n),Txp(n)) ) ≤ F ( Sb(xq(n),xq(n),xp(n)) ) −ψ ( Sb(xq(n),xq(n),xp(n)) ) , (2.26) and by (F1), it follows that Sb(xq(n)+1,xq(n)+1,xp(n)+1) < Sb(xq(n),xq(n),xp(n)). Int. J. Anal. Appl. 17 (5) (2019) 747 In view of (2.23) and (dSb2), we infer that ε ≤ Sb(xq(n),xq(n),xp(n)) ≤ 2bSb(xq(n),xq(n),xp(n)−1) + bSb(xp(n),xp(n),xp(n)−1) ≤ 2bSb(xq(n),xq(n),xp(n)−1) + 2b 2Sb(xp(n),xp(n),xp(n)) + b 2Sb(xp(n)−1,xp(n)−1,xp(n)) ≤ 2bSb(xq(n),xq(n),xp(n)−1) + 6b 3Sb(xp(n),xp(n),xp(n)+1) +b2Sb(xp(n)−1,xp(n)−1,xp(n)). Taking the limit as n → +∞ in the above inequality and regarding (2.22) and (2.23), we deduce that ε ≤ lim n→+∞ Sb(xq(n),xq(n),xp(n)) ≤ 2bε. (2.27) On the other hand, we have ε ≤ Sb(xq(n),xq(n),xp(n)) ≤ 2bSb(xq(n),xq(n),xq(n)+1) + bSb(xp(n),xp(n),xq(n)+1) ≤ 2bSb(xq(n),xq(n),xq(n)+1) + 2b 2Sb(xp(n),xp(n),xp(n)+1) +b2Sb(xq(n)+1,xq(n)+1,xp(n)+1). Taking the limit supremum as n → +∞ in the above inequality. By using (2.22) we obtain ε b2 ≤ lim sup n→+∞ Sb(xq(n)+1,xq(n)+1,xp(n)+1). (2.28) Taking the limit supremum as n → +∞ on each side of (2.26) and using conditions (2.27) and (2.28) together with (F1) and (F3′), we deduce that F(2bε) = F(2b3 ε b2 ) ≤ F ( 2b3 lim sup n→+∞ Sb(xq(n)+1,Sb(xq(n)+1,xp(n)+1) ) ≤ F ( lim sup n→+∞ Sb(xq(n),Sb(xq(n),xp(n)) ) −ψ ( lim inf n→+∞ Sb(xq(n),Sb(xq(n),xp(n)) ) ≤ F(2bε) −ψ(ε). It enforces that ψ(ε) = 0, which leads to a contradiction. Therefore {xn} is a Cauchy sequence in X. Since X is a complete dislocated Sb-metric space, it follows that there exists v ∈ X in which for each ε > 0, there exists N2 ∈ N such that Sb(v,v,xn) < ε (2.29) for all n > N2. Now, we prove that v is a fixed point of T. To this end, we show that Sb(Tv,Tv,v) = 0. We consider the following cases: Case 1. If Sb(v,v,xn) = 0 for sufficiently large n, then v = xn. Thus, for sufficiently large n, we can write Sb(Tv,Tv,v) = Sb(Txn,Txn,v) ≤ 2bSb(xn+1,xn+1,xn+2) + bSb(v,v,xn+2). Int. J. Anal. Appl. 17 (5) (2019) 748 Letting n → +∞ in the above inequality. From (2.22) and (2.29) we get Sb(Tv,Tv,v) = 0. Thus Tv = v and v is a fixed point of T . Case 2. If there exists n ≥ N2 such that Sb(v,v,xn) > 0 and Sb(Tv,Tv,Txn) = 0, then from (dSb2) we have Sb(Tv,Tv,v) ≤ 2bSb(Tv,Tv,Txn) + bSb(v,v,xn+1) ≤ bε, which implies that Tv = v by virtue of the arbitrariness of ε. Case 3. If Sb(v,v,xn) > 0 and Sb(Tv,Tv,Txn) > 0 for all n ≥ N2, then using (2.18) we obtain F ( 2b3Sb(Tv,Tv,Txn) ) ≤ F ( MT (v,xn) ) −ψ ( MT (v,xn) ) . (2.30) Thus, by using the hypothesis and taking into account (dSb2), it yields max { Sb(v,v,xn),Sb(Tv,Tv,Txn) } ≤ MT (v,xn) ≤ max { Sb(v,v,xn),Sb(Tv,Tv,Txn), Sb(xn,xn,Txn) 10 Sb(v,v,Tv) 10 , Sb(xn,xn,Txn) 9 + Sb(Tv,Tv,Txn) 18 , Sb(Tv,Tv,T 2v) 2 } ≤ max { Sb(v,v,xn),Sb(Tv,Tv,Txn) } . Then (2.30) becomes F ( 2b3Sb(Tv,Tv,Txn) ) ≤ F ( max { Sb(v,v,xn),Sb(Tv,Tv,Txn) }) − ψ ( max { Sb(v,v,xn),Sb(Tv,Tv,Txn) }) . If max { Sb(v,v,xn),Sb(Tv,Tv,Txn) } = Sb(Tv,Tv,Txn), then we have F ( 2b3Sb(Tv,Tv,Txn) ) ≤ F ( Sb(Tv,Tv,Txn) ) −ψ ( Sb(Tv,Tv,Txn) ) . From this it follows that 2b3Sb(Tv,Tv,Txn) < Sb(Tv,Tv,Txn), which is a contradiction. Therefore, max { Sb(v,v,xn),Sb(Tv,Tv,Txn) } = Sb(v,v,xn) and (2.30) becomes F ( 2b3Sb(Tv,Tv,Txn) ) ≤ F ( Sb(v,v,xn) ) −ψ ( Sb(v,v,xn) ) < F ( Sb(v,v,xn) ) . Thus, from (F1) we get Sb(Tv,Tv,Txn) < Sb(v,v,xn). (2.31) Applying (2.29), (2.31) and (dSb2) we get Sb(Tv,Tv,v) ≤ 2bSb(Tv,Tv,Txn) + bSb(v,v,xn+1) < 3bε for sufficiently large n. It enforces that Tv = v by virtue of the arbitrariness of ε. Then v is a fixed point of T. Int. J. Anal. Appl. 17 (5) (2019) 749 Next, we show the uniqueness. Indeed, if v1, v2 are two fixed points of T such that v1 6= v2, then in view of (2.18) we get F ( 2b3Sb(Tv1,Tv1,Tv2) ) ≤ F ( MT (v1,v2) ) −ψ ( MT (v1,v2) ) . (2.32) According to our assumptions and by using (dSb2), we find that Sb(v1,v1,v2) ≤ MT (v1,v2) ≤ max { Sb(v1,v1,v2),Sb(Tv1,Tv1,Tv2), Sb(v2,v2,Tv2) 10 , Sb(v1,v1,Tv1) 10 , Sb(v2,v2,Tv2) 9 + Sb(Tv1,Tv1,Tv2) 18 } ≤ max { Sb(v1,v1,v2),Sb(Tv1,Tv1,Tv2) } = Sb(v1,v1,v2). Then (2.32) becomes F ( 2b3Sb(v1,v1,v2) ) ≤ F ( Sb(v1,v1,v2) ) −ψ ( Sb(v1,v1,v2) ) . From this it follows that 2b3Sb(v1,v1,v2) < Sb(v1,v1,v2), which is a contradiction. Then v1 = v2 and so T has a unique fixed point in X. � Example 2.4. Let X = {−1, 0, 1}. Define the mapping Sb : X3 → R+ by Sb(x,y,z) =   3 2 , 0 = x = y 6= z = 1 or −1 = x = y 6= z = 1 10 6 , 1 = x = y 6= z 0, x = y = z = −1 or 1 1 5 , otherwise for all x,y,z ∈ X. It is easy to show that (X,Sb) is a complete dislocated Sb-metric space with b = 32. Put F(α) = ln α (α > 0) and ψ(t) = t (t ≥ 0). Define T : X → X by T(x) =   0, x = 1 −1, x = −1, 0. Note that Sb(x,x,y) > 0 and Sb(T(x),T(x),T(y)) > 0 if and only if x ∈ {−1, 0}, y = 1 or x = 1, y ∈ {−1, 0}. Also, for each x,y ∈ X we have MT (x,y) = Sb(x,x,y) and we find that F ( 2b3Sb(T(x),T(x),T(y)) ) ≤ F ( Sb(x,x,y) ) −ψ ( Sb(x,x,y) ) ⇔ ln Sb(x,x,y) 2b3Sb(T(x),T(x),T(y)) ≥ Sb(x,x,y). Now, we consider two cases: Int. J. Anal. Appl. 17 (5) (2019) 750 Case 2.1. Case 1. Let x ∈{−1, 0} and y = 1, then Sb(x,x,y) = 3 2 , Sb(T(x),T(x),T(y)) = Sb(−1,−1, 0) = 1 5 , Sb(0, 0,T(0)) = 1 5 , Sb(−1,−1,T(−1)) = 0. So, we have ln Sb(x,x,y) 2b3Sb(T(x),T(x),T(y)) = ln 3 2 54 40 = ln 120 108 = 3.0377 ≥ Sb(x,x,y) = 3 2 . Case 2. Let x = 1 and y ∈{−1, 0}, then Sb(x,x,y) = 10 6 , Sb(T(x),T(x),T(y)) = 1 5 , Sb(x,x,T(x)) = 10 6 . So, we have ln Sb(x,x,y) 2b3Sb(T(x),T(x),T(y)) = ln 10 6 54 40 = ln 400 324 = 3.4369 ≥ Sb(x,x,y) = 10 6 . On the other hand, for all x,y ∈ X we have max {Sb(y,y,T(y)) 10 , Sb(x,x,T(x)) 10 , Sb(y,y,T(y)) 9 + Sb(T(x),T(x),T(y)) 18 , Sb(T(x),T(x),T 2(x)) 2 } ≤ 1 5 = Sb(T(x),T(x),T(y)). Hence, T is a generalized F -Suzuki-contraction which satisfies the assumption of Theorem 2.2 and so it has a unique fixed point −1. References [1] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26–37. [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra. 1 (1993), 5–11. [3] N.V. Dung and V.L. Hang, A fixed point theorem for generalized F-contractions on complete metric spaces, Vietnam J. Math. 43 (2015), 743–753. [4] G.N.V. Kishore, K.P.R. Rao, D. Panthi, B. Srinuvasa Rao and S. Satyanaraya, Some applications via fixed point results in partially ordered Sb-metric spaces, Fixed Point Theory Appl. 2017 (2017), 10. [5] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 2014 (2014), 210. [6] H. Piri and P. Kumam, Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces, Fixed Point Theory Appl. 2016 (2016), 90 . [7] N.Y. Özgür and N. TaŞ, Some fixed point theorems on S-metric spaces, Mat. Vesnik 69 (1) (2017), 39-52. [8] N.Y. Özgür, N. TaŞ and U. Celik, New fixed point-circle results on S-metric spaces, Bull. Math. Anal. Appl. 9 (2) (2017), 10–23. [9] Y. Rohená,T. Došenović and S. Radenović, A note on the paper ”A Fixed point Theorems in Sb-Metric Spaces”, Filomal 31 (11) (2017), 3335–3346. Int. J. Anal. Appl. 17 (5) (2019) 751 [10] Sh. Sedghi, A. Gholidahne, T. Došenovic, J. Esfahani and S. Radenovic, Common fixed point of four maps in Sb-metric spaces, J. Linear Topol. Alg. 5 (2) (2016), 93–104. [11] Sh. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesn. 64 (2012), 258–266. [12] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94. [13] D. Wardowski and N.V. Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math. 47 (1) (2014), 146–155. 1. Introduction and Preliminaries 2. Main results References