International Journal of Analysis and Applications Volume 17, Number 4 (2019), 596-619 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-17-2019-596 MULTILINEAR BMO ESTIMATES FOR THE COMMUTATORS OF MULTILINEAR FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS ON THE PRODUCT GENERALIZED MORREY SPACES FERİT GÜRBÜZ Hakkari University, Faculty of Education, Department of Mathematics Education, Hakkari 30000, Turkey Corresponding author: feritgurbuz@hakkari.edu.tr Abstract. In this paper, we establish multilinear BMO estimates for commutators of multilinear frac- tional maximal and integral operators both on product generalized Morrey spaces and product generalized vanishing Morrey spaces, respectively. Similar results are still valid for commutators of multilinear maximal and singular integral operators. 1. Introduction and main results The classical Morrey spaces Lp,λ have been introduced by Morrey in [21] to study the local behavior of solutions of second order elliptic partial differential equations(PDEs). In recent years there has been an explosion of interest in the study of the boundedness of operators on Morrey-type spaces. It has been obtained that many properties of solutions to PDEs are concerned with the boundedness of some operators on Morrey- type spaces. Morrey spaces can complement the boundedness properties of operators that Lebesgue spaces can not handle. Morrey spaces which we have been handling are called classical Morrey spaces(see [21]). But, classical Morrey spaces are not totally enough to describe the boundedness properties. To this end, we need to generalize parameters p and q, among others p, but this issue will exceed the scope of the article, so we pass this part. Though we do not consider the direct applications of Morrey spaces to PDEs, Morrey Received 2019-03-25; accepted 2019-04-22; published 2019-07-01. 2010 Mathematics Subject Classification. 42B20, 42B25, 42B35. Key words and phrases. multi-sublinear fractional maximal operator; multilinear fractional integral operator; multilinear commutator; generalized Morrey space; generalized vanishing Morrey space; multilinear BMO space. c©2019 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 596 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-17-2019-596 Int. J. Anal. Appl. 17 (4) (2019) 597 spaces can be applied to PDEs. Applications to the second order elliptic partial differential equations can be found in [10] and [26]. We will say that a function f ∈ Lp,λ = Lp,λ (Rn) if sup x∈Rn,r>0  r−λ ∫ B(x,r) |f (y)|p dy   1/p < ∞. (1.1) Here, 1 < p < ∞ and 0 < λ < n and the quantity of (1.1) is the (p,λ)-Morrey norm, denoted by ‖f‖Lp,λ. In recent years, more and more researches focus on function spaces based on Morrey spaces to fill in some gaps in the theory of Morrey type spaces (see, for example, [11–14, 16, 18, 23, 25, 29]). Moreover, these spaces are useful in harmonic analysis and PDEs. But, this topic exceeds the scope of this paper. Thus, we omit the details here. On the other hand, the study of the operators of harmonic analysis in vanishing Morrey space, in fact has been almost not touched. A version of the classical Morrey space Lp,λ(Rn) where it is possible to approximate by ”nice” functions is the so called vanishing Morrey space V Lp,λ(Rn) has been introduced by Vitanza in [27] and has been applied there to obtain a regularity result for elliptic PDEs. This is a subspace of functions in Lp,λ(Rn), which satisfies the condition lim r→0 sup x∈Rn 00 ϕ(x,r)−1|B(x,r)|− 1 p‖f‖Lp(B(x,r)) < ∞ } . Obviously, the above definition recover the definition of Lp,λ(Rn) if we choose ϕ(x,r) = r λ−n p , that is Lp,λ (Rn) = Mp,ϕ (Rn) | ϕ(x,r)=r λ−n p . Int. J. Anal. Appl. 17 (4) (2019) 598 Everywhere in the sequel we assume that inf x∈Rn,r>0 ϕ(x,r) > 0 which makes the above spaces non-trivial, since the spaces of bounded functions are contained in these spaces. We point out that ϕ(x,r) is a measurable nonnegative function and no monotonicity type condition is imposed on these spaces. In [12], [16], [18], [19] and [25], the boundedness of the maximal operator and Calderón-Zygmund operator on the generalized Morrey spaces Mp,ϕ has been obtained, respectively. For brevity, in the sequel we use the notations Mp,ϕ (f; x,r) := |B(x,r)|− 1 p ‖f‖Lp(B(x,r)) ϕ(x,r) , and MWp,ϕ (f; x,r) := |B(x,r)|− 1 p ‖f‖WLp(B(x,r)) ϕ(x,r) . In this paper, extending the definition of vanishing Morrey spaces [27], we introduce generalized vanishing Morrey spaces V Mp,ϕ(Rn) with normalized norm in the following form. Definition 1.2. (generalized vanishing Morrey space) The generalized vanishing Morrey space V Mp,ϕ(Rn) is defined by { f ∈ Mp,ϕ(Rn) : lim r→0 sup x∈Rn Mp,ϕ (f; x,r) = 0 } . Everywhere in the sequel we assume that lim r→0 1 inf x∈Rn ϕ(x,r) = 0, (1.2) and sup 00 Mp,ϕ (f; x,r) . The spaces V Mp,ϕ(Rn) are also closed subspaces of the Banach spaces Mp,ϕ(Rn), which may be shown by standard means. Furthermore, we have the following embeddings: V Mp,ϕ ⊂ Mp,ϕ, ‖f‖Mp,ϕ ≤‖f‖V Mp,ϕ. On the other hand, it is well known that, for the purpose of researching non-smoothness partial differ- ential equation, mathematicians pay more attention to the singular integrals. Moreover, the fractional type operators and their weighted boundedness theory play important roles in harmonic analysis and Int. J. Anal. Appl. 17 (4) (2019) 599 other fields, and the multilinear operators arise in numerous situations involving product-like operations, see [2, 3, 5–8, 14, 17, 20, 24] for instance. First of all, we recall some basic properties and notations used in this paper. Let Rn be the n-dimensional Euclidean space of points x = (x1, ...,xn) with norm |x| = (∑n i=1x 2 i )1/2 and corresponding m-fold product spaces (m ∈ N) be (Rn)m = Rn ×···×Rn. Let B = B(x,r) denotes open ball centered at x of radius r for x ∈ Rn and r > 0 and Bc(x,r) its complement. Also |B(x,r)| is the Lebesgue measure of the ball B(x,r) and |B(x,r)| = vnrn, where vn = |B(0, 1)|. We also denote by −→y = (y1, . . . ,ym), d−→y = dy1 . . .dym, and by −→ f the m-tuple (f1, ...,fm), m, n the nonnegative integers with n ≥ 2, m ≥ 1. Let −→ f ∈ Llocp1 (R n) ×···×Llocpm (R n). Then multi-sublinear fractional maximal operator M (m) α is defined by M(m)α (−→ f ) (x) = sup t>0 |B (x,t)| α n   m∏ i=1 1 |B (x,t)| ∫ B(x,t) |fi (yi)|  d−→y , 0 ≤ α < mn. From definition, if α = 0 then M (m) α is the multi-sublinear maximal operator M (m) and also; in the case of m = 1, M (m) α is the classical fractional maximal operator Mα. The theory of multilinear Calderón-Zygmund singular integral operators, originated from the works of Coifman and Meyer’s [4], plays an important role in harmonic analysis. Its study has been attracting a lot of attention in the last few decades. A systematic analysis of many basic properties of such multilinear singular integral operators can be found in the articles by Coifman-Meyer [4], Grafakos-Torres [7–9], Chen et al. [2], Fu et al. [5]. Let T(m) (m ∈ N) be a multilinear operator initially defined on the m-fold product of Schwartz spaces and taking values into the space of tempered distributions, T(m) : S (Rn) ×···×S (Rn) → S (Rn) . Following [7], recall that the m(multi)-linear Calderón-Zygmund operator T(m) (m ∈ N) for test vector −→ f = (f1, . . . ,fm) is defined by T(m) (−→ f ) (x) = ∫ (Rn)m K (x,y1, . . . ,ym) { m∏ i=1 fi (yi) } dy1 · · ·dym, x /∈ m⋂ i=1 suppfi, where K is an m-Calderón-Zygmund kernel which is a locally integrable function defined off the diagonal y0 = y1 = · · · = ym on (Rn) m+1 satisfying the following size estimate: |K (x,y1, . . . ,ym)| ≤ C |(x−y1, . . . ,x−ym)| mn , for some C > 0 and some smoothness estimates, see [7–9] for details. The result of Grafakos and Torres [7,9] shows that the multilinear Calderón-Zygmund operator is bounded on the product of Lebesgue spaces. Int. J. Anal. Appl. 17 (4) (2019) 600 Theorem 1.1. [7,9] Let T(m) (m ∈ N) be an m-linear Calderón-Zygmund operator. Then, for any numbers 1 ≤ p1, . . . ,pm,p < ∞ with 1p = 1 p1 +· · ·+ 1 pm , T(m) can be extended to a bounded operator from Lp1×···×Lpm into Lp, and bounded from L1 ×···×L1 into L 1 m ,∞. On the other hand, the multilinear fractional type operators are natural generalization of linear ones. Their earliest version was originated on the work of Grafakos [6] in 1992, in which he studied the multilinear maximal function and multilinear fractional integral defined by M(m)α (−→ f ) (x) = sup t>0 1 rn−α ∫ |y|0 1 |B(x,r)| ∫ B(x,r) |b(y) − bB(x,r)|dy < ∞, (1.4) where bB(x,r) is the mean value of the function b on the ball B(x,r). The fact that precisely the mean value bB(x,r) figures in (1.4) is inessential and one gets an equivalent seminorm if bB(x,r) is replaced by an arbitrary constant c : ‖b‖∗ ≈ sup r>0 inf c∈C 1 |B (x,r)| ∫ B(x,r) |b (y) − c|dy. Each bounded function b ∈ BMO. Moreover, BMO contains unbounded functions, in fact log|x| belongs to BMO but is not bounded, so L∞(Rn) ⊂ BMO(Rn). In 1961 John and Nirenberg [15] established the following deep property of functions from BMO. Theorem 1.2. [15] If b ∈ BMO(Rn) and B (x,r) is a ball, then ∣∣{x ∈ B (x,r) : |b(x) − bB(x,r)| > ξ}∣∣ ≤ |B (x,r) |exp (− ξ C‖b‖∗ ) , ξ > 0, where C depends only on the dimension n. By Theorem 1.2, we can get the following results. Corollary 1.1. [12, 16] Let b ∈ BMO(Rn). Then, for any q > 1, ‖b‖∗ ≈ sup x∈Rn,r>0   1|B(x,r)| ∫ B(x,r) |b(y) − bB(x,r)|pdy   1 p (1.5) is valid. Corollary 1.2. [12, 16] Let b ∈ BMO(Rn). Then there is a constant C > 0 such that ∣∣bB(x,r) − bB(x,t)∣∣ ≤ C‖b‖∗(1 + ln t r ) for 0 < 2r < t, (1.6) and for any q > 1, it is easy to see that ‖b− (b)B‖Lq(B) ≤ Cr n q ‖b‖∗ ( 1 + ln t r ) , (1.7) where C is independent of b, x, r and t. Now inspired by Definition 1.3, we can give the definition of multilinear BMO (= BMO). Indeed in this paper we will consider a multilinear version (= multilinear BMO or BMO) of the BMO. Int. J. Anal. Appl. 17 (4) (2019) 602 Definition 1.4. We say that −→ b = (b1, . . . ,bm) ∈ BMO if ∥∥∥−→b ∥∥∥ BMO = sup x∈Rn,r>0 m∏ i=1 1 |B(x,r)| ∫ B(x,r) ∣∣∣bi (yi) − (bi)B(x,r)∣∣∣dyi < ∞, where (bi)B(x,r) = 1 |B(x,r)| ∫ B(x,r) bi(yi)dyi. Remark 1.1. Notice that (BMO) m is contained in BMO and we have ∥∥∥−→b ∥∥∥ BMO ≤ m∏ i=1 ‖bi‖∗ , so (BMO) m ⊂ BMO is valid. We now make some conventions. Throughout this paper, we use the symbol A . B to denote that there exists a positive consant C such that A ≤ CB. If A . B and B . A, we then write A ≈ B and say that A and B are equivalent. For a fixed p ∈ [1,∞), p′ denotes the dual or conjugate exponent of p, namely, p′ = p p−1 and we use the convention 1 ′ = ∞ and ∞′ = 1. Remark 1.2. Let 0 < α < mn and 1 < pi < ∞ with 1p = m∑ i=1 1 pi , 1 qi = 1 pi − α mn , 1 q = m∑ i=1 1 qi = 1 p − α n and −→ b = (b1, . . . ,bm) ∈ (BMO) m for i = 1, . . . ,m. Then, from Corollary 1.2, it is easy to see that m∏ i=1 ‖bi − (bi)B‖Lqi(B) ≤ C m∏ i=1 |B(x,r)| 1 qi ‖bi‖∗ ( 1 + ln t r ) , (1.8) and m∏ i=1 ‖bi − (bi)B‖Lqi(2B) ≤ m∏ i=1 ( ‖bi − (bi)2B‖Lqi(2B) + ‖(bi)B − (bi)2B‖Lqi(2B) ) . m∏ i=1 |B(x,r)| 1 qi ‖bi‖∗ ( 1 + ln t r ) . (1.9) On the other hand, Xu [28] has established the boundedness of the commutators generated by m-linear Calderón-Zygmund singular integrals and RBMO functions with nonhomogeneity on the product of Lebesgue space. Inspired by [2, 3, 7, 9, 24, 28], commutators T (m) −→ b generated by m-linear Calderón-Zygmund operators T(m) and bounded mean oscillation functions −→ b = (b1, . . . ,bm) is given by T (m) −→ b (−→ f ) (x) = ∫ (Rn)m K (x,y1, . . . ,ym) [ m∏ i=1 [bi (x) − bi (yi)] fi (yi) ] d−→y , Int. J. Anal. Appl. 17 (4) (2019) 603 where K (x,y1, . . . ,ym) is a m-linear Calderón-Zygmund kernel, bi ∈ (BMO) i (Rn) for i = 1, . . . ,m. Note that Tb is the special case of T (m) −→ b with taking m = 1. Similarly, let bi (i = 1, . . . ,m) be a locally in- tegrable functions on Rn, then the commutators generated by m-linear fractional integral operators and −→ b = (b1, . . . ,bm) is given by I (m) α, −→ b (−→ f ) (x) = ∫ (Rn)m 1 |(x−y1, . . . ,x−ym)| mn−α [ m∏ i=1 [bi (x) − bi (yi)] fi (yi) ] d−→y , where 0 < α < mn, and fi (i = 1, . . . ,m) are suitable functions. The commutators of a class of multi-sublinear maximal operators corresponding to T (m) −→ b and I (m) α, −→ b (m ∈ N) above are, respectively, defined by M (m) −→ b (−→ f ) (x) = sup t>0   m∏ i=1 1 |B (x,t)| ∫ B(x,t) [|bi (x) − bi (yi)|] |fi (yi)|  d−→y , and M (m) α, −→ b (−→ f ) (x) = sup t>0 |B (x,t)| α n   m∏ i=1 1 |B (x,t)| ∫ B(x,t) [|bi (x) − bi (yi)|] |fi (yi)|  d−→y , 0 ≤ α < mn. The following result is known. Lemma 1.1. [24] (Strong bounds of I (m) −→ b ,α ) Let 0 < αi < n, 1 < p1, . . . ,pm < ∞, 1p = m∑ i=1 1 pi , α = m∑ i=1 αi and 1 q = 1 p − α n . Then there is C > 0 independent of −→ f and −→ b such that ∥∥∥I(m)−→ b ,α (−→ f )∥∥∥ Lq(Rn) ≤ C m∏ i=1 ‖bi‖∗‖fi‖Lpi(Rn) . Using the idea in the proof of Lemma 3.2 in [13], we can obtain the following Corollary 1.3: Corollary 1.3. (Strong bounds of M (m) α, −→ b ) Under the assumptions of Lemma 1.1, the operator M (m) α, −→ b is bounded from Lp1 (R n) ×···Lpm(Rn) to Lq(Rn). Moreover, we have ∥∥∥M(m) α, −→ b (−→ f )∥∥∥ Lq(Rn) ≤ C m∏ i=1 ‖bi‖∗‖fi‖Lpi(Rn) . Proof. Set Ĩ (m) −→ b ,α (|f|) (x) = ∫ (Rn)m 1 |(x−y1, . . . ,x−ym)| mn−α [ m∏ i=1 [|bi (x) − bi (yi)|] |fi (yi)| ] d−→y 0 < α < mn. Int. J. Anal. Appl. 17 (4) (2019) 604 It is easy to see that Lemma 1.1 holds for Ĩ (m) −→ b ,α . On the other hand, for any t > 0, we have Ĩ (m) −→ b ,α (|f|) (x) ≥ ∫ (B(x,t))m 1 |(x−y1, . . . ,x−ym)| mn−α [ m∏ i=1 [|bi (x) − bi (yi)|] |fi (yi)| ] d−→y ≥ 1 tmn−α ∫ B(x,t) [ m∏ i=1 [|bi (x) − bi (yi)|] |fi (yi)| ] d−→y . Taking supremum over t > 0 in the above inequality, we get M (m) α, −→ b (−→ f ) (x) ≤ C−1n,αĨ (m) −→ b ,α (|f|) (x) Cn,α = |B (0, 1)| mn−α n . (1.10) � As a simple corollary of Lemma 1.1 and Corollary 1.3, we can obtain the following result. Corollary 1.4. (Strong bounds of T (m) −→ b and M (m) −→ b ) Let 1 < p1, . . . ,pm < ∞ and 0 < p < ∞ with 1p = m∑ i=1 1 pi . Then there is C > 0 independent of −→ f and −→ b such that ∥∥∥T(m)−→ b (−→ f )∥∥∥ Lp(Rn) ≤ C m∏ i=1 ‖bi‖∗‖fi‖Lpi(Rn) , ∥∥∥M(m)−→ b (−→ f )∥∥∥ Lp(Rn) ≤ C m∏ i=1 ‖bi‖∗‖fi‖Lpi(Rn) . The purpose of this paper is to consider the mapping properties on Mp1,ϕ1 ×···×Mpm,ϕm and V Mp1,ϕ1 × ···×V Mpm,ϕm for the commutators of multilinear fractional maximal and integral operators, respectively. Similar results still hold for commutators of multilinear maximal and singular integral operators. Commu- tators of multilinear fractional maximal and integral operators on product generalized Morrey spaces have not also been studied so far and this paper seems to be the first in this direction. Now, let us state the main results of this paper. Theorem 1.3. Let 0 < α < mn and 1 ≤ pi < mnα with 1 p = m∑ i=1 1 pi , 1 q = m∑ i=1 1 pi + m∑ i=1 1 qi − α n and −→ b ∈ (BMO)m (Rn) for i = 1, . . . ,m. Let functions ϕ,ϕi : Rn×(0,∞) → (0,∞) (i = 1, . . . ,m) and (ϕ1, . . . ,ϕm,ϕ) satisfies the condition ∞∫ r ( 1 + ln t r )m essinft<τ<∞ m∏ i=1 ϕi(x,τ)τ n p t n  1q− m∑ i=1 1 qi  +1 dt ≤ Cϕ (x,r) , (1.11) where C does not depend on x ∈ Rn and r > 0. Int. J. Anal. Appl. 17 (4) (2019) 605 Then, I (m) α, −→ b and M (m) α, −→ b (m ∈ N) are bounded operators from product space Mp1,ϕ1 ×···×Mpm,ϕm to Mq,ϕ. Moreover, we have ∥∥∥I(m) α, −→ b (−→ f )∥∥∥ Mq,ϕ . ∥∥∥−→b ∥∥∥ BMO ‖fi‖Mpi,ϕi . m∏ i=1 ‖bi‖∗‖fi‖Mpi,ϕi , (1.12) ∥∥∥M(m) α, −→ b (−→ f )∥∥∥ Mq,ϕ . ∥∥∥−→b ∥∥∥ BMO ‖fi‖Mpi,ϕi . m∏ i=1 ‖bi‖∗‖fi‖Mpi,ϕi . (1.13) Corollary 1.5. Let 1 < pi < ∞ and 0 < p < ∞ with 1p = m∑ i=1 1 pi and −→ b ∈ (BMO)m (Rn) for i = 1, . . . ,m. Let functions ϕ,ϕi : Rn×(0,∞) → (0,∞) (i = 1, . . . ,m) and (ϕ1, . . . ,ϕm,ϕ) satisfies the condition ∞∫ r ( 1 + ln t r )m essinft<τ<∞ m∏ i=1 ϕi(x,τ)τ n p t n p +1 dt ≤ Cϕ (x,r) , where C does not depend on x ∈ Rn and r > 0. Then, T (m) −→ b and M (m) −→ b (m ∈ N) are bounded operators from product space Mp1,ϕ1 ×···×Mpm,ϕm to Mp,ϕ. Moreover, we have ∥∥∥T(m)−→ b (−→ f )∥∥∥ Mp,ϕ . ∥∥∥−→b ∥∥∥ BMO ‖fi‖Mpi,ϕi . m∏ i=1 ‖bi‖∗‖fi‖Mpi,ϕi , ∥∥∥M(m)−→ b (−→ f )∥∥∥ Mp,ϕ . ∥∥∥−→b ∥∥∥ BMO ‖fi‖Mpi,ϕi . m∏ i=1 ‖bi‖∗‖fi‖Mpi,ϕi . Our another main result is the following. Theorem 1.4. Let 0 < α < mn and 1 ≤ pi < mnα with 1 p = m∑ i=1 1 pi , 1 q = m∑ i=1 1 pi + m∑ i=1 1 qi − α n and −→ b ∈ (BMO)m (Rn) for i = 1, . . . ,m. Let functions ϕ,ϕi : Rn×(0,∞) → (0,∞) (i = 1, . . . ,m) and (ϕ1, . . . ,ϕm,ϕ) satisfies conditions (1.2)-(1.3) and ∞∫ r ( 1 + ln t r )m m∏ i=1 ϕi(x,t) t n p t n  1q− m∑ i=1 1 qi  +1 dt ≤ C0ϕ (x,r) , (1.14) where C0 does not depend on x ∈ Rn and r > 0, lim r→0 ln 1 r inf x∈Rn ϕ(x,r) = 0 (1.15) and cδ := ∞∫ δ (1 + ln |t|)m sup x∈Rn m∏ i=1 ϕi(x,t) t n p t n  1q− m∑ i=1 1 qi  +1 dt < ∞ (1.16) for every δ > 0. Int. J. Anal. Appl. 17 (4) (2019) 606 Then, I (m) α, −→ b and M (m) α, −→ b (m ∈ N) are bounded operators from product space V Mp1,ϕ1 ×···×V Mpm,ϕm to V Mq,ϕ. Moreover, we have∥∥∥I(m) α, −→ b (−→ f )∥∥∥ V Mq,ϕ . ∥∥∥−→b ∥∥∥ BMO ‖fi‖V Mpi,ϕi . m∏ i=1 ‖bi‖∗‖fi‖V Mpi,ϕi , (1.17) ∥∥∥M(m) α, −→ b (−→ f )∥∥∥ V Mq,ϕ . ∥∥∥−→b ∥∥∥ BMO ‖fi‖V Mpi,ϕi . m∏ i=1 ‖bi‖∗‖fi‖V Mpi,ϕi . (1.18) Corollary 1.6. Let 1 < pi < ∞ and 0 < p < ∞ with 1p = m∑ i=1 1 pi and −→ b ∈ (BMO)m (Rn) for i = 1, . . . ,m. Let functions ϕ,ϕi : Rn×(0,∞) → (0,∞) (i = 1, . . . ,m) and (ϕ1, . . . ,ϕm,ϕ) satisfies conditions (1.2)-(1.3) and ∞∫ r ( 1 + ln t r )m m∏ i=1 ϕi(x,t) t n p t n p +1 dt ≤ C0ϕ (x,r) , where C0 does not depend on x ∈ Rn and r > 0, lim r→0 ln 1 r inf x∈Rn ϕ(x,r) = 0 and cδ := ∞∫ δ (1 + ln |t|)m sup x∈Rn m∏ i=1 ϕi(x,t) t n p t n p +1 dt < ∞ for every δ > 0. Then, T (m) −→ b and M (m) −→ b (m ∈ N) are bounded operators from product space V Mp1,ϕ1 ×···×V Mpm,ϕm to V Mp,ϕ. Moreover, we have∥∥∥T(m)−→ b (−→ f )∥∥∥ V Mp,ϕ . ∥∥∥−→b ∥∥∥ BMO ‖fi‖V Mpi,ϕi . m∏ i=1 ‖bi‖∗‖fi‖V Mpi,ϕi , ∥∥∥M(m)−→ b (−→ f )∥∥∥ V Mp,ϕ . ∥∥∥−→b ∥∥∥ BMO ‖fi‖V Mpi,ϕi . m∏ i=1 ‖bi‖∗‖fi‖V Mpi,ϕi . The article is organized as follows. A key lemma is given and proved in Section 2. Section 3 will be devoted to the proofs of the theorems (Theorems 1.3 and 1.4) stated above. 2. A Key Lemma In order to prove the main results (Theorems 1.3 and 1.4), we need the following lemma. Lemma 2.1. Let x0 ∈ Rn, 0 < α < mn and 1 ≤ pi < mnα with 1 p = m∑ i=1 1 pi , 1 q = m∑ i=1 1 pi + m∑ i=1 1 qi − α n and −→ b ∈ (BMO)m (Rn) for i = 1, . . . ,m. Then the inequality ‖I(m) α, −→ b (−→ f ) ‖Lq(B(x0,r)) . m∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )m m∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n  1q− m∑ i=1 1 qi  +1 (2.1) Int. J. Anal. Appl. 17 (4) (2019) 607 holds for any ball B(x0,r) and for all −→ f ∈ Llocp1 (R n) ×···×Llocpm (R n). Proof. In order to simplify the proof, we consider only the situation when m = 2. Actually, a similar procedure works for all m ∈ N. Thus, without loss of generality, it is sufficient to show that the conclusion holds for I (2) α, −→ b (−→ f ) = I (2) α,(b1,b2) (f1,f2). We just consider the case pi > 1 for i = 1, 2. For any x0 ∈ Rn, set B = B (x0,r) for the ball centered at x0 and of radius r and 2B = B (x0, 2r). Indeed, we also decompose fi as fi (yi) = fi (yi) χ2B + fi (yi) χ(2B)c for i = 1, 2. And, we write f1 = f 0 1 + f ∞ 1 and f2 = f 0 2 + f ∞ 2 , where f 0 i = fiχ2B, f ∞ i = fiχ(2B)c, for i = 1, 2. Thus, we have ∥∥∥I(2)α,(b1,b2) (f1,f2)∥∥∥Lq(B(x0,r)) ≤ ∥∥∥I(2)α,(b1,b2) (f01 ,f02)∥∥∥Lq(B(x0,r)) + ∥∥∥I(2)α,(b1,b2) (f01 ,f∞2 )∥∥∥Lq(B(x0,r)) + ∥∥∥I(2)α,(b1,b2) (f∞1 ,f02)∥∥∥Lq(B(x0,r)) + ∥∥∥I(2)α,(b1,b2) (f∞1 ,f∞2 )∥∥∥Lq(B(x0,r)) = F1 + F2 + F3 + F4. Firstly, we use the boundedness of I (2) α,(b1,b2) from Lp1 ×Lp2 into Lq (see Lemma 1.1) to estimate F1, and we obtain F1 = ∥∥∥I(2)α,(b1,b2) (f01 ,f02)∥∥∥Lq(B(x0,r)) . 2∏ i=1 ‖bi‖∗‖fi‖Lpi(2B) . r n q 2∏ i=1 ‖bi‖∗‖fi‖Lpi(2B) ∞∫ 2r dt t n q +1 . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n q +1 . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . Secondly, for F2 = ∥∥∥I(2)α,(b1,b2) (f01 ,f∞2 )∥∥∥Lq(B(x0,r)), we decompose it into four parts as follows: F2 . ∥∥∥[(b1 −{b1}B)] [(b2 −{b2}B)] I(2)α (f01 ,f∞2 )∥∥∥ Lq(B(x0,r)) + ∥∥∥[(b1 −{b1}B)] I(2)α [f01 , (b2 −{b2}B) f∞2 ]∥∥∥ Lq(B(x0,r)) + ∥∥∥[(b2 −{b2}B)] I(2)α [(b1 −{b1}B) f01 ,f∞2 ]∥∥∥ Lq(B(x0,r)) + ∥∥∥I(2)α [(b1 −{b1}B) f01 , (b2 −{b2}B) f∞2 ]∥∥∥ Lq(B(x0,r)) ≡ F21 + F22 + F23 + F24. Int. J. Anal. Appl. 17 (4) (2019) 608 Let 1 < p1,p2 < 2n α , such that 1 p = 1 p1 + 1 p2 , 1 q = 1 p − α n , 1 r = 1 q1 + 1 q2 and 1 q = 1 r + 1 q . Then, using Hölder’s inequality and by (1.8) we have F21 = ∥∥∥(b1 − (b1)B) (b2 − (b2)B) I(2)α (f01 ,f∞2 )∥∥∥ Lq(B(x0,r)) . ‖(b1 − (b1)B) (b2 − (b2)B)‖Lr(B(x0,r)) ∥∥∥I(2)α (f01 ,f∞2 )∥∥∥ Lq(B(x0,r)) . ‖b1 − (b1)B‖Lq1 (B(x0,r)) ‖b2 − (b2)B‖Lq2 (B(x0,r)) ×r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n q +1 . 2∏ i=1 ‖bi‖∗|B(x0,r)| 1 q1 + 1 q2 r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n q +1 . 2∏ i=1 ‖bi‖∗r n ( 1 q1 + 1 q2 ) r n ( 1 p1 + 1 p2 −α n ) ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) t n ( 1 q1 + 1 q2 ) dt t n q +1 = 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 , where in the second inequality we have used the following fact: It is clear that |(x0 −y1, x0 −y2)| 2n−α ≥ |x0 −y2| 2n−α . By Hölder’s inequality, we have ∣∣∣I(2)α (f01 ,f∞2 ) (x)∣∣∣ . ∫ Rn ∫ Rn ∣∣f01 (y1)∣∣ |f∞2 (y2)| |(x−y1,x−y2)| 2n−αdy1dy2 . ∫ 2B |f1 (y1)|dy1 ∫ (2B)c |f2 (y2)| |x0 −y2| 2n−αdy2 ≈ ∫ 2B |f1 (y1)|dy1 ∫ (2B)c |f2 (y2)| ∞∫ |x0−y2| dt t2n−α+1 dy2 . ‖f1‖Lp1 (2B) |2B| 1− 1 p1 ∞∫ 2r ‖f2‖Lp2 (B(x0,t)) |B (x0, t)| 1− 1 p2 dt t2n−α+1 . ∞∫ 2r 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n q +1 , where 1 p = 1 p1 + 1 p2 . Thus, the inequality ∥∥∥I(2)α (f01 ,f∞2 )∥∥∥ Lq(B(x0,r)) . r n q ∞∫ 2r 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n q +1 is valid. Int. J. Anal. Appl. 17 (4) (2019) 609 On the other hand, for the estimates used in F22, F23, we have to prove the below inequality: ∣∣∣I(2)α [f01 , (b2 (·) − (b2)B) f∞2 ] (x)∣∣∣ . ‖b2‖∗ ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 p1 + 1 p2 ) +1−α . (2.2) To estimate F22, the following inequality ∣∣∣I(2)α [f01 , (b2 (·) − (b2)B) f∞2 ] (x)∣∣∣ . ∫ 2B |f1 (y1)|dy1 ∫ (2B)c |b2 (y2) − (b2)B| |f2 (y2)| |x0 −y2| 2n−α dy2 is satisfied. It’s obvious that ∫ 2B |f1 (y1)|dy1 . ‖f1‖Lp1 (2B) |2B| 1− 1 p1 , (2.3) and using Hölder’s inequality and by (1.6) and (1.7) we have ∫ (2B)c |b2 (y2) − (b2)B| |f2 (y2)| |x0 −y2| 2n−α dy2 . ∫ (2B)c ∣∣∣b2 (y2) − (b2)B(x0,r)∣∣∣ |f2 (y2)|   ∞∫ |x0−y2| dt t2n−α+1  dy2 . ∞∫ 2r ∥∥∥b2 (y2) − (b2)B(x0,t)∥∥∥Lq2 (B(x0,t)) ‖f2‖Lp2 (B(x0,t)) |B (x0, t)|1− ( 1 p2 + 1 q2 ) dt t2n−α+1 + ∞∫ 2r ∣∣∣(b2)B(x0,t) − (b2)B(x0,r)∣∣∣‖f2‖Lp2 (B(x0,t)) |B (x0, t)|1− 1p2 dtt2n−α+1 . ‖b2‖∗ ∞∫ 2r ( 1 + ln t r )2 |B (x0, t)| 1 q2 ‖f2‖Lp2 (B(x0,t)) |B (x0, t)| 1− ( 1 p2 + 1 q2 ) dt t2n−α+1 + ‖b2‖∗ ∞∫ 2r ( 1 + ln t r ) |B (x0, t)|‖f2‖Lp2 (B(x0,t)) |B (x0, t)| 1− 1 p2 dt t2n−α+1 . ‖b2‖∗ ∞∫ 2r ( 1 + ln t r )2 ‖f2‖Lp2 (B(x0,t)) dt t n ( 1+ 1 p2 ) +1−α . (2.4) Hence, by (2.3) and (2.4), it follows that: ∣∣∣I(2)α [f01 , (b2 (·) − (b2)B) f∞2 ] (x)∣∣∣ . ‖b2‖∗‖f1‖Lp1 (2B) |2B| 1− 1 p1 ∞∫ 2r ( 1 + ln t r )2 ‖f2‖Lp2 (B(x0,t)) dt t n ( 1+ 1 p2 ) +1−α . ‖b2‖∗ ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 p1 + 1 p2 ) +1−α . Int. J. Anal. Appl. 17 (4) (2019) 610 This completes the proof of inequality (2.2). Thus, let 1 < τ < ∞, such that 1 q = 1 q1 + 1 τ . Then, using Hölder’s inequality and from (2.2) and (1.7), we get F22 = ∥∥∥[(b1 −{b1}B)] I(2)α [f01 , (b2 −{b2}B) f∞2 ]∥∥∥ Lq(B(x0,r)) . ‖b1 − (b1)B‖Lq1 (B) ∥∥∥I(2)α [f01 , (b2 − (b2)B) f∞2 ]∥∥∥ Lτ(B) . 2∏ i=1 ‖bi‖∗ |B (x0,r)| 1 q1 + 1 τ × ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 p1 + 1 p2 ) +1−α . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . Similarly, F23 has the same estimate above, here we omit the details, thus the inequality F23 = ∥∥∥[(b2 −{b2}B)] I(2)α [(b1 −{b1}B) f01 ,f∞2 ]∥∥∥ Lq(B(x0,r)) . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 is valid. Now we turn to estimate F24. Similar to (2.2), we have to prove the following estimate for F24: ∣∣∣I(2)α [(b1 − (b1)B) f01 , (b2 − (b2)B) f∞2 ] (x)∣∣∣ ≤ 2∏ i=1 ‖bi‖∗ ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . (2.5) Firstly, the following inequality ∣∣∣I(2)α [(b1 − (b1)B) f01 , (b2 − (b2)B) f∞2 ] (x)∣∣∣ . ∫ 2B |b1 (y1) − (b1)B| |f1 (y1)|dy1 ∫ (2B)c |b2 (y2) − (b2)B| |f2 (y2)| |x0 −y2| 2n−α dy2 is valid. It’s obvious that from Hölder’s inequality and (1.7) ∫ 2B |b1 (y1) − (b1)B| |f1 (y1)|dy1 . ‖b1‖∗ |B (x0,r)| 1− 1 p1 ‖f1‖Lp1 (2B) . (2.6) Then, by (2.4) and (2.6) we have ∣∣∣I(2)α [(b1 − (b1)B) f01 , (b2 − (b2)B) f∞2 ] (x)∣∣∣ ≤ 2∏ i=1 ‖bi‖∗ ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . Int. J. Anal. Appl. 17 (4) (2019) 611 This completes the proof of inequality (2.5). Therefore, by (2.5) we deduce that F24 = ∥∥∥I(2)α [(b1 − (b1)B) f01 , (b2 − (b2)B) f∞2 ]∥∥∥ Lq(B) . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . Considering estimates F21, F22, F23, F24 together, we get the desired conclusion F2 = ∥∥∥I(2)α,(b1,b2) (f01 ,f∞2 )∥∥∥Lq(B(x0,r)) . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . Similar to F2, we can also get the estimates for F3, F3 = ∥∥∥I(2)α,(b1,b2) (f∞1 ,f02)∥∥∥Lq(B(x0,r)) . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . At last, we consider the last term F4 = ∥∥∥I(2)α,(b1,b2) (f∞1 ,f∞2 )∥∥∥Lq(B(x0,r)). We split F4 in the following way: F4 . F41 + F42 + F43 + F44, where F41 = ∥∥∥(b1 − (b1)B) (b2 − (b2)B) I(2)α (f∞1 ,f∞2 )∥∥∥ Lq(B) , F42 = ∥∥∥(b1 − (b1)B) I(2)α [f∞1 , (b2 − (b2)B) f∞2 ]∥∥∥ Lq(B) , F43 = ∥∥∥(b2 − (b2)B) I(2)α [(b1 − (b1)B) f∞1 ,f∞2 ]∥∥∥ Lq(B) , F44 = ∥∥∥I(2)α [(b1 − (b1)B) f∞1 , (b2 − (b2)B) f∞2 ]∥∥∥ Lq(B) . Now, let us estimate F41, F42, F43, F44 respectively. For the term F41, let 1 < τ < ∞, such that 1q = ( 1 q1 + 1 q2 ) + 1 τ , 1 τ = 1 p1 + 1 p2 − α n . Then, by Hölder’s inequality and (1.8), we get F41 = ∥∥∥(b1 − (b1)B) (b2 − (b2)B) I(2)α (f∞1 ,f∞2 )∥∥∥ Lq(B) . ‖b1 − (b1)B‖Lq1 (B) ‖b2 − (b2)B‖Lq2 (B) ∥∥∥I(2)α (f∞1 ,f∞2 )∥∥∥ Lτ(B) . 2∏ i=1 ‖bi‖∗ |B (x0,r)| 1 q1 + 1 q2 r n τ ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n τ +1 . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 , where in the second inequality we have used the following fact: Int. J. Anal. Appl. 17 (4) (2019) 612 Noting that |(x0 −y1, x0 −y2)| 2n−α ≥ |x0 −y1| n−α 2 |x0 −y2| n−α 2 and by Hölder’s inequality, we get ∣∣∣I(2)α (f∞1 ,f∞2 ) (x)∣∣∣ . ∫ Rn ∫ Rn ∣∣f1 (y1) χ(2B)c∣∣ ∣∣f2 (y2) χ(B)c∣∣ |(x0 −y1,x0 −y2)| 2n−α dy1dy2 . ∫ (2B)c ∫ (2B)c |f1 (y1)| |f2 (y2)| |x0 −y1| n−α 2 |x0 −y2| n−α 2 dy1dy2 . ∞∑ j=1 2∏ i=1 ∫ 2j+1B\2jB |fi (yi)| |x0 −yi| n−α 2 dyi . ∞∑ j=1 2∏ i=1 ( 2jr )−n+α 2 ∫ 2j+1B |fi (yi)|dyi . ∞∑ j=1 ( 2jr )−2n+α 2∏ i=1 ‖fi‖Lpi(2j+1B) ∣∣2j+1B∣∣1− 1pi . ∞∑ j=1 2j+2r∫ 2j+1r ( 2j+1r )−2n+α−1 2∏ i=1 ‖fi‖Lpi(2j+1B) ∣∣2j+1B∣∣1− 1pi dt . ∞∑ j=1 2j+2r∫ 2j+1r 2∏ i=1 ‖fi‖Lpi(B(x0,t)) |B (x0, t)| 1− 1 pi dt t2n+1−α . ∞∫ 2r 2∏ i=1 ‖fi‖Lpi(B(x0,t)) |B (x0, t)| 2− ( 1 p1 + 1 p2 ) dt t2n+1−α . ∞∫ 2r 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n τ +1 . Moreover, for p1, p2 ∈ [1,∞) the inequality ∥∥∥I(2)α (f∞1 ,f∞2 )∥∥∥ Lτ(B(x0,r)) . r n τ ∞∫ 2r 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n τ +1 (2.7) is valid. For the terms F42, F43, similar to the estimates used for (2.2), we have to prove the following inequality: ∣∣∣I(2)α [f∞1 , (b2 − (b2)B) f∞2 ] (x)∣∣∣ . ‖b2‖∗ ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 p1 + 1 p2 ) +1−α . (2.8) Int. J. Anal. Appl. 17 (4) (2019) 613 Noting that |(x0 −y1, x0 −y2)| 2n−α ≥ |x0 −y1| n−α 2 |x0 −y2| n−α 2 , we get ∣∣∣I(2)α [f∞1 , (b2 − (b2)B) f∞2 ] (x)∣∣∣ . ∫ Rn ∫ Rn |b2 (y2) − (b2)B| ∣∣f1 (y1) χ(2B)c∣∣ ∣∣f2 (y2) χ(2B)c∣∣ |(x0 −y1,x0 −y2)| 2n−α dy1dy2 . ∫ (2B)c ∫ (2B)c |b2 (y2) − (b2)B| |f1 (y1)| |f2 (y2)| |x0 −y1| n−α 2 |x0 −y2| n−α 2 dy1dy2 . ∞∑ j=1 ∫ 2j+1B\2jB |f1 (y1)| |x0 −y1| n−α 2 dy1 ∫ 2j+1B\2jB |b2 (y2) − (b2)B| |f2 (y2)| |x0 −y2| n−α 2 dy2 . ∞∑ j=1 ( 2jr )−2n+α ∫ 2j+1B |f1 (y1)|dy1 ∫ 2j+1B |b2 (y2) − (b2)B| |f2 (y2)|dy2. On the other hand, it’s obvious that ∫ 2j+1B |f1 (y1)|dy1 ≤‖f1‖Lp1 (2j+1B) ∣∣2j+1B∣∣1− 1p1 , (2.9) and using Hölder’s inequality and by (1.6) and (1.7) ∫ 2j+1B |b2 (y2) − (b2)B| |f2 (y2)|dy2 ≤‖b2 − (b2)2j+1B‖Lq2 (2j+1B) ‖f2‖Lp2 (2j+1B) ∣∣2j+1B∣∣1−( 1p2 + 1q2 ) + |(b2)2j+1B − (b2)B|‖f2‖Lp2 (2j+1B) ∣∣2j+1B∣∣1− 1p2 . ‖b2‖∗ ∣∣2j+1B∣∣ 1q2 (1 + ln 2j+1r r ) ‖f2‖Lp2 (2j+1B) ∣∣2j+1B∣∣1−( 1p2 + 1q2 ) + ‖b2‖∗ ( 1 + ln 2j+1r r )∣∣2j+1B∣∣‖f2‖Lp2 (2j+1B) ∣∣2j+1B∣∣1− 1p2 . ‖b2‖∗ ( 1 + ln 2j+1r r )2 ∣∣2j+1B∣∣1− 1p2 ‖f2‖Lp2 (2j+1B) . (2.10) Hence, by (2.9) and (2.10), it follows that: ∣∣∣I(2)α [f∞1 , (b2 − (b2)B) f∞2 ] (x)∣∣∣ . ∞∑ j=1 ( 2jr )−2n+α ∫ 2j+1B |f1 (y1)|dy1 ∫ 2j+1B |b2 (y2) − (b2)B| |f2 (y2)|dy2 . ‖b2‖∗ ∞∑ j=1 ( 2jr )−2n+α ( 1 + ln 2j+1r r )2 ∣∣2j+1B∣∣2−( 1p1 + 1p2 ) 2∏ i=1 ‖fi‖Lpi(2j+1B) Int. J. Anal. Appl. 17 (4) (2019) 614 . ‖b2‖∗ ∞∑ j=1 2j+2r∫ 2j+1r ( 2j+1r )−2n+α−1 ( 1 + ln 2j+1r r )2 ∣∣2j+1B∣∣2−( 1p1 + 1p2 ) 2∏ i=1 ‖fi‖Lpi(2j+1B) dt . ‖b2‖∗ ∞∑ j=1 2j+2r∫ 2j+1r ( 1 + ln 2j+1r r )2 ∣∣2j+1B∣∣2−( 1p1 + 1p2 ) 2∏ i=1 ‖fi‖Lpi(2j+1B) dt t2n−α+1 . ‖b2‖∗ ∞∫ 2r ( 1 + ln t r )2 |B (x0, t)| 2− ( 1 p1 + 1 p2 ) 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t2n−α+1 . ‖b2‖∗ ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 p1 + 1 p2 ) +1−α . This completes the proof of (2.8). Now we turn to estimate F42. Let 1 < τ < ∞, such that 1q = 1 q1 + 1 τ . Then, by Hölder’s inequality, (1.7) and (2.8), we obtain F42 = ∥∥∥(b1 − (b1)B) I(2)α [f∞1 , (b2 − (b2)B) f∞2 ]∥∥∥ Lq(B) . ‖(b1 − (b1)B)‖Lq1 (B) ∥∥∥I(2)α [f∞1 , (b2 − (b2)B) f∞2 ]∥∥∥ Lτ(B) . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . Similarly, F43 has the same estimate above, here we omit the details, thus the inequality F43 = ∥∥∥(b2 − (b2)B) I(2)α [(b1 − (b1)B) f∞1 ,f∞2 ]∥∥∥ Lq(B) . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 is valid. Finally, to estimate F44, similar to the estimate of (2.8), we have ∣∣∣I(2)α [(b1 − (b2)B) f∞1 , (b2 − (b2)B) f∞2 ] (x)∣∣∣ . ∞∑ j=1 ( 2jr )−2n+α ∫ 2j+1B |b1 (y1) − (b1)B| |f1 (y1)|dy1 ∫ 2j+1B |b2 (y2) − (b2)B| |f2 (y2)|dy2 . 2∏ i=1 ‖bi‖∗ ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . Int. J. Anal. Appl. 17 (4) (2019) 615 Thus, we have F44 = ∥∥∥I(2)α [(b1 − (b1)B) f∞1 , (b2 − (b2)B) f∞2 ]∥∥∥ Lq(B) . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . By the estimates of F4j above, where j = 1,2,3,4, we know that F4 = ∥∥∥I(2)α,(b1,b2) (f∞1 ,f∞2 )∥∥∥Lq(B(x0,r)) . 2∏ i=1 ‖bi‖∗r n q ∞∫ 2r ( 1 + ln t r )2 2∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n ( 1 q − ( 1 q1 + 1 q2 )) +1 . Consequently, combining all the estimates for F1, F2, F3, F4, we complete the proof of Lemma 2.1. � 3. Proofs of the main results Now we are ready to return to the proofs of Theorems 1.3 and 1.4. 3.1. Proof of Theorem 1.3. Proof. To prove Theorem 1.3, we will use the following relationship between essential supremum and essential infimum ( essinf x∈E f (x) )−1 = esssup x∈E 1 f (x) , (3.1) where f is any real-valued nonnegative function and measurable on E (see [30], page 143). Indeed, we consider (1.12) firstly. Since −→ f ∈ Mp1,ϕ1 × ··· × Mpm,ϕm, by (3.1) and the non-decreasing, with respect to t, of the norm m∏ i=1 ‖fi‖Lpi(B(x,t)), we get m∏ i=1 ‖fi‖Lpi(B(x,t)) essinf 00 ϕ (x,r) −1 |B(x,r)|− 1 q ∥∥∥I(m) α, −→ b (−→ f )∥∥∥ Lq(B(x,r)) . m∏ i=1 ‖bi‖∗ sup x∈Rn,r>0 ϕ (x0,r) −1 ∞∫ r ( 1 + ln t r )m m∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n  1q− m∑ i=1 1 qi  +1 . m∏ i=1 ‖bi‖∗‖fi‖Mpi,ϕi . Thus we obtain (1.12). The conclusion of (1.13) is a direct consequence of (1.10) and (1.12). Indeed, from the process proving (1.12), it is easy to see that the conclusions of (1.12) also hold for Ĩ (m) −→ b ,α . Combining this with (1.10), we can immediately obtain (1.13), which completes the proof. � 3.2. Proof of Theorem 1.4. Proof. Since the inequalities (1.17) and (1.18) hold by Theorem 1.3, we only have to prove the implication lim r→0 sup x∈Rn r− n p m∏ i=1 ‖fi‖Lpi(B(x,r)) m∏ i=1 ϕi(x,r) = 0 implies lim r→0 sup x∈Rn r− n q ∥∥∥I(m) α, −→ b (−→ f )∥∥∥ Lq(B(x,r)) ϕ(x,r) = 0. (3.4) To show that sup x∈Rn r− n q ∥∥∥I(m) α, −→ b (−→ f )∥∥∥ Lq(B(x,r)) ϕ(x,r) < ε for small r, Int. J. Anal. Appl. 17 (4) (2019) 617 we use the estimate (2.1): sup x∈Rn r− n q ∥∥∥I(m) α, −→ b (−→ f )∥∥∥ Lq(B(x,r)) ϕ(x,r) . sup x∈Rn m∏ i=1 ‖bi‖∗ ϕ(x,r) ∞∫ r ( 1 + ln t r )m m∏ i=1 ‖fi‖Lpi(B(x,t)) dt t n  1q− m∑ i=1 1 qi  +1 . We take r < δ0, where δ0 is small enough and split the integration: r− n q ∥∥∥I(m) α, −→ b (−→ f )∥∥∥ Lq(B(x,r)) ϕ(x,r) ≤ C [Iδ0 (x,r) + Jδ0 (x,r)] , (3.5) where δ0 > 0 (we may take δ0 < 1), and Iδ0 (x,r) := m∏ i=1 ‖bi‖∗ ϕ(x,r) δ0∫ r ( 1 + ln t r )m m∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n  1q− m∑ i=1 1 qi  +1 , and Jδ0 (x,r) := m∏ i=1 ‖bi‖∗ ϕ(x,r) ∞∫ δ0 ( 1 + ln t r )m m∏ i=1 ‖fi‖Lpi(B(x0,t)) dt t n  1q− m∑ i=1 1 qi  +1 , and r < δ0. Now we can choose any fixed δ0 > 0 such that sup x∈Rn t− n p m∏ i=1 ‖fi‖Lpi(B(x,t)) m∏ i=1 ϕi(x,t) < ε 2CC0 , t ≤ δ0, where C and C0 are constants from (1.14) and (3.5), which is possible since −→ f ∈ V Mp1,ϕ1 ×···×V Mpm,ϕm. This allows to estimate the first term uniformly in r ∈ (0,δ0): m∏ i=1 ‖bi‖∗ sup x∈Rn CIδ0 (x,r) < ε 2 , 0 < r < δ0 by (1.14). For the second term, writing 1 + ln t r ≤ 1 + |ln t|+ ln 1 r , by the choice of r sufficiently small because of the conditions (1.15) we obtain Jδ0 (x,r) ≤ cδ0 + c̃δ0 ln 1 r ϕ(x,r) m∏ i=1 ‖bi‖∗‖fi‖V Mpi,ϕi , where cδ0 is the constant from (1.16) with δ = δ0 and c̃δ0 is a similar constant with omitted logarithmic factor in the integrand. Then, by (1.15) we can choose r small enough such that sup x∈Rn Jδ0 (x,r) < ε 2 , which completes the proof of (3.4). Int. J. Anal. Appl. 17 (4) (2019) 618 For M (m) α, −→ b , we can also use the same method to obtain the desired result, but we omit the details. Therefore, the proof of Theorem 1.4 is completed. � Acknowledgement: This study has been given as the plenary talk by the author at the “The Inter- national Workshop on Mathematical Methods in Engineering” (MME-2017), Çankaya University, Ankara, Turkey, 27-29 April 2017. References [1] X. N. Cao and D. X. Chen, The boundedness of Toeplitz-type operators on vanishing Morrey spaces, Anal. Theory Appl., 27 (2011), 309-319. [2] D. X. Chen, J. Chen and S. Mao, Weighted Lp estimates for maximal commutators of multilinear singular integrals, Chin. Ann. Math., 34B(6) (2013), 885-902. [3] X. Chen and Q. Y. Xue, Weighted estimates for a class of multilinear fractional type operators, J. Math. Anal. Appl., 362 (2010), 355-373. [4] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331. [5] Z. W. Fu, Y. Lin and S. Z. Lu, λ-Central BMO estimates for commutators of singular integral operators with rough kernel, Acta Math. Sin. (Engl. Ser.), 24 (2008), 373-386. [6] L. Grafakos, On multilinear fractional integrals, Studia. Math., 102 (1992), 49-56. [7] L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math., 165 (2002), 124-164. [8] L. Grafakos and R. H. Torres, Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J., 51 (2002), 1261-1276. [9] L. Grafakos and R. H. Torres, On multilinear singular integrals of Calderón-Zygmund type, in: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial), in: Publ. Mat., vol. Extra, 2002, 57-91. [10] M. Giaquinta, Multiple integrals in the calculus of variations and non-linear elliptic systems. Princeton, New Jersey: Princeton Univ. Press, 1983. [11] F. Gürbüz, Weighted Morrey and Weighted fractional Sobolev-Morrey Spaces estimates for a large class of pseudo- differential operators with smooth symbols, J. Pseudo-Differ. Oper. Appl., 7(4) (2016), 595-607. [12] F. Gürbüz, Sublinear operators with rough kernel generated by Calderón-Zygmund operators and their commutators on generalized Morrey spaces, Math. Notes, 101(3-4) (2017), 429-442. [13] F. Gürbüz, Some estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces, Canad. Math. Bull., 60(1) (2017), 131-145. [14] F. Gürbüz, Multi-sublinear operators generated by multilinear fractional integral operators and local Campanato space estimates for commutators on the product generalized local Morrey spaces, Adv. Math. (China), 47(6) (2018), 855-880. [15] F. John and L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415-426. [16] T. Karaman, Boundedness of some classes of sublinear operators on generalized weighted Morrey spaces and some appli- cations [Ph.D. thesis], Ankara University, Ankara, Turkey, 2012 (in Turkish). [17] C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1999), 1-15. Int. J. Anal. Appl. 17 (4) (2019) 619 [18] Y. Lin, Strongly singular Calderón-Zygmund operator and commutator on Morrey type spaces, Acta Math. Sin. (Engl. Ser.), 23(11) (2007), 2097-2110. [19] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis (S. Igari, Editor), ICM 90 Satellite Proceedings, Springer - Verlag, Tokyo (1991), 183-189. [20] K. Moen, Weighted inequalities for multilinear fractional integral operators, Collect. Math., 60 (2009), 213-238. [21] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166. [22] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274. [23] D. K. Palagachev and L. G. Softova, Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s, Potential Anal., 20 (2004), 237-263. [24] Z. Y. Si and S. Z. Lu, Weighted estimates for iterated commutators of multilinear fractional operators, Acta Math. Sin. (Engl. Ser.), 28(9) (2012), 1769-1778. [25] L. G. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.), 22(3) (2006), 757-766. [26] M. E. Taylor, Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Volume 81 of Math. Surveys and Monogr. AMS, Providence, R.I., 2000. [27] C. Vitanza, Functions with vanishing Morrey norm and elliptic partial differential equations, in: Proceedings of Methods of Real Analysis and Partial Differential Equations, Capri, pp. 147-150. Springer (1990). [28] J. Xu, Boundedness in Lebesgue spaces for commutators of multilinear singular integrals and RBMO functions with non-doubling measures, Sci. China (Series A), 50 (2007), 361-376. [29] X. Yu and X. X. Tao, Boundedness of multilinear operators on generalized Morrey spaces, Appl. Math. J. Chinese Univ., 29(2) (2014), 127-138. [30] R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, vol. 43 of Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1977. 1. Introduction and main results 2. A Key Lemma 3. Proofs of the main results 3.1. Proof of Theorem 1.3. 3.2. Proof of Theorem 1.4. References