International Journal of Analysis and Applications Volume 17, Number 5 (2019), 803-808 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-17-2019-803 GENERALIZATION OF BATEMAN POLYNOMIALS ASAD ALI∗, MUHAMMAD ZAFAR IQBAL, BILAL ANWER, ATHER MEHMOOD Department of Mathematics and Statistics, University of Agriculture Faisalabad, Pakistan ∗Corresponding author:: mrasadali5100@gmail.com Abstract. In this paper, generalize the Bateman polynomials in terms of generalized hypergeometric func- tion of the type pFp. Establish different forms of extended polynomials such as series expansion, generating functions and recurrence relations. 1. Introduction Bateman polynomials are the family of Fn orthogonal polynomials. Many of researchers generalized the classical results on the Bateman polynomials. A large dedicated literature, numbers of relevant properties, extensions, generalizations and applications of Bateman polynomials are available in [1], [2], [4], [7], [10] and [11]. The Bateman polynomials fn(x) generated by ∞∑ n=0 fn(x)t n = (1 − t)−1ψ ( −4xt (1 − t)2 ) , (1.1) have the following classical properties. fn(x) = ∞∑ k=0 (−n)k(1 + n)kγkxk ( 1 2 )k(1)k , (1.2) fn(x) = 2F2(−n, 1 + n; 1, 1; x), (1.3) xf ′ n(x) − nfn(x) = −nfn−1(x) − xf ′ n−1(x), n ≥ 1, (1.4) Received 2019-04-08; accepted 2019-05-13; published 2019-09-02. 2010 Mathematics Subject Classification. 26C05, 65Q30. Key words and phrases. Bateman polynomials; generating functions; recurrence relations. c©2019 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 803 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-17-2019-803 Int. J. Anal. Appl. 17 (5) (2019) 804 xf ′ n(x) − nfn(x) = − n−1∑ k=0 fk(x) − 2x n−1∑ k=0 f ′ k(x), n ≥ 1, (1.5) xf ′ n(x) − nfn(x) = n−1∑ k=0 (−1)n−k(1 + 2k)fk(x), n ≥ 1. (1.6) 2. main results In this section we determine generalized properties of classical Bateman polynomials, series expansion, generating function and recurrence relations. For this let ψ(u) have a formal power- series expansion ψ(u) = ∞∑ n=0 γnu n, (2.1) Define a polynomials f (α) n (x) by ∞∑ n=0 f(α)n (x) n = (1 − t)−1−αψ ( −ppxt qq(1 − t)p ) . (2.2) where p ≥ 2, q = p − 1 and α is any non-negative real parameter. Theorem 2.1. If n is non-negative integer then, f(α)n (x) = (1 + α)n n! n∑ k=0 (−n)k( 1+α+nq )k( 2+α+n q )k....( q+α+n q )kx kγk ( 1+α p )k( 2+α p )k....( p+α p )k . (2.3) Proof: From (2.1) and (2.2) ∞∑ n=0 f(α)n (x)t n = ∞∑ k=0 (−1)k(p)pkxktkγk (q)qk(1 − t)1+α+pk , By using (1), pp 58 of [1] ∞∑ n=0 f(α)n (x)t n = ∞∑ n=0 ∞∑ k=0 (−1)k(p)pk(1 + α)n+pkγkxktn+k (q)qkn!(1 + α)pk , By using Lemma 11, pp 57 of [1] ∞∑ n=0 f(α)n (x)t n = ∞∑ n=0 n∑ k=0 (−1)k(p)pk(x)k(1 + α)n+qkγktn (q)qk(n − k)!(1 + α)pk , Int. J. Anal. Appl. 17 (5) (2019) 805 = ∞∑ n=0 n∑ k=0 (1 + α)n n! (−1)kn!(p)pk(x)k(1 + α + n)qkγktn (q)qk(n − k)!(1 + α)pk , equating the coefficients of tn, we obtain (2.3). Theorem 2.2. If n ≥ 1, then f(α)n (x) = (1 + α)n n! pFp  −n, 1 + α + n q , 2 + α + n q ... q + α + n q ; 1, 1...1︸ ︷︷ ︸ p−times ; x   . (2.4) Proof: If we choose γk = ( 1+α p )k( 2+α p )k....( p+α p )k (k!)p+1 . in (2.3) then our yield is (2.4). Theorem 2.3. If n is non-negative integer then, xf ′(α) n (x) − nf (α) n (x) = −(α + n)f (α) n−1(x) − qxf ′(α) n−1(x). (2.5) Proof: In order to derive (2.5), consider F = ∞∑ n=0 f(α)n (x)t n = (1 − t)−1−αψ(v). where, v = −ppxt qq(1 − t)p . Differentiate with respect to x Fx = ∞∑ n=0 f ′(α) n (x)t n = (1 − t)−1−αψ ′ (v) −ppt qq(1 − t)p , Int. J. Anal. Appl. 17 (5) (2019) 806 Differentiate with respect to t Ft = ∞∑ n=0 f(α)n (x)nt n−1 = (1 + α)(1 − t)−2−αψ(v) − (1 − t)−1−αψ ′ (v) ∂v ∂t , where, ∂v ∂t = −ppx(1 + qt) qq(1 − t)p+1 . Ft = ∞∑ n=0 f(α)n (x)nt n−1 = (1 + α)(1 − t)−2−αψ(v) − x pp(1 − t)−2−α−p(1 + qt) qq ψ ′ (v), Therefore F satisfies the partial differential equation x(1 + qt)Fx − t(1 − t)Ft + (1 + α)tF = 0. x(1 + qt) ∞∑ n=0 f ′(α) n (x)t n − t(1 − t ∞∑ n=0 f(α)n (x)nt n−1) + (1 + α)t ∞∑ n=0 f(α)n (x)t n = 0, ∞∑ n=0 [xf ′(α) n (x) − nf (α) n (x)]t n = − ∞∑ n=0 (1 + α + n)f(α)n (x)t n+1 − qx ∞∑ n=0 f ′(α) n (x)t n+1, = − ∞∑ n=1 (α + n)f (α) n−1(x)t n − qx ∞∑ n=1 f ′(α) n−1(x)t n, which leads to (2.5). Theorem 2.4. If n is non-negative integer then, xf ′(α) n (x) − nf (α) n (x) = −(1 + α) n−1∑ k=0 f (α) k (x) − px n−1∑ k=0 f ′(α) k (x). (2.6) Proof: Int. J. Anal. Appl. 17 (5) (2019) 807 F also satisfies the partial differential equation xFx − xtFx + pxtFx − tFt + t2Ft + (1 + α)tF = 0. xFx − tFt = − (1 + α)t 1 − t F − pxt 1 − t Fx. x ∞∑ n=0 f ′(α) n (x)t n − t ∞∑ n=0 f(α)n (x)nt n−1 = −(1 + α) ∞∑ n=0 tn+1 ∞∑ k=0 f (α) k (x)t k − px ∞∑ n=0 tn+1 ∞∑ k=0 f ′(α) k (x)t k, ∞∑ n=0 [xf ′(α) n (x) − nf (α) n (x)]t n = −(1 + α) ∞∑ n=0 ∞∑ k=0 f (α) k (x)t n+k+1 − px ∞∑ n=0 ∞∑ k=0 f ′(α) k (x)t n+k+1 = − ∞∑ n=1 [(1 + α) n−1∑ k=0 f (α) k (x) − px n−1∑ k=0 f ′(α) k (x)]t n, which leads to (2.6). Theorem 2.5. If n is non-negative integer then, xf ′(α) n (x) − nf (α) n (x) = n−1∑ k=0 (−q)n−k(1 + α + pk)f(α)k (x). (2.7) Proof: F satisfies the partial differential equation xFx + qxtFx − tFt − qt2Ft + pt2Ft + (1 + α)tF = 0. xFx − tFt = − (1 + α)t 1 + qt F − pt2 1 + qt Ft, ∞∑ n=0 [xf ′(α) n (x) − nf (α) n (x)]t n = −(1 + α) ∞∑ n=0 ∞∑ k=0 (−q)nf(α)k (x)t n+k+1 − p ∞∑ n=0 ∞∑ k=0 (−q)nf(α)k (x)kt n+k+1, Int. J. Anal. Appl. 17 (5) (2019) 808 = ∞∑ n=1 n−1∑ k=0 (−q)n−k(1 + α + pk)f(α)k (x)t n, which gives (2.7). For α = 0 and p = 2 the equations (2.2) to (2.7) reduces to (1.1) to (1.6). Theorem 2.6. If n ≥ 1, then the polynomials f(α)n (x) also satisfying the following property ∞∑ n=0 f(α)n (x)t n = (1 − t)−1−αpFp  1 + α + n p , 2 + α + n p ... q + α + n p ; 1, 1...1︸ ︷︷ ︸ p−times ; −ppxt qq   . (2.8) Acknowledgments The authors express their sincere gratitude to Dr. Ghulam Farid for useful discussions and invaluable advice. References [1] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960. [2] G. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 2004. [3] G. Andrews, R. Askey and R. Roy. Special Functions, Cambridge University Press, 1999. [4] S. B. Trickovic and M. S. Stankovic, On the orthogonality of classical orthogonal polynomials, Integral Transforms Spec. Funct., 14(2003), 129-138. [5] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192. [6] K. Y. Chen and H. M. Srivastava, A limit relationship between Laguerre and Hermite polynomials. Integral Transforms Spec. Funct., 16(2005), 75 - 80. [7] E. H. Doha, H. M. Ahmed and S. I. El-Soubhy, Explicit formulae for the coefficients of integrated expansions of Laguerre and Hermite polynomials and their integrals, Integral Transforms Spec. Funct., 20 (2009), 491 - 503. [8] I. Krasikov and A. Zarkh, Equioscillatory property of the Laguerre polynomials, J. Approx. Theory, 162(2010), 2021 - 2047. [9] S. Alam and A. K. Chongdar, On generating functions of modified Laguerre polynomials, Rev. Real Academia de Ciencias. Zaragoza, 62(2007), 91 - 98. [10] M. A. Khan and A. K. Shukla, On some generalized Sister Celines polynomials, Czechoslovak Math. J., 49(3) (1999), 527-545. [11] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, HalstedPress (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985. 1. Introduction 2. main results References