International Journal of Analysis and Applications Volume 17, Number 6 (2019), 974-979 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-17-2019-974 ON PROPERTIES OF CERTAIN ANALYTIC MULTIPLIER TRANSFORM OF COMPLEX ORDER DEBORAH OLUFUNMILAYO MAKINDE1,∗, SHAHRAM NAJAFZADEH2 1Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria 2Department of Mathematics, Payame Noor University, P. O. Box: 19395–3697, Tehran, Iran ∗Corresponding author: funmideb@yahoo.com Abstract. The focus of this paper is to investigate the subclasses S∗C(γ,µ,α,λ; b), TS∗C(γ,µ,α,λ; b) = T ∩ S∗C(γ,µ,α,λ; b) and obtain the coefficient bounds as well as establishing its relationship with certain existing results in the literature. 1. Introduction Let A be the class of normalized analytic functions f in the open unit disc U = {z ∈ C : |z| < 1} with f(0) = f′(0) = 0 and of the form f(z) = z + ∞∑ n=2 anz n, an ∈ C, (1.1) and S the class of all functions in A that are univalent in U. Also, the subclass of functions in A that are of the form f(z) = z − ∞∑ n=2 anz n, an ≥ 0, (1.2) is denoted by T and the subclasses S∗(α), C(γ) are given respectively by S∗(α) = { f ∈ S : Re ( zf′(z) f(z) ) > γ z ∈ U } (1.3) Received 2019-07-05; accepted 2019-08-12; published 2019-11-01. 2010 Mathematics Subject Classification. 30C45. Key words and phrases. analyticity; univalent; linear transformation; coefficient bounds. c©2019 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 974 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-17-2019-974 Int. J. Anal. Appl. 17 (6) (2019) 975 C(α) = { f ∈ S : Re ( 1 + zf′′(z) f′(z) ) > γ z ∈ U,≥ γ < 1 } . (1.4) Moreover, the class TS∗(γ) denoted by T ∩ S∗(γ) which is the subclass of function f ∈ T such that f is starlike of order γ and respectively, TC(γ) is the class of function f ∈ T such that f is convex of order γ. An interesting unification of the classes S∗(α) and C(γ) denoted by S∗C(γ,β) which satisfies the condition Re { zf′(z) + βz2f′(z) βzf′(z) + (1 −β)f(z) } > γ 0 ≥ γ < 1,z ∈ U. (1.5) has been extensively studied by different researchers, for example, see [6] and [1,2,3]. The special cases for β = 0, 1 are given by S∗(γ) and C((γ)) respectively. Furthermore, the class TS∗C(γ,β) which is the subclass of function f ∈ T such that f belongs the class S∗C(γ,β), was studied by Altintas et al. and other researchers. For details see [ 3, 5, 6 ]. Using the unification in (5), Nizami Mustafa [6] introduced and investigated the class S∗C(γ,β; τ) and TS∗C(γ,β; τ), 0 ≤ α < 1; β ∈ [0, 1]; τ ∈ C which he defined as follows A function f ∈ S given by (1.1) is said to belong to the class S∗C(γ,β; τ) if the following condition is satisfied Re { 1 + 1 τ [ zf′(z) + βz2f′(z) βzf′(z) + (1 −β)f(z) − 1 ]} > γ 0 ≥ γ < 1; β ∈ [0, 1]; τ ∈ C −{0},z ∈ U. (1.6) Meanwhile, the author in [4] defined a linear transformation Dmα,λf by Dmα,λf(z) = z + ∞∑ n=2 α ( 1 + λ(n + α− 2) 1 + λ(α− 1) )m anz n, 0 ≤ λ ≤ 1; α ≥ 1; m ∈ N∪ 0 (1.7) Motivated by the work of Mustafa in [6], we study the effect of the application of the linear operator Dmα,λf on the unification of the classes of the functions S∗C(γ,β; τ). Now, we define the class S∗C(γ,α,λ; b) to be class of functions f ∈ S which satisfies the condition Re { 1 + 1 b [ z(Dmα,λf) ′(z) + µz2(Dmα,λf) ′′(z) µz(Dmα,λf) ′(z) + (1 −µ)(Dmα,λf)(z) − 1 ]} > γ, 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; α ≥ 1; m ∈ N∪0 (1.8) Also, we denote by DT the subclass of the class of functions in (7) which is of the form Dmα,λf(z) = z − ∞∑ n=2 α ( 1 + λ(n + α− 2) 1 + λ(α− 1) )m anz n, 0 ≤ λ,µ ≤ 1; α ≥ 1; m ∈ N∪ 0 (1.9) and denote by TS∗C(γ,µ,α,λ; b) = T ∩S∗C(γ,µ,α,λ; b) which is the class of functions f in (1.9) such that f belong to the class S∗C(γ,µ,α,λ; b) = T ∩S∗C(γ,µ,α,λ; b). In this paper, we investigate the subclasses S∗C(γ,µ,α,λ; b) and TS∗C(γ,µ,α,λ; b) = T ∩S∗C(γ,µ,α,λ; b) Int. J. Anal. Appl. 17 (6) (2019) 976 2. Coeffiecient bounds for the classes S∗Cλα(γ,µ; b) and TS ∗Cλα(γ,µ; b) Theorem 2.1. Let f be as defined in (1.1). Then the function Dmα,λf belongs to the class S ∗C(γ,µ,α,λ; b), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; α ≥ 1; m ∈ N∪ 0 if ∞∑ n=2 [ α ( 1 + λ(n + α− 2) 1 + λ(α− 1) )m [1 + µ(n− 1)][n + |b|(1 −γ) − 1] ] |an| ≤ |b|(1 −γ) The result is sharp for the function Dmα,λf(z) = z + |b|(1 −γ)(1 + λ(α− 1))m α[1 + µ(n− 1)][n + |b|(1 −γ)](1 + λ(n + α− 2))m zn n ≥ 2 Proof. By (1.8), f belong to the class S∗C(γ,µ,α,λ; b) if Re { 1 + 1 b [ z(Dmα,λf) ′(z) + µz2(Dmα,λf) ′′(z) µz(Dmα,λf) ′(z) + (1 −µ)(Dmα,λf)(z) − 1 ]} > γ It suffices to show that: ∣∣∣∣∣1b [ z(Dmα,λf) ′(z) + µz2(Dmα,λf) ′′(z) µz(Dmα,λf) ′(z) + (1 −µ)(Dmα,λf)(z) − 1 ]∣∣∣∣∣ < 1 −γ (2.1) Simple computation in (2.1), using (1.7), we have:∣∣∣∣∣1b [ z(Dmα,λf) ′(z) + µz2(Dmα,λf) ′′(z) µz(Dmα,λf) ′(z) + (1 −µ)(Dmα,λf)(z) − 1 ]∣∣∣∣∣ = ∣∣∣∣∣∣1b   z + ∑∞n=2 nα ( 1+λ(n+α−2) 1+λ(α−1) )m anz n + µ ∑∞ n=2 n(n− 1)α ( 1+λ(n+α−2) 1+λ(α−1) )m anz n µz + ∑∞ n=2 µnα ( 1+λ(n+α−2) 1+λ(α−1) )m anzn + (1 −µ) ( z + ∑∞ n=2 α ( 1+λ(n+α−2) 1+λ(α−1) )m anzn ) − 1   ∣∣∣∣∣∣ = ∣∣∣∣∣∣1b  z + ∑∞n=2 nα[1 + µ(n− 1)] ( 1+λ(n+α−2) 1+λ(α−1) )m anz n z + ∑∞ n=2 α(1 + µ(n− 1)) ( 1+λ(n+α−2) 1+λ(α−1) )m anzn − 1   ∣∣∣∣∣∣ ≤ 1 b  ∑∞n=2 α(n− 1)[1 + µ(n− 1)] ( 1+λ(n+α−2) 1+λ(α−1) )m |an| 1 − ∑∞ n=2 α(1 + µ(n− 1)) ( 1+λ(n+α−2) 1+λ(α−1) )m |an|   which is bounded by 1 −γ if∑∞ n=2 α(n− 1)[1 + µ(n− 1)] ( 1+λ(n+α−2) 1+λ(α−1) )m |an| ≤ |b|(1 −γ)1 − ∑∞ n=2 α(1 + µ(n− 1)) ( 1+λ(n+α−2) 1+λ(α−1) )m |an| which is equivalent to∑∞ n=2 [ α(n− 1)[1 + µ(n− 1)] ( 1+λ(n+α−2) 1+λ(α−1) )m + α|b|(1 −γ)(1 + µ(n− 1)) ( 1+λ(n+α−2) 1+λ(α−1) )m] |an| ≤ |b|(1 −γ) Which implies that ∞∑ n=2 [ α ( 1 + λ(n + α− 2) 1 + λ(α− 1) )m [1 + µ(n− 1)][n + |b|(1 −γ) − 1] ] |an| ≤ |b|(1 −γ) (2.2) Int. J. Anal. Appl. 17 (6) (2019) 977 Thus, (2.1) is satisfied if (2.2) is satisfied. � Corollary 2.1. Let f be as defined in (1) and the function Dmα,λf belongs to the class S ∗C(γ,µ,α,λ; b), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; α ≥ 1; m ∈ N∪ 0. Then |an| ≤ |b|(1 −γ)(1 + λ(α− 1))m α[1 + µ(n− 1)][n + |b|(1 −γ) − 1](1 + λ(n + α− 2))m Corollary 2.2. Let f be as defined in (1.1). Then the function Dmα,λf belongs to the class S ∗C(γ,µ, 1,λ,m; b), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; m ∈ N∪ 0 if ∞∑ n=2 [(1 + λ(n− 1))m [1 + µ(n− 1)][n + |b|(1 −γ) − 1]] |an| ≤ |b|(1 −γ) (2.3) The result is sharp for the function Dmα,λf(z) = z + |b|(1 −γ) [1 + µ(n− 1)][n + |b|(1 −γ) − 1](1 + λ(n− 1))m zn, n ≥ 2 Corollary 2.3. Let f be as defined in (1.1). Then the function Dmα,λf belongs to the class S ∗C(γ,µ, 1,λ, 1; b), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; m ∈ N∪ 0 if ∞∑ n=2 [(1 + λ(n− 1)) [1 + µ(n− 1)][n + |b|(1 −γ) − 1]] |an| ≤ |b|(1 −γ) (2.4) The result is sharp for the function Dmα,λf(z) = z + |b|(1 −γ) [1 + µ(n− 1)][n + |b|(1 −γ) − 1](1 + λ(n− 1)) zn, n ≥ 2 Corollary 2.4. Let f be as defined in (1.1). Then the function Dmα,λf belongs to the class S ∗C(γ,µ, 1, 1, 1; b), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; m ∈ N∪ 0 if ∞∑ n=2 [n[1 + µ(n− 1)][n + |b|(1 −γ) − 1]] |an| ≤ |b|(1 −γ) (2.5) The result is sharp for the function Dmα,λf(z) = z + |b|(1 −γ) n[1 + µ(n− 1)][n + |b|(1 −γ) − 1] zn, n ≥ 2 Corollary 2.5. Let f be as defined in (1.1). Then the function Dmα,λf belongs to the class S ∗C(γ,µ, 1, 0, 1; b), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; m ∈ N∪ 0 if ∞∑ n=2 [[1 + µ(n− 1)][n + |b|(1 −γ) − 1]] |an| ≤ |b|(1 −γ) (2.6) The result is sharp for the function Dmα,λf(z) = z + |b|(1 −γ) [1 + µ(n− 1)][n + |b|(1 −γ)−] zn, n ≥ 2 This result agrees with the Theorem 2.1 in [6]. Int. J. Anal. Appl. 17 (6) (2019) 978 Corollary 2.6. Let f be as defined in (1.1). Then the function Dmα,λf belongs to the class S ∗C(γ, 0, 1,λ, 0; 1), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; m ∈ N∪ 0 if ∞∑ n=2 [[1 + µ(n− 1)][n−γ]] |an| ≤ 1 −γ (2.7) The result is sharp for the function Dmα,λf(z) = z + 1 −γ [1 + µ(n− 1)][n−γ] zn, n ≥ 2 This result agrees with the Corollary 2.1 in [6]. Corollary 2.7. Let f be as defined in (1.1). Then the function Dmα,λf belongs to the class S ∗C(γ,µ, 1,λ, 0; 1), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; m ∈ N∪ 0 if ∞∑ n=2 (n−γ)|an| ≤ 1 −γ (2.8) The result is sharp for the function Dmα,λf(z) = z + 1 −γ n−γ zn, n ≥ 2 This result agrees with the Corollary 2.2 in [6]. Theorem 2.2. Let f ∈ DT . Then the function Dmα,λf belongs to the class DTS ∗C(γ,µ,α,λ; b), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; α ≥ 1; m ∈ N∪ 0 if and only if ∞∑ n=2 α(n− 1)[1 + µ(n− 1)][n + b(1 −γ)] ( x y )m |an| ≤ |b|(1 −γ) Proof. We shall prove only the necessity part of the Theorem as the sufficiency proof is similar to the proof of Theorem 1. Let f be as defined in (1.1) and Dmα,λf belongs to the class TS ∗C(γ,µ,α,λ; b), 0 ≥ γ < 1,z ∈ U; 0 ≤ λ,µ ≤ 1; α ≥ 1; m ∈ N∪ 0; b ∈ R−{0}, we have Re { 1 + 1 b [ z(Dmα,λf) ′(z) + µz2(Dmα,λf) ′′(z) µz(Dmα,λf) ′(z) + (1 −µ)(Dmα,λf)(z) − 1 ]} > γ (2.9) Using (1.7) in (2.9) and by algebraic simplification, we have Re   − ∑∞ n=2 α(n− 1)[1 + µ(n− 1)] ( 1+λ(n+α−2) 1+λ(α−1) )m anz n b { z − ∑∞ n=2 α(1 + µ(n− 1)) ( 1+λ(n+α−2) 1+λ(α−1) )m anzn }   ≥ γ − 1 Choosing z to be real and z −→ 1, we have − ∑∞ n=2 α(n− 1)[1 + µ(n− 1)] ( 1+λ(n+α−2) 1+λ(α−1) )m an b { 1 − ∑∞ n=2 α(1 + µ(n− 1)) ( 1+λ(n+α−2) 1+λ(α−1) )m an } ≥ γ − 1 (2.10) Int. J. Anal. Appl. 17 (6) (2019) 979 b ∈ R−{0} implies that b could be greater or less than zero. Let b > 0 in (19), we have − ∞∑ n=2 α(n− 1)[1 + µ(n− 1)] ( x y )m an ≥ (γ − 1)b { 1 − ∞∑ n=2 α(1 + µ(n− 1)) ( x y )m an } (2.11) where x = 1 + λ(n + α− 2) and y = 1 + λ(α− 1) From (20), we have ∞∑ n=2 α(n− 1)[1 + µ(n− 1)][n + b(1 −γ)] ( x y )m |an| ≤ b(1 −γ) (2.12) Now suppose b < 0, which implies that b = −|b| and substituting b = −|b| in (19), we have∑∞ n=2 α(n− 1)[1 + µ(n− 1)] ( x y )m an |b| { 1 − ∑∞ n=2 α(1 + µ(n− 1)) ( x y )m an } ≥ (2.13) ∑∞ n=2 α(n− 1)[1 + µ(n− 1)] ( x y )m |an| ≥ (γ − 1)|b| { 1 − ∑∞ n=2 α(1 + µ(n− 1)) ( x y )m an } which implies ∞∑ n=2 α(n− 1)[1 + µ(n− 1)][n + b(1 −γ)] ( 1 + λ(n + α− 2) 1 + λ(α− 1) )m |an| ≥−b(1 −γ) (2.14) From (21) and (23), the proof of the necessity is completed. � References [1] Altintas, O., On a subclass of certain starlike functions with negative coefficient. Math. Japon., 36 (1991), 489-495. [2] Altintas, O., Irmak, H. and Srivastava, H. M., Fractional calculus and certain starlke functions with negative coefficients. Comput. Math. Appl., 30 (1995), No. 2, 9-16. [3] Altintas, O., Özkan, Ö. and Srivastava, H. M., Neighborhoods of a Certain Family of Multivalent Functions with Negative Coefficients. Comput. Math. Appl., 47 (2004), 1667- 1672. [4] Makinde, D.O., A new multiplier differential operator. Adv. Math., Sci. J., 7 (2018), no.2, 109 -114. [5] Irmak, H., Lee, S. H. and Cho, N. E., Some multivalently starlike functions with negative coefficients and their subclasses defined by using a differential operator. Kyungpook Math. J., 37 (1997), 43-51. [6] Mustafa, N., The various properties of certain subclasses of analytic functions of complex order. arXiv:1704.04980 [math.CV], 2017. 1. Introduction 2. Coeffiecient bounds for the classes S*C(,;b) and TS*C(,;b) References