International Journal of Analysis and Applications Volume 18, Number 6 (2020), 1083-1107 URL: https://doi.org/10.28924/2291-8639 DOI: 10.28924/2291-8639-18-2020-1083 COUPLED COINCIDENCE POINT FOR f(ψ,ϕ)−CONTRACTIONS VIA GENERALIZED α−ADMISSIBLE MAPPINGS WITH AN APPLICATION DHEKRA M. ALBAQERI1, HASANEN A. HAMMAD2,∗, MANUEL DE LA SEN3 1Department of Mathematics, Faculty of Education, Sanaa University, Sanaa 1247, Yemen 2Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt 3Institute of Research and Development of Processes University of the Basque Country 48940- Leioa (Bizkaia), Spain ∗Corresponding author: hassanein hamad@science.sohag.edu.eg Abstract. The main objective of this manuscript is to discuss some coupled coincidence point (ccp) results for generalized α− admissible mappings which are f(ψ,ϕ)− contractions in the context of b−metric spaces (b-ms). Also, an example to support the obtained theoretical theorems is derived. Ultimately, an analytical solution for nonlinear integral equation (nie) is discussed as an application. 1. Introduction and elementary discussions Fixed point techniques plays an enormous role in many applications of mathematics. During the past thirty years various extension of a metric space have been discussed. The Banach contraction principle is a popular tool helps to solve problems in nonlinear analysis. A number of publications are interested to the study and solutions of many practical and theoretical problems by using this principle [1–8]. Bakhtin [9] in 1993 and Czerwik [10] in 1998 introduced the concept of (b-ms). Since then, several papers have been published on the fixed point theory of both classes of single-valued and multi-valued operators in (b-ms). [11], [12], [13–16]. Received September 13th, 2020; accepted October 15th, 2020; published November 4th, 2020. 2010 Mathematics Subject Classification. 46N40, 47H10, 46T99. Key words and phrases. coupled coincidence point; generalized α− admissible mapping; b−metric spaces; nonlinear integral equations. ©2020 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 1083 https://doi.org/10.28924/2291-8639 https://doi.org/10.28924/2291-8639-18-2020-1083 Int. J. Anal. Appl. 18 (6) (2020) 1084 Definition 1.1. [10] Let Γ be a nonempty set and s ≥ 1 be a given real number. A function νb : Γ × Γ → [0,∞) is a b-metric (b-m) iff, for all e,r,ζ ∈ Υ , the stipulations below are fulfilled: (b1) νb(e,r) = 0 ⇔ e = r; (b2) νb(e,r) = νb(r,e); (b3) νb(e,r) ≤ s[νb(e,ζ) + νb(ζ,r)]. The pair (Γ,νb) is called a (b-ms) with a constant s ≥ 1. Example 1.1. Let Γ = [0,∞). Define the function νb : Υ2 → [0,∞) by νb(e,r) = (e−r)2. Then (Γ,νb) is a (b-ms) with a constant s = 2. Definition 1.2. [10] Suppose that (Γ,νb) is a (b-ms). So a sequence {en} in Γ is called: (i) convergent if there is e ∈ Γ so that νb(en,e) → 0 as n →∞. (ii) Cauchy sequence iff limm,n→∞νb(em,en) → 0 as n,m →∞. (iii) the pair (Γ,νb) is called a complete iff every Cauchy sequence {en} in Γ converges to e ∈ Γ. Lemma 1.1. [11] Let (Γ,νb) be a (b-ms) with a coefficient s ≥ 1, {en} and {rn} be a convergent to points e,r ∈ Γ, respectively. Then we have 1 s2 νb(e,r) ≤ lim inf n→∞ νb(en,rn) ≤ lim sup n→∞ νb(en,rn) ≤ s2νb(e,r). In particular, if e = r, then limn→∞νb(en,rn) = 0. Moreover, for each δ ∈ Γ, we have 1 s νb(e,δ) ≤ lim inf n→∞ νb(en,δ) ≤ lim sup n→∞ νb(en,δ) ≤ sνb(e,δ). Lemma 1.2. [12] Let {en} be a sequence in a (b-ms) (Γ,νb) so that νb(en,en+1) ≤ λνb(en−1,en), for some λ, 0 < λ < 1 s , and for each n ∈ N. Then {en} is a Cauchy sequence in Γ. The idea of coupled fixed point initiated and studied by Guo and Lakshmikantham [17]. After that, the monotone property is studied by Bhaskar and Lakshmikantham [18]. Many works are made to generalized this concept in various spaces under certain conditions, the reader can shed light on [19–23, 25, 26]. Definition 1.3. [18] An element (e,r) ∈ Υ × Υ is called a (ccp) of the mappings Υ : Γ × Γ → Γ and Λ : Γ → Γ if Υ(e,r) = Λe and Υ(r,e) = Λr. Definition 1.4. [27] An element (e,r) ∈ Γ × Γ is called a (ccp) of mappings Υ, Λ : Γ × Γ → Γ if Υ(e,r) = Λ(e,r) and Υ(r,e) = Λ(r,e). Example 1.2. Let Υ, Λ : R×R → R be defined by Υ(e,r) = Λr and Λ(e,r) = 2 3 (e + r) for all (e,r) ∈ Γ×Γ . Note that (0, 0), (1, 2) and (2, 1) are (ccp) of Υ and Λ . Int. J. Anal. Appl. 18 (6) (2020) 1085 Definition 1.5. [27] Let Υ, Λ : Γ × Γ → Γ. We say that the pair (Υ, Λ) is generalized compatible if νb(Υ(Λ(en,rn), Λ(rn,en)), Λ(Υ(en,rn), Υ(rn,en))) → 0 as n →∞, νb(Υ(Λ(rn,en), Λ(en,rn)), Λ(Υ(rn,en), Υ(en,rn))) → 0 as n →∞, whenever {en} and {rn} are sequences in Γ such that for all t1, t2 ∈ Γ, we have lim n→∞ Υ(en,rn) = lim n→∞ Λ(en,rn) = t1, lim n→∞ Υ(rn,en) = lim n→∞ Λ(rn,en) = t2. Definition 1.6. [28] Let Υ : Γ → Γ and α : Γ×Γ → [0, +∞). We say that Υ is an α− admissible mapping if α(e,r) ≥ 1 implies α(Υe, Υr) ≥ 1 for all e,r ∈ Υ. Ansari [29] initiated the remarkable of C−class functions. This contribution covers a large class of con- tractive conditions. Here, we denote C-class functions as C. Definition 1.7. [29] A C-class function is a continuous mapping f : [0,∞)2 → R which fulfills the stipulations below: (1) f(e,r) ≤ e, (2) f(e,r) = e implies that either e = 0 or r = 0 for all e,r ∈ [0,∞). Example 1.3. The functions below f : [0,∞)2 → R are elements of C, for all e,r ∈ [0,∞) : (1) f(e,r) = e−r; (2) f(e,r) = λe, 0 < λ < 1; (3) f(e,r) = e (1+r)σ ; σ ∈ (0,∞); (4) f(e,r) = log(r+ae) (1+r) ,a > 1. Here in this manuscript, we refers to: • Ψ = {ψ : ψ : [0,∞) → [0,∞) is a strictly nondecrasing and continuous function, ψ(t) = 0 ⇔ t = 0}. • An ultra altering distance function Φ = {ϕ : ϕ : [0,∞) → [0,∞)} is a continuous, non-decreasing mapping such that ϕ(t) > 0 for t > 0 and ϕ(0) ≥ 0. The goal of this paper is to obtain some new (ccp) results for a certain class of f(ψ,ϕ)- contractive via generalized α− admissible mappings in (b-ms). Ultimately, to support our work we present an example and application to find an analytical solution to the (nie). 2. Main results We begin this part with the definition below: Int. J. Anal. Appl. 18 (6) (2020) 1086 Definition 2.1. Let Υ, Λ : Γ2 → Γ and α : Γ2×Γ2 → R+ be given mappings. We say that Υ is a generalized α-admissible with respect to (w.r.t.) Λ if α((Λ(e,r), Λ(r,e)), (Λ(µ,κ), Λ(κ,µ))) ≥ 1 implies α((Υ(e,r), Υ(r,e)), (Υ(µ,κ), Υ(κ,µ))) ≥ 1, for all (e,r), (µ,κ) ∈ Γ2. Now, we present the first main theorem: Theorem 2.1. Let (Γ,νb) be a complete (b-ms) (with parameter s > 1), and Υ, Λ : Γ 2 → Γ be two generalized compatible mappings such that Υ is a generalized α−admissible mapping w.r.t. Λ and Λ is continuous. Let there is f ∈ C, ψ ∈ Ψ,ϕ ∈ Φ so that the stipulation below holds (ψ (sσνb(Υ(e,r), Υ(µ,κ)) + ρ) α (Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) α (Λ(µ,κ), Λ(κ,µ)), (Υ(µ,κ), Υ(κ,µ)) ≤ f ψ(νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))2 ), ϕ( νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ)) 2 ) +ρ,(2.1) for all e,r,µ,κ ∈ Γ,σ,ρ > 0, and α : (Γ2 × Γ2) → [0,∞). Assume that (i) Υ(Γ2) ⊆ Λ(Γ2), (ii) there is e0,r0 ∈ Γ so that α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1, α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1. Also, suppose either (iv) Υ is continuous, or (v) {en},{rn} are two sequences in Γ so that α((en+1,rn+1), (en,rn)) ≥ 1 and α((rn,en), (rn+1,en+1)) ≥ 1. for all n ∈ N∪{0}, and en → e,rn → r as n →∞, e,r ∈ Γ, we have α((e,r), (en,rn)) ≥ 1 and α((rn,en), (r,e)) ≥ 1. Then Υ and Λ have a (ccp). Proof. Let e0,r0 ∈ Γ, so by condition (ii), we have α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1, α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1. Int. J. Anal. Appl. 18 (6) (2020) 1087 According to (i), define two sequences {en},{rn} in Γ by Υ(en,rn) = Λ(en+1,rn+1), Υ(rn,en) = Λ(rn+1,en+1),∀n = 0, 1, 2, ... . Since Υ(Γ2) ⊆ Λ(Γ2), then we can write α((Λ(e0,r0), Λ(r0,e0)), (Λ(e1,r1), Λ(r1,e1))) = α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1, α((Λ(r0,e0), Λ(e0,r0)), (Λ(r1,e1), Λ(e1,r1))) = α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1. Again, since Υ is a generalized α-admissible mapping w.r.t. Λ, then we have that α((Υ(e0,r0), Υ(r0,e0)), (Υ(e1,r1), Υ(r1,e1))) ≥ 1, and α((Υ(r0,e0), Υ(e0,r0)), (Υ(r1,e1), Υ(e1,r1))) ≥ 1. By induction, we get for all n ∈ N∪{0}, α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) = α((Υ(en,rn), Υ(rn,en)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) ≥ 1, and α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) = α((Υ(rn,en), Υ(en,rn)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) ≥ 1. (2.2) Denote λn = νb(Λ(en,rn), Λ(en+1,rn+1)) + νb(Λ(rn,en), Λ(rn+1,en+1)),n ∈ N∪{0}. We suppose that λn > 0,∀n ∈ N because if not, (en,rn) will be a (ccp) and the proof is finished. We claim that ψ(sσλn+1) ≤ ψ(λn). Using (2.2) and letting e = en,r = rn,µ = en+1, and κ = rn+1 in (2.1), Int. J. Anal. Appl. 18 (6) (2020) 1088 we get ψ (sσνb(Λ(en+1,rn+1), Λ(en+2,rn+2)) + ρ = ψ (sσνb(Υ(en,rn), Υ(en+1,rn+1)) + ρ ≤ (ψ (sσνb(Υ(en,rn), Υ(en+1,rn+1)) + ρ) µn , ≤ f ψ ( νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1)) 2 ) , ϕ ( νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1)) 2 ) + ρ = f ( ψ( λn 2 ),ϕ( λn 2 ) ) + ρ,(2.3) where µn = α((Λ(en,rn), Λ(rn,en)), (Υ(en,rn), Υ(rn,en))) × α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))). Similarly, we have ψ (sσνb(Λ(rn+2,en+2), Λ(rn+1,en+1)) + ρ = ψ (sσνb(Υ(rn+1,en+1), Υ(rn,en)) + ρ ≤ (ψ (sσνb(Υ(rn+1,en+1), Υ(rn,en)) + ρ) µn , ≤ f ψ ( νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn)) 2 ) , ϕ ( νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn)) 2 ) + ρ = f ( ψ( λn 2 ),ϕ( λn 2 ) ) + ρ,(2.4) where µn = α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1)) × α((Λ(rn,en), Λ(en,rn)), (Υ(rn,en), Υ(en,rn)). Summing (2.3), (2.4), and since ψ is nondecreasing, we get (2.5) ψ (sσλn+1) ≤ f ( ψ( λn 2 ),ϕ( λn 2 ) ) ≤ ψ( λn 2 ), since ψ is nondecreasing. By inequality (2.5), one can write λn+1 ≤ 1 sσ λn. Hence, by Lemma 1.2, the sequence λn is b−Cauchy in Γ and then {Λ(en,rn)} and {Λ(rn,en)} are also Cauchy sequences in Γ. By the completeness of Γ, there exist e,r ∈ Γ so that (2.6) lim n→∞ Λ(en,rn) = Υ(en,rn) = Λ, and lim n→∞ Λ(rn,en) = Υ(rn,en) = r. Int. J. Anal. Appl. 18 (6) (2020) 1089 Since the pair (Υ, Λ) satisfies the generalized compatible, by (2.6), we can write (2.7) lim n→∞ νb(Υ(Λ(en,rn), Λ(rn,en)), Λ(Υ(en,rn), Υ(rn,en))) = 0, (2.8) lim n→∞ νb(Υ(Λ(rn,en), Λ(en,rn)), Λ(Υ(rn,en), Υ(en,rn))) = 0. Now, if (i) holds, that is Υ is continuous and Λ is already continuous from the hypothesis of the theorem, then in view of triangle inequality, we have νb(Λ(e,r), Υ(Λ(en,rn), Λ(rn,en))) ≤ s[νb(Λ(e,r), Λ(Υ(en,rn), Υ(rn,en))) + νb(Λ(Υ(en,rn), Υ(rn,en)), Υ(Λ(en,rn), Λ(rn,en)))]. Passing n → ∞ in the above inequality and using (2.6), (2.7), and the continuity of Υ and Λ, we get Λ(e,r) = Υ(e,r). Similarly, by (2.6), (2.8), we can show that Λ(r,e) = Υ(r,e). Next, assume that (ii) holds. Since the pair Υ,Λ satisfies the generalized compatible and Λ is continuous, we have lim n→∞ Λ(Λ(en,rn), Λ(rn,en)) = Λ(e,r) = lim n→∞ Λ(Υ(en,rn), Υ(rn,en)) = lim n→∞ Υ(Λ(en,rn), Λ(rn,en)),(2.9) and lim n→∞ Λ(Λ(rn,en), Λ(en,rn)) = Λ(r,e) = lim n→∞ Λ(Υ(rn,en), Υ(en,rn)) = lim n→∞ Υ(Λ(rn,en), Λ(en,rn)).(2.10) Then, we have α((Λ(Λ(en,rn),e(rn,en)), Λ(Λ(rn,en), Λ(en,rn))), (Λ(e,r), Λ(r,e))) ≥ 1, and α((Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))), (Λ(r,e), Λ(e,r))) ≥ 1. Int. J. Anal. Appl. 18 (6) (2020) 1090 Applying (2.1), we get ψ(νb(Υ(e,r),e(e,r))) = lim n→∞ ψ(νb(Υ(e,r),e(Υ(en,rn), Υ(rn,en)))) ≤ lim n→∞ ψ(νb(Υ(e,r), Υ(e(en,rn), Λ(rn,en)))) + ρ ≤ lim n→∞ (ψ(sσνb(Υ(e,r), Υ(e(en,rn), Λ(rn,en)))) + ρ) µn, ≤ lim n→∞ f ψ ( νb(Λ(e,r),Λ(Λ(en,rn),Λ(rn,en)))+νb(Λ(r,e),Λ(Λ(rn,en),Λ(enrn))) 2 ) , ϕ ( νb(Λ(e,r),Λ(Λ(en,rn),Λ(rn,en)))+νb(Λ(r,e),Λ(Λ(rn,en),Λ(enrn))) 2 ) + ρ, where µn = α(Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) × α (Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))), (Υ(Λ(rn,en)), Λ(en,rn), Υ(Λ(en,rn)), Λ(rn,en)) . Using (2.9),(2.10), we get ψ(νb(Υ(e,r), Λ(e,r))) = 0 implies that Υ(e,r) = Λ(e,r). Similarly, we can prove that Υ(r,e) = Λ(r,e). � Theorem 2.2. Let (Γ,νb) be a complete (b-ms) (with parameter s > 1), and Υ, Λ : Γ 2 → Γ be two generalized compatible mappings so that Υ is a generalized α−admissible mapping w.r.t. Λ and Λ is continuous. Let there is f ∈ C and ψ ∈ Ψ,ϕ ∈ Φ so that the stipulation below holds: α (Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) α (Λ(µ,κ), Λ(κ,µ)), (Υ(µ,κ), Υ(κ,µ)) +1 ψ(sσνb(Υ(e,r),Υ(µ,κ)) ≤ 2f ( ψ( νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ)) 2 ),ϕ( νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ)) 2 ) ) ,(2.11) for all e,r,µ,κ ∈ Γ,ρ,σ > 0, and α : (Γ2 × Γ2) → [0,∞). Assume that (i) Υ(Γ2) ⊆ Λ(Γ2), (ii) there is e0,r0 ∈ Γ so that α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1, α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1. Also, suppose either (iv) Υ is continuous, or (v) {en},{rn} are two sequences in Γ such that α((en+1,rn+1), (en,rn)) ≥ 1 and α((rn,en), (rn+1,en+1)) ≥ 1. Int. J. Anal. Appl. 18 (6) (2020) 1091 for all n ∈ N∪{0}, and en → e,rn → r as n →∞, e,r ∈ Γ, we have α((e,r), (en,rn)) ≥ 1 and α((rn,en), (r,e)) ≥ 1. Then Υ and Λ have a (ccp). Proof. As in Theorem (2.1), we can conclude that for all n ∈ N∪{0}, α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) = α((Υ(en,rn), Υ(rn,en)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) ≥ 1, and α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) = α((Υ(rn,en), Υ(en,rn)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) ≥ 1. (2.12) Denote λn = νb(Λ(en,rn), Λ(en+1,rn+1)) + νb(Λ(rn,en), Λ(rn+1,en+1)),n ∈ N∪{0}. We suppose that λn > 0,∀n ∈ N because if not, (en,rn) will be a (ccp) and the proof is finished. We claim that ψ(sσλn+1) ≤ ψ(λn). Using (2.12), letting e = en,r = rn,µ = en+1, and κ = rn+1 in (2.11), we have 2ψ(s σνb(Λ(en+1,rn+1),Λ(en+2,rn+2)) = 2ψ(s σνb(Υ(en,rn),Υ(en+1,rn+1)) ≤ (µn + 1)ψ(s σνb(Υ(en,rn),Υ(en+1,rn+1)) ≤ 2 f ψ ( νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1)) 2 ) , ϕ ( νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1)) 2 ) = 2f(ψ( λn 2 ),ϕ( λn 2 )),(2.13) where µn = α((Λ(en,rn), Λ(rn,en)), (Υ(en,rn), Υ(rn,en))) × α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))). Thus, we get ψ (νb(Λ(en+1,rn+1), Λ(en+2,rn+2)) ≤ f ( ψ( λn 2 ),ϕ( λn 2 ) ) . Int. J. Anal. Appl. 18 (6) (2020) 1092 Similarly, we have 2ψ(s σνb(Λ(rn+2,en+2),Λ(rn+1,en+1)) = 2ψ(s σνb(Υ(rn+1,en+1),Υ(rn,en)) ≤ (µn + 1)ψ(s σνb(Υ(rn+1,en+1),Υ(rn,en)) ≤ 2 f ψ ( νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn)) 2 ) , ϕ ( νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn)) 2 ) = 2f(ψ( λn 2 ),ϕ( λn 2 )),(2.14) where µn = α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) × α((Λ(rn,en), Λ(en,rn)), (Υ(rn,en), Υ(en,rn))). Thus, we get (2.15) ψ (sσνb(Λ(rn+2,en+2), Λ(rn+1,en+1)) ≤ f ( ψ( λn 2 ),ϕ( λn 2 ) ) . Summing both inequalities (2), (2.15), and since ψ is nondecreasing, we have (2.16) ψ (sσλn+1) ≤ f ( ψ( λn 2 ),ϕ( λn 2 ) ) ≤ ψ( λn 2 ), since ψ is nondecreasing and from inequality (2.16), one can get λn+1 ≤ 1 sσ λn. Hence, by Lemma 1.2, the sequence λn is b−Cauchy in Γ and then {Λ(en,rn)} and {Λ(rn,en)} are also Cauchy sequences in Γ. By the completeness of Γ, there exist e,r ∈ Γ such that (2.17) lim n→∞ e(en,rn) = Υ(en,rn) = e, and lim n→∞ e(rn,en) = Υ(rn,en) = r. Since the pair (Υ,e) satisfies the generalized compatible condition, then by (2.17), one can write (2.18) lim n→∞ νb(Υ(Λ(en,rn), Λ(rn,en)), Λ(Υ(en,rn), Υ(rn,en))) = 0, (2.19) lim n→∞ νb(Υ(Λ(rn,en), Λ(en,rn)), Λ(Υ(rn,en), Υ(en,rn))) = 0. Now, if (i) holds, we apply the same steps of Theorem (2.1), and we get Λ(r,e) = Υ(r,e). Now, assume that (ii) holds. Since the pair Υ,Λ satisfies the generalized compatible and Λ is continuous, we Int. J. Anal. Appl. 18 (6) (2020) 1093 have lim n→∞ Λ(Λ(en,rn),e(rn,en)) = Λ(e,r) = lim n→∞ Λ(Υ(en,rn), Υ(rn,en)) = lim n→∞ Υ(Λ(en,rn), Λe(rn,en)),(2.20) and lim n→∞ Λ(Λ(rn,en), Λ(en,rn)) = Λ(r,e) = lim n→∞ Λ(Υ(rn,en), Υ(en,rn)) = lim n→∞ Υ(Λ(rn,en), Λ(en,rn)).(2.21) Then, we can write α((Λ(Λ(en,rn), Λ(rn,en)), Λ(Λ(rn,en), Λ(en,rn))), (Λ(e,r), Λ(r,e))) ≥ 1, and α((Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))), (Λ(r,e), Λ(e,r))) ≥ 1. Applying (2.11), we get 2ψ(νb(Υ(e,r),Λ(e,r))) = lim n→∞ 2ψ(νb(Υ(e,r),e(Υ(en,rn),Υ(rn,en)))) = lim n→∞ 2ψ(νb(Υ(e,r),Υ(e(en,rn),Λ(rn,en)))) ≤ lim n→∞ (µn + 1) ψ(sσνb(Υ(e,r),Υ(e(en,rn),Λ(rn,en)))), ≤ lim n→∞ 2f(ψ(χn),ϕ(χn)), where µn = α(Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) × α Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))), (Υ(Λ(rn,en), Λ(en,rn)), Υ(Λ(en,rn), Λ(rn,en))) , and χn = νb(Λ(e,r), Λ(e(en,rn), Λ(rn,en))) + νb(Λ(r,e), Λ(Λ(rn,en), Λ(enrn))) 2 , Using (2.20),(2.21), we get ψ(νb(Υ(e,r), Λ(e,r))) = 0 this leads to Υ(e,r) = Λ(e,r). Similarly, we can prove that Υ(r,e) = Λ(r,e). � Int. J. Anal. Appl. 18 (6) (2020) 1094 Theorem 2.3. Let (Γ,νb) be a complete (b-ms) (with parameter s > 1), and Υ, Λ : Γ 2 → Γ be two generalized compatible mappings such that Υ is a generalizedα−admissible mapping w.r.t. Λ and Λ is continuous. Let there is f ∈ C, ψ ∈ Ψ,ϕ ∈ Φ so that the stipulation below holds: α (Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) α (Λ(µ,κ), Λ(κ,µ)), (Υ(µ,κ), Υ(κ,µ))) ψ(sσνb(Υ(e,r), Υ(µ,κ))) ≤ f ψ(νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))2 ), ϕ( νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ)) 2 ) ,(2.22) for all e,r,µ,κ ∈ Γ,ρ,σ > 0,, and α : (Γ2 × Γ2) → [0,∞). Assume that (i) Υ(Γ2) ⊆ Λ(Γ2) (ii) there is e0,r0 ∈ Γ so that α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1, α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1. Also, suppose either (iv) Υ is continuous, or (v) {en},{rn} are two sequences in Γ so that α((en+1,rn+1), (en,rn)) ≥ 1, α((rn,en), (rn+1,en+1)) ≥ 1. for all n ∈ N∪{0}, and en → e,rn → r as n →∞, e,r ∈ Γ, we have α((e,r), (en,rn)) ≥ 1, α((rn,en), (r,e)) ≥ 1. Then Υ and Λ have a (ccp). Proof. Again, as in Theorem (2.1), we can conclude that for all n ∈ N∪{0}, α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) = α((Υ(en,rn), Υ(rn,en)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) ≥ 1,and α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) = α((Υ(rn,en), Υ(en,rn)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) ≥ 1. (2.23) Int. J. Anal. Appl. 18 (6) (2020) 1095 Denote λn = νb(Λ(en,rn), Λ(en+1,rn+1)) + νb(Λ(rn,en), Λ(rn+1,en+1)),n ∈ N∪{0} . We suppose that λn > 0,∀n ∈ N because if not, (en,rn) will be a (ccp) and the proof is finished. We claim that ψ(sσλn+1) ≤ ψ(λn). Using (2.12), letting e = en,r = rn,µ = en+1, and κ = rn+1 in (2.22), we have ψ (sσνb(Λ(en+1,rn+1), Λ(en+2,rn+2)) = ψ (sσνb(Υ(en,rn), Υ(en+1,rn+1)) ≤ µnψ (sσνb(Υ(en,rn), Υ(en+1,rn+1)) ≤ f ψ ( νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1)) 2 ) , ϕ ( νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1)) 2 ) = f ( ψ( λn 2 ),ϕ( λn 2 ) ) ,(2.24) where µn = α((Λ(en,rn), Λ(rn,en)), (Υ(en,rn), Υ(rn,en))) × α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))). Thus, we get ψ (sσνb(Λ(en+1,rn+1), Λ(en+2,rn+2)) ≤ f ( ψ( λn 2 ),ϕ( λn 2 ) ) .(2.25) Similarly, we have ψ (sσνb(Λ(rn+2,en+2), Λ(rn+1,en+1)) = ψ (sσνb(Υ(rn+1,en+1), Υ(rn,en)) ≤ µnψ (sσνb(Υ(rn+1,en+1), Υ(rn,en)) ≤ f ψ ( νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn)) 2 ) , ϕ ( νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn)) 2 ) = f ( ψ( λn 2 ),ϕ( λn 2 ) ) ,(2.26) where µn = α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) × α((Λ(rn,en), Λ(en,rn)), (Υ(rn,en), Υ(en,rn))). Int. J. Anal. Appl. 18 (6) (2020) 1096 Thus, we get ψ (sσνb(Λ(rn+2,en+2), Λ(rn+1,en+1)) ≤ f ( ψ( λn 2 ),ϕ( λn 2 )) ) .(2.27) By inequalities (2.25), (2.27), and since ψ is non-decreasing, we have ψ (sσλn+1) ≤ f ( ψ( λn 2 ),ϕ( λn 2 ) ) ≤ ψ( λn 2 ).(2.28) since ψ is nondecreasing and by inequality (2.28), we get λn+1 ≤ 1 sσ λn. Thus, by Lemma 1.2, the sequence λn is b-Cauchy in Γ and then {Λ(en,rn)} and {Λ(rn,en)} are also Cauchy sequences in Γ. By the completeness of Γ, there exist e,r ∈ Γ such that lim n→∞ Λ(en,rn) = Υ(en,rn) = e, and lim n→∞ Λ(rn,en) = Υ(rn,en) = r.(2.29) Since the pair (Υ,e) satisfies the generalized compatible condition, then by (2.29), one can write lim n→∞ νb(Υ(Λ(en,rn), Λ(rn,en)), Λ(Υ(en,rn), Υ(rn,en))) = 0,(2.30) lim n→∞ νb(Υ(Λ(rn,en), Λ(en,rn)), Λ(Υ(rn,en), Υ(en,rn))) = 0.(2.31) Now, if (i) holds, we apply the same steps of Theorem (2.1), and we get Λ(r,e) = Υ(r,e). Now, assume that (ii) holds. Since the pair Υ, Λ satisfies the generalized compatible condition and Λ is continuous, we have lim n→∞ Λ(Λ(en,rn), Λ(rn,en)) = Λ(e,r) = lim n→∞ Λ(Υ(en,rn), Υ(rn,en)) = lim n→∞ Υ(Λ(en,rn), Λ(rn,en)),(2.32) and lim n→∞ Λ(Λ(rn,en), Λ(en,rn)) = Λ(r,e) = lim n→∞ Λ(Υ(rn,en), Υ(en,rn)) = lim n→∞ Υ(Λ(rn,en), Λ(en,rn)).(2.33) Then, we have α((Λ(Λ(en,rn), Λ(rn,en)), Λ(Λ(rn,en), Λ(en,rn))), (Λ(e,r), Λ(r,e))) ≥ 1, and α((Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))), (Λ(r,e), Λ(e,r))) ≥ 1. Int. J. Anal. Appl. 18 (6) (2020) 1097 Applying (2.22), we get ψ(νb(Υ(e,r), Λ(e,r))) = lim n→∞ ψ(νb(Υ(e,r), Λ(Υ(en,rn), Υ(rn,en)))) = lim n→∞ ψ(νb(Υ(e,r), Υ(Λ(en,rn), Λ(rn,en)))) ≤ lim n→∞ µnψ(νb(Υ(e,r), Υ(Λ(en,rn), Λ(rn,en)))), ≤ lim n→∞ f (ψ(χn),ϕ(χn)) , where µn = α(Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) × α (Λ(Λ(en,rn), Λ(rn,en)), Λ(Λ(rn,en), Λ(en,rn))), (Υ(Λ(en,rn), Λ(rn,en)), Υ(Λ(rn,en), Λ(en,rn))) . and χn = νb(Λ(e,r), Λ(Λ(en,rn), Λ(rn,en))) + νb(Λ(r,e), Λ(Λ(rn,en), Λ(enrn))) 2 . Using (2.32),(2.33), we get ψ(νb(Υ(e,r), Λ(e,r))) = 0 implies that Υ(e,r) = Λ(e,r). Similarly, we can prove that Υ(r,e) = Λ(r,e). � Theorem 2.4. Suppose that all requirements of Theorems (2.1) or (2.2) or (2.3) are fulfilled. In addition, let the stipulation below holds: (vi) If Λ(e,r) = Υ(e,r) and Λ(r,e) = Υ(r,e) then α((Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e))) ≥ 1, and α((Λ(r,e), Λ(e,r)), (Υ(r,e), Υ(e,r))) ≥ 1. Then Λ and Υ have a unique (ccp). Proof. From Theorem (2.1) or (2.2) or (2.3), we know that the set of (ccp) of Λ and Υ is nonempty. Let (e,r) and (e∗,r∗) are (ccp) of Λ and Υ, this yields Λ(e,r) = Υ(e,r), Λ(r,e) = Υ(r,e), and Λ(e∗,r∗) = Υ(e∗,r∗), Λ(r∗,e∗) = Υ(r∗,e∗). Int. J. Anal. Appl. 18 (6) (2020) 1098 We will prove that Λ(e,r) = Λ(e∗,r∗) and Λ(r,e) = Λ(r∗,e∗). It follows from (vi) that α((Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e))) ≥ 1 α((Λ(r,e), Λ(e,r)), (Υ(r,e), Υ(e,r))) ≥ 1, and α ((Λ(e∗,r∗), Λ(r∗,e∗)), (Υ(e∗,r∗), Υ(r∗,e∗))) ≥ 1 α((Λ(r∗,e∗), Λ(e∗,r∗)), (Υ(r∗,e∗), Υ(e∗,r∗))) ≥ 1, From Theorem 2.1, using above inequalities, we have ψ (νb(Λ(e,r), Λ(e ∗,r∗)) + ρ ≤ ψ (sσνb(Υ(e,r), Υ(e∗,r∗)) + ρ ≤ (ψ (sσνb(Υ(e,r), Υ(e∗,r∗)) + ρ) µn ≤ f ψ(νb(Λ(e,r),Λ(e∗,r∗))+νb(Λ(r,e),Λ(r∗,e∗))2 ), ϕ( νb(Λ(e,r),Λ(e ∗,r∗))+νb(Λ(r,e),Λ(r ∗,e∗)) 2 ) + ρ,(2.34) where µn = α((Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e))),α((Λ(e ∗,r∗), Λ(r∗,e∗)), (Υ(e∗,r∗), Υ(r∗,e∗))). From Theorem 2.2, we have 2ψ(νb(Λ(e,r),Λ(e ∗,r∗))) ≤ 2ψ(s σνb(Υ(e,r),Υ(e ∗,r∗))) ≤ (µn + 1)ψ(s σνb(Υ(e,r),Υ(e ∗,r∗))) ≤ 2f ( ψ( νb(Λ(e,r),Λ(e ∗,r∗))+νb(Λ(r,e),Λ(r ∗,e∗)) 2 ),ϕ( νb(Λ(e,r),Λ(e ∗,r∗))+νb(Λ(r,e),Λ(r ∗,e∗)) 2 ) ) .(2.35) From Theorem 2.3, we have ψ(νb(Λ(e,r), Λ(e ∗,r∗))) ≤ ψ(sσνb(Υ(e,r), Υ(e∗,r∗))) ≤ (µn + 1)ψ(sσνb(Υ(e,r), Υ(e∗,r∗))) ≤ f ψ(νb(Λ(e,r),Λ(e∗,r∗))+νb(Λ(r,e),Λ(r∗,Λ∗))2 ), ϕ( νb(Λ(e,r),Λ(e ∗,r∗))+νb(Λ(r,e),Λ(r ∗,e∗)) 2 ) .(2.36) From (2.34), (2.35) and (2.36), we have f (ψ(νb(Λ(e,r), Λ(e ∗,r∗)),ϕ(νb(Λ(e,r), Λ(e ∗,r∗)))) = ψ(νb(Λ(e,r), Λ(e ∗,r∗)). Int. J. Anal. Appl. 18 (6) (2020) 1099 By the hypotheses of f,ψ,ϕ, we get either ψ(νb(Λ(e,r), Λ(e ∗,r∗)) = 0 or ϕ(νb(Λ(e,r), Λ(e ∗,r∗))) = 0. Thus we have Λ(e,r) = Λ(e∗,r∗). Similarly, we can prove that Λ(r,e) = Λ(r∗,e∗). � An example below support Theorems 2.1, 2.2, 2.3, and 2.4. Example 2.1. Let f(e,r) = τe, 0 < τ < 1 and Γ = [0,∞) endowed with νb(e,r) = (e−r) 2 for all e,r ∈ Γ. It is clear that (Γ,νb) is a complete b−ms with a coefficient s = 2. Assume that Υ, Λ : Γ×Γ → Γ by Υ(e,r) = e−r e ≥ r0 otherwise and Λ(e,r) = e + r e ≥ r0 otherwise , It is obvious that Υ(Γ2) ⊆ Λ(Γ2) and the mapping Υ is continuous. Define α : Γ2 × Γ2 → [0, +∞) by α ((e,r), (µ,κ)) = 2, e ≥ µ, r ≤ κ0, otherwise . Then for each e◦,r◦ ∈ Γ, we find that α [(Λ (e◦,r◦) , Λ (r◦,e◦)) , (Υ (e◦,r◦) , Υ (r◦,e◦))] = 2 > 1, α [(Λ (r◦,e◦) , Λ (e◦,r◦)) , (Υ (r◦,e◦) , Υ (e◦,r◦))] = 2 > 1. For all n ∈ N, let en = nn+1 and rn = 1 n be two sequences such that α [(Λ (en+1,rn+1) , Λ (rn,en))] ≥ 1, α [(Λ (rn,en) , Λ (en+1,rn+1))] ≥ 1. Then, limn→∞en = 1 and limn→∞rn = 0. Certainly, 0, 1 ∈ Γ and α [(Λ (0, 1) , Λ (rn,en))] = 2 > 1, α [(Λ (1, 0) , Λ (en,rn))] = 2 > 1. Under this sequences, we can write lim n→∞ νb (Υ [Λ (en,rn) , Λ (rn,en)] , Λ [Υ (en,rn) , Υ (rn,en)]) = νb (Υ [Λ (1, 0) , Λ (0, 1)] , Λ [Υ (1, 0) , Υ (0, 1)]) = νb (Υ (1, 0) , Λ (1, 0)) = νb (1, 1) = 0, similarly, one can prove that lim n→∞ νb (Υ [Λ (rn,en) , Λ (en,rn)] , Λ [Υ (rn,en) , Υ (en,rn)]) = 0. Int. J. Anal. Appl. 18 (6) (2020) 1100 whenever en,rn ∈ Γ, such that lim n→∞ Υ (en,rn) = Υ (1, 0) = 1 = Λ (1, 0) = lim n→∞ Λ (en,rn) , lim n→∞ Υ (rn,en) = Υ (0, 1) = 0 = Λ (0, 1) = lim n→∞ Λ (rn,en) . Therefore, Υ and Λ are generalized compatible. Now, for e = κ = 1 and r = µ = 0, if α [(Λ (e,r) , Λ (r,e)) , (Λ (µ,κ) , Λ (κ,µ))] > 1, this implies that α [(Υ (e,r) , Υ (r,e)) , (Υ (µ,κ) , Υ (κ,µ))] = α [(Υ (1, 0) , Υ (0, 1)) , (Υ (0, 1) , Υ (1, 0))] = α [(1, 0) , (0, 1)] = 2 > 1 for all (1, 0), (0, 1) ∈ Γ2. This prove that Υ is a generalized α−admissible w.r.t. Λ. Finally, we will try to verify the contractive conditions (2.1),(2.11) and (2.22) of Theorems 2.1, 2.2, and 2.3 respectively. Take ψ(θ) = θ 3 and φ(θ) = θ for all θ ∈ [0,∞). Put σ = ρ = 1, τ = 1 2 , e = κ = 1 2 and r = µ = 1 4 , then we have α [(Λ (e,r) , Λ (r,e)) , (Υ (e,r) , Υ (r,e))] ×α [(Λ (µ,κ) , Λ (κ,µ)) , (Υ (µ,κ) , Υ (κ,µ))] = α [( Λ ( 1 2 , 1 4 ) , Λ ( 1 4 , 1 2 )) , ( Υ ( 1 2 , 1 4 ) , Υ ( 1 4 , 1 2 ))] ×α [( Λ ( 1 4 , 1 2 ) , Λ ( 1 2 , 1 4 )) , ( Υ ( 1 4 , 1 2 ) , Υ ( 1 2 , 1 4 ))] = α [( 3 4 , 0 ) , ( 0, 1 4 )] ×α [( 0, 3 4 ) , ( 0, 1 4 )] = 2 × 0 = 0,(2.37) ψ ( νb (Λ (e,r) , Λ (µ,κ)) + νb (Λ (r,e) , Λ (κ,µ)) 2 ) = ψ ( νb ( Λ ( 1 2 , 1 4 ) , Λ ( 1 4 , 1 2 )) + νb ( Λ ( 1 4 , 1 2 ) , Λ ( 1 2 , 1 4 )) 2 ) = ψ ( νb ( 3 4 , 0 ) + νb ( 0, 3 4 ) 2 ) = ψ ( 9 16 ) = 3 16 ,(2.38) (2.39) φ ( νb (Λ (e,r) , Λ (µ,κ)) + νb (Λ (r,e) , Λ (κ,µ)) 2 ) = φ ( 9 16 ) = 9 16 , Int. J. Anal. Appl. 18 (6) (2020) 1101 (2.40) sσνb (Υ (e,r) , Υ (µ,κ)) = 2νb ( Υ ( 1 2 , 1 4 ) , Υ ( 1 4 , 1 2 )) = 2νb ( 1 4 , 0 ) = 1 8 . It follows from definition of f and (2.37)-(2.40) that (ψ (sσνb (Υ (e,r) , Υ (µ,κ))) + ρ) α (Λ (e,r) , Λ (r,e)) , (Υ (e,r) , Υ (r,e)) ×α (Λ (µ,κ) , Λ (κ,µ)) , (Υ (µ,κ) , Υ (κ,µ)) = ( ψ ( 1 4 ) + 1 )0 = 1 ≤ 35 32 = 1 2 × 3 16 + 1 = f ( 3 16 , 9 16 ) + 1 = f ψ ( νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ)) 2 ) , φ ( νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ)) 2 ) + ρ.(2.41) Also, we can write α (Λ (e,r) , Λ (r,e)) , (Υ (e,r) , Υ (r,e)) ×α (Λ (µ,κ) , Λ (κ,µ)) , (Υ (µ,κ) , Υ (κ,µ)) +1 ψ(sσνb(Υ(e,r),Υ(µ,κ))) = (0 + 1)ψ( 1 8 ) = 1 < 2 3 32 = 2 3 16 ×1 2 = 2f( 3 16 , 9 16 ) = 2 f ( ψ ( νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ)) 2 ) ,φ ( νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ)) 2 )) .(2.42) Additionally, the contractive condition (2.22) of Theorem 2.3 is directly hold. So, by (2.41)-(2.42) all hy- potheses of Theorems 2.1, 2.2, and 2.3 are fulfilled, so by Theorem 2.4 the mappings Υ and e have a unique (ccp), here it is (0, 0) ∈ Γ2. If we put Λ = I, (where I is the identity mapping) in Theorem 2.1, we get the important result below. Corollary 2.1. Let (Γ,νb) be a complete (b-ms) (with parameter s > 1), and Υ,I : Γ 2 → Γ be two generalized compatible mappings such that Υ is generalized α−admissible mapping w.r.t. I. Let there is Int. J. Anal. Appl. 18 (6) (2020) 1102 f ∈ C, ψ ∈ Ψ,ϕ ∈ Φ so that the stipulation below holds (ψ (sσνb(Υ(e,r), Υ(µ,κ)) + ρ) α ((e,r), (r,e)), (Υ(e,r), Υ(r,e)) α ((µ,κ), (κ,µ)) , (Υ(µ,κ), Υ(κ,µ) ≤ f ψ ( νb((e,r),(µ,κ))+νb((r,e),(κ,µ)) 2 ) , ϕ ( νb((e,r),(µ,κ))+νb((r,e),(κ,µ)) 2 ) +ρ,(2.43) for all e,r,µ,κ ∈ Γ,ρ,σ > 0, and α : (Γ2 × Γ2) → [0,∞). Assume that (i) Υ(Γ2) ⊆ Γ2, (ii) there is e0,r0 ∈ Γ so that α(((e0,r0), (r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1, α(((r0,e0), (e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1. Also, suppose either (iv) Υ is continuous, or (v) {en},{rn} are two sequences in Γ so that α((en+1,rn+1), (en,rn)) ≥ 1, α((rn,en), (rn+1,en+1)) ≥ 1. for all n ∈ N∪{0}, and en → e,rn → r as n →∞, e,r ∈ Γ, we have α((e,r), (en,rn)) ≥ 1, α((rn,en), (r,e)) ≥ 1. Then Υ has a (ccp). 3. An important application This part is very important in this paper, where the existence solution to a (nie) using Corollary 2.1 is presented. Here, we refers to χ by the class functions κ : [0,∞) → [0,∞) so that κ is an increasing function and there is ψ ∈ Ψ, φ ∈ Φ, and f ∈ C such that κ(κ) = 1 2 f(ψ(κ),φ(κ)) for all κ ∈ [0,∞). Assume the problem below: (3.1) j($) = v∫ u (a1($,`) + a2($,`)) (k1(`,j(`)) + k2(`,j(`))) d`, for all $ ∈ [u,v]. Suppose that a1,a2,k1,k2 are continuous functions which satisfy the hypotheses below: Int. J. Anal. Appl. 18 (6) (2020) 1103 (i) for all $,` ∈ [u,v], a1($,`),a2($,`) ≥ 0, (ii) for all y,z ∈ R with y ≥ z, there is f,U so that 0 ≤ k1(`,y) −k1(`,z) ≤ fκ(y −z), 0 ≤ k2(`,y) −k2(`,z) ≤Uκ(y −z), (iii) we get max{f2,U2} sup$∈[u,v] v∫ u (a1($,`) + a2($,`))d` 2 ≤ 1. To discuss the existence of a unique solution of the problem (3.1), we formulate the theorem below: Theorem 3.1. Under the assumptions (i)-(iii) with a1,a2 ∈ C([u,v]× [u,v],R) and k1,k2 ∈ C([u,v]×R× R), the problem (3.1) has a solution in C([u,v],R). Proof. Let Γ = C([u,v],R) be the set of real continuous functions on [u,v] endowed with the distance νb(e,r) = sup $∈[u,v] (|e($) −r($)|)2 , ∀e,r ∈ Γ. It’s obvious that, the pair (Γ,νb) is a complete b−ms with a coefficient s = 2. Define mappings Υ : Γ × Γ → Γ and α : Γ2 × Γ2 → R+ by Υ(e,r)($) = v∫ u a1($,`) (k1(`,e(`)) + k2(`,r(`))) d` + q∫ p a2($,`) (k1(`,e(`)) + k2(`,r(`))) d`, and α ((e,r), (µ,κ)) = 1, e ≥ µ, r ≤ κ0, otherwise . for all $ ∈ [u,v], (e,r), (µ,κ) ∈ Γ2. If the mapping Υ has a (ccp) in Γ, then it is a solution of the problem (3.1). Since, for each e,r,µ,κ ∈ Γ, α [((e,r) , (r,e)) , (I (µ,κ) ,I (κ,µ))] = 1 and α [(Υ (e,r) , Υ (r,e)) , (Υ (µ,κ) , Υ (κ,µ))] = 1, we conclude that Υ is a generalized α−admissible w.r.t. I and by the continuity of a1,a2,k1, and k2, we have Υ is a continuous mapping. Also, for any two sequences {en} and {rn} in Γ, suppose that lim n→∞ νb (Υ [I (en) ,I (rn)] ,I [Υ (en,rn) , Υ (rn,en)]) = 0, lim n→∞ νb (Υ [I (rn) ,I (en)] ,I [Υ (rn,en) , Υ (en,rn)]) = 0. Int. J. Anal. Appl. 18 (6) (2020) 1104 Thus, we have lim n→∞ Υ (en,rn) = lim n→∞ Ien = lim n→∞ en, lim n→∞ Υ (rn,en) = lim n→∞ rn. Therefore, the pair (Υ,I) is generalized compatible. Again, it follows from the definition of α that if α [(I (e) ,I (r)) , (I (µ) ,I (κ))] = α (e,r,µ,κ) = 1, this implies that α [(Υ (e,r) , Υ (r,e)) , (Υ (µ,κ) , Υ (κ,µ))] = 1, and (3.2) α [(e,r) , (Υ (e,r) , Υ (r,e))] ×α [(µ,κ) , (Υ (µ,κ) , Υ (κ,µ))] = 1. Now we are going to verify the hypothesis (2.43) of Corollary 2.1, for all e,r,µ,κ ∈ Γ, νb (Υ(e,r), Υ(µ,κ)) = sup $∈[u,v] (|Υ(e,r)($) − Υ(µ,κ)($)|)2 = sup $∈[u,v] ∣∣∣∣ v∫ u a1($,`) (k1(`,e(`)) + k2(`,r(`))) d` + v∫ u a2($,`) (k1(`,e(`)) + k2(`,r(`))) d` − v∫ u a1($,`) (k1(`,µ(`)) + k2(`,κ(`))) d`− v∫ u a2($,`) (k1(`,µ(`)) + k2(`,κ(`))) d` ∣∣∣∣ 2 = sup $∈[u,v] ∣∣∣∣ v∫ u a1($,`) [(k1(`,e(`)) −k1(`,µ(`))) + (k2(`,r(`)) −k2(`,κ(`)))] d` + v∫ u a2($,`) [(k1(`,e(`)) −k1(`,µ(`))) + (k2(`,r(`)) −k2(`,κ(`)))] d` ∣∣∣∣ 2 . Applying assumption (ii), one can get νb (Υ(e,r), Υ(µ,κ)) ≤ sup $∈[u,v] ∣∣∣∣ v∫ u a1($,`) [fκ(e(`) −µ(`))) + Uκ(r(`) −κ(`))] d` + v∫ u a2($,`) [fκ(e(`) −µ(`))) + Uκ(r(`) −κ(`))] d` ∣∣∣∣ 2 ≤ max{f2,U2}× sup $∈[u,v] ∣∣∣∣∣∣ v∫ u (a1($,`) + a2($,`)) [κ(|e(`) −µ(`)|) + κ(|r(`) −κ(`)|)] d` ∣∣∣∣∣∣ 2 .(3.3) By using the definition of κ and the distance νb, we have (3.4) κ |e(`) −µ(`)|2 ≤ κνb(e,µ) and κ |r(`) −κ(`)| 2 ≤ κνb(r,κ), ∀$ ∈ [u,v]. Int. J. Anal. Appl. 18 (6) (2020) 1105 It follows from (3.3), (3.4) and assumption (iii) that νb (Υ(e,r), Υ(µ,κ)) ≤ max{f2,U2}× [κ2νb(e,µ) + κ2νb(r,κ)] × sup$∈[u,v] v∫ u (a1($,`) + a2($,`)) d` 2 ≤ κ2νb(e,µ) + κ2νb(r,κ) = 2π2 ( νb(e,µ) + νb(r,κ) 2 ) ≤ 2 × 1 4 f ( ψ ( νb(e,µ) + νb(r,κ) 2 ) ,φ ( νb(e,µ) + νb(r,κ) 2 )) = 1 2 f ( ψ ( νb(e,µ) + νb(r,κ) 2 ) ,φ ( νb(e,µ) + νb(r,κ) 2 )) . Thus, for all e,r,µ,κ ∈ Γ, we 21νb (Υ(e,r), Υ(µ,κ)) ≤ f ( ψ ( νb(e,µ) + νb(r,κ) 2 ) ,φ ( νb(e,µ) + νb(r,κ) 2 )) . Add ρ > 0 to the both sides, we have ( 21νb (Υ(e,r), Υ(µ,κ)) + ρ ) ≤ f ( ψ ( νb(e,µ) + νb(r,κ) 2 ) ,φ ( νb(e,µ) + νb(r,κ) 2 )) + ρ. Put ψ(κ) = κ, for all κ ∈ [0,∞), s = 2, σ = 1, and using (3.2), we get ψ(sσνb (Υ(e,r), Υ(µ,κ)) + ρ) α[(e,r),(Υ(e,r),Υ(r,e))]×α[(µ,κ),(Υ(µ,κ),Υ(κ,µ))] ≤ f ( ψ ( νb(e,µ) + νb(r,κ) 2 ) ,φ ( νb(e,µ) + νb(r,κ) 2 )) + ρ. Therefore all stipulations of Corollary 2.1 are fulfilled. Then the mapping Υ has a (ccp) which is a solution of the system (3.1) in Γ. � Availability of data and material: Not applicable. Funding: This work was supported in part by the Basque Government under Grant IT1207-19. Author Contributions: All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript. Acknowledgments: The authors are grateful to the Spanish Government and the European Commission for Grant IT1207-19. Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper. References [1] M. Berzig, S. Chandok, M.S. Khan, Generalized Krasnoselskii fixed point theorem involving auxiliary functions in bimetric spaces and application to two-point boundary value problem, Appl. Math. Comput. 248 (2014), 323–327. Int. J. Anal. Appl. 18 (6) (2020) 1106 [2] D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in manger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput. 232 (2014), 955–967. [3] Z. Liu, X. Li, S.M. Kang, S.Y. Cho, Fixed point theorems for mappings satisfying contractive condition of integral type and applications, Fixed Point Theory Appl. 2011 (2011), 64. [4] H.K. Pathak, M.S. Khan, R. Tiwari, A common fixed point theorem and its application to nonlinear integral equations, Comput. Math. Appl. 53 (2007), 961–971. [5] H.A. Hammad, M. De la Sen, A Solution of Fredholm integral equation by using the cyclic r q s -rational contractive mappings technique in b−metric-like spaces, Symmetry, 11 (2019), 1184. [6] H. A. Hammad, M. De la Sen, Solution of nonlinear integral equation via fixed point of cyclic α q s−rational contraction mappings in metric-like spaces, Bull. Braz. Math. Soc. New Ser. 51 (2020), 81-105. [7] N. Shahzad, O. Valero, M.A. Alghamdi, A fixed point theorem in partial quasi-metric spaces and an application to software engineering, Appl. Math. Comput. 268 (2015), 1292–1301. [8] N.Hussain, M.A. Taoudi, Krasnoselskii-type fixed point theorems with applications to Volterra integral equations, Fixed Point Theory Appl. 2013, (2013), 196. [9] I.A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal. 30 (1989) 26-37. [10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11. [11] A. Aghajani, M. Abbas, J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (4) (2014), 941-960. [12] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl. 19 (2017), 2153-2163. [13] M. Shah, S. Simic, N. Hussain, A. Sretenovic, S. Radenović, Common fixed points theorems for occasionally weakly compatible pairs on cone metric type spaces, J. Comput. Anal. Appl. 14 (2012), 290-297. [14] N. Hussain, M. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl. 62 (2011), 1677-1684. [15] M. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., Theory Meth. Appl. 73 (2010), 3123-3129. [16] S. Radenović, K. Zoto, N. Dedović, V. Šešum-Cavic, A. Ansari, Bhaskar-Guo-Lakshmikantam-Ćirić type results via new functions with applications to integral equations, Appl. Math. Comput. 357 (2019), 75-87. [17] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., Theory Meth. Appl. 11 (1987), 623-632. [18] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Theory Meth. Appl. 65 (2006), 1379-1393. [19] M. Abbas, M.A. Khan, S. Radenović, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput. 217 (2010), 195-202. [20] H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ,φ)−weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl. 63 (2012), 298-309. [21] V. Berinde, Coupled fixed point theorems for contractive mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal., Theory Meth. Appl. 75 (2012), 3218-3228. [22] B.S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Model. 54 (2011), 73-79. [23] H.A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 634. Int. J. Anal. Appl. 18 (6) (2020) 1107 [24] H.A. Hammad, D.M. Albaqeri, R.A. Rashwan, Coupled coincidence point technique and its application for solving nonlinear integral equations in RPOCbML spaces, J. Egypt. Math. Soc. 28 (2020), 8. [25] N. Hussain, M. Abbas, A. Azam, J. Ahmad, Coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory Appl. 2014 (2014), 62. [26] H.A. Hammad, H. Aydi, M. De la Sen, Generalized dynamic process for an extended multi-valued F-contraction in metric- like spaces with applications, Alex. Eng. J. 59 (2020), 3817–3825. [27] V. Lakshmikantham, Lj. B. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. Theory Methods Appl. 70, (2009), 4341-4349. [28] H. Alsulami, S. Gulyaz, E. Karapinar, I.M. Erhan, Fixed point theorems for a class of α− admissible contractions and applications to boundary value problem, Abstr. Appl. Anal. 2014 (2014), Article ID 187031. [29] A.H. Ansari, S. Chandok, C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions, J. Inequal. Appl. 2014 (2014), 429. 1. Introduction and elementary discussions 2. Main results 3. An important application References