International Journal of Analysis and Applications

Volume 18, Number 6 (2020), 1083-1107

URL: https://doi.org/10.28924/2291-8639

DOI: 10.28924/2291-8639-18-2020-1083

COUPLED COINCIDENCE POINT FOR f(ψ,ϕ)−CONTRACTIONS VIA
GENERALIZED α−ADMISSIBLE MAPPINGS WITH AN APPLICATION

DHEKRA M. ALBAQERI1, HASANEN A. HAMMAD2,∗, MANUEL DE LA SEN3

1Department of Mathematics, Faculty of Education, Sanaa University, Sanaa 1247, Yemen

2Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt

3Institute of Research and Development of Processes University of the Basque Country 48940- Leioa

(Bizkaia), Spain

∗Corresponding author: hassanein hamad@science.sohag.edu.eg

Abstract. The main objective of this manuscript is to discuss some coupled coincidence point (ccp) results

for generalized α− admissible mappings which are f(ψ,ϕ)− contractions in the context of b−metric spaces

(b-ms). Also, an example to support the obtained theoretical theorems is derived. Ultimately, an analytical

solution for nonlinear integral equation (nie) is discussed as an application.

1. Introduction and elementary discussions

Fixed point techniques plays an enormous role in many applications of mathematics. During the past

thirty years various extension of a metric space have been discussed. The Banach contraction principle is a

popular tool helps to solve problems in nonlinear analysis. A number of publications are interested to the

study and solutions of many practical and theoretical problems by using this principle [1–8].

Bakhtin [9] in 1993 and Czerwik [10] in 1998 introduced the concept of (b-ms). Since then, several papers

have been published on the fixed point theory of both classes of single-valued and multi-valued operators in

(b-ms). [11], [12], [13–16].

Received September 13th, 2020; accepted October 15th, 2020; published November 4th, 2020.

2010 Mathematics Subject Classification. 46N40, 47H10, 46T99.

Key words and phrases. coupled coincidence point; generalized α− admissible mapping; b−metric spaces; nonlinear integral

equations.

©2020 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

1083

https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-18-2020-1083


Int. J. Anal. Appl. 18 (6) (2020) 1084

Definition 1.1. [10] Let Γ be a nonempty set and s ≥ 1 be a given real number. A function νb : Γ × Γ →

[0,∞) is a b-metric (b-m) iff, for all e,r,ζ ∈ Υ , the stipulations below are fulfilled:

(b1) νb(e,r) = 0 ⇔ e = r;

(b2) νb(e,r) = νb(r,e);

(b3) νb(e,r) ≤ s[νb(e,ζ) + νb(ζ,r)].

The pair (Γ,νb) is called a (b-ms) with a constant s ≥ 1.

Example 1.1. Let Γ = [0,∞). Define the function νb : Υ2 → [0,∞) by νb(e,r) = (e−r)2.

Then (Γ,νb) is a (b-ms) with a constant s = 2.

Definition 1.2. [10] Suppose that (Γ,νb) is a (b-ms). So a sequence {en} in Γ is called:

(i) convergent if there is e ∈ Γ so that νb(en,e) → 0 as n →∞.

(ii) Cauchy sequence iff limm,n→∞νb(em,en) → 0 as n,m →∞.

(iii) the pair (Γ,νb) is called a complete iff every Cauchy sequence {en} in Γ converges to e ∈ Γ.

Lemma 1.1. [11] Let (Γ,νb) be a (b-ms) with a coefficient s ≥ 1, {en} and {rn} be a convergent to points

e,r ∈ Γ, respectively. Then we have

1

s2
νb(e,r) ≤ lim inf

n→∞
νb(en,rn) ≤ lim sup

n→∞
νb(en,rn) ≤ s2νb(e,r).

In particular, if e = r, then limn→∞νb(en,rn) = 0. Moreover, for each δ ∈ Γ, we have

1

s
νb(e,δ) ≤ lim inf

n→∞
νb(en,δ) ≤ lim sup

n→∞
νb(en,δ) ≤ sνb(e,δ).

Lemma 1.2. [12] Let {en} be a sequence in a (b-ms) (Γ,νb) so that

νb(en,en+1) ≤ λνb(en−1,en),

for some λ, 0 < λ < 1
s
, and for each n ∈ N. Then {en} is a Cauchy sequence in Γ.

The idea of coupled fixed point initiated and studied by Guo and Lakshmikantham [17]. After that, the

monotone property is studied by Bhaskar and Lakshmikantham [18]. Many works are made to generalized

this concept in various spaces under certain conditions, the reader can shed light on [19–23, 25, 26].

Definition 1.3. [18] An element (e,r) ∈ Υ × Υ is called a (ccp) of the mappings Υ : Γ × Γ → Γ and

Λ : Γ → Γ if Υ(e,r) = Λe and Υ(r,e) = Λr.

Definition 1.4. [27] An element (e,r) ∈ Γ × Γ is called a (ccp) of mappings Υ, Λ : Γ × Γ → Γ if

Υ(e,r) = Λ(e,r) and Υ(r,e) = Λ(r,e).

Example 1.2. Let Υ, Λ : R×R → R be defined by Υ(e,r) = Λr and Λ(e,r) = 2
3
(e + r) for all (e,r) ∈ Γ×Γ

. Note that (0, 0), (1, 2) and (2, 1) are (ccp) of Υ and Λ .



Int. J. Anal. Appl. 18 (6) (2020) 1085

Definition 1.5. [27] Let Υ, Λ : Γ × Γ → Γ. We say that the pair (Υ, Λ) is generalized compatible if

νb(Υ(Λ(en,rn), Λ(rn,en)), Λ(Υ(en,rn), Υ(rn,en))) → 0 as n →∞,

νb(Υ(Λ(rn,en), Λ(en,rn)), Λ(Υ(rn,en), Υ(en,rn))) → 0 as n →∞,

whenever {en} and {rn} are sequences in Γ such that for all t1, t2 ∈ Γ, we have

lim
n→∞

Υ(en,rn) = lim
n→∞

Λ(en,rn) = t1,

lim
n→∞

Υ(rn,en) = lim
n→∞

Λ(rn,en) = t2.

Definition 1.6. [28] Let Υ : Γ → Γ and α : Γ×Γ → [0, +∞). We say that Υ is an α− admissible mapping

if α(e,r) ≥ 1 implies α(Υe, Υr) ≥ 1 for all e,r ∈ Υ.

Ansari [29] initiated the remarkable of C−class functions. This contribution covers a large class of con-

tractive conditions. Here, we denote C-class functions as C.

Definition 1.7. [29] A C-class function is a continuous mapping f : [0,∞)2 → R which fulfills the

stipulations below:

(1) f(e,r) ≤ e,

(2) f(e,r) = e implies that either e = 0 or r = 0 for all e,r ∈ [0,∞).

Example 1.3. The functions below f : [0,∞)2 → R are elements of C, for all e,r ∈ [0,∞) :

(1) f(e,r) = e−r;

(2) f(e,r) = λe, 0 < λ < 1;

(3) f(e,r) = e
(1+r)σ

; σ ∈ (0,∞);

(4) f(e,r) =
log(r+ae)

(1+r)
,a > 1.

Here in this manuscript, we refers to:

• Ψ = {ψ : ψ : [0,∞) → [0,∞) is a strictly nondecrasing and continuous function, ψ(t) = 0 ⇔ t = 0}.

• An ultra altering distance function Φ = {ϕ : ϕ : [0,∞) → [0,∞)} is a continuous, non-decreasing mapping

such that ϕ(t) > 0 for t > 0 and ϕ(0) ≥ 0.

The goal of this paper is to obtain some new (ccp) results for a certain class of f(ψ,ϕ)- contractive via

generalized α− admissible mappings in (b-ms). Ultimately, to support our work we present an example and

application to find an analytical solution to the (nie).

2. Main results

We begin this part with the definition below:



Int. J. Anal. Appl. 18 (6) (2020) 1086

Definition 2.1. Let Υ, Λ : Γ2 → Γ and α : Γ2×Γ2 → R+ be given mappings. We say that Υ is a generalized

α-admissible with respect to (w.r.t.) Λ if

α((Λ(e,r), Λ(r,e)), (Λ(µ,κ), Λ(κ,µ))) ≥ 1 implies α((Υ(e,r), Υ(r,e)), (Υ(µ,κ), Υ(κ,µ))) ≥ 1,

for all (e,r), (µ,κ) ∈ Γ2.

Now, we present the first main theorem:

Theorem 2.1. Let (Γ,νb) be a complete (b-ms) (with parameter s > 1), and Υ, Λ : Γ
2 → Γ be two generalized

compatible mappings such that Υ is a generalized α−admissible mapping w.r.t. Λ and Λ is continuous. Let

there is f ∈ C, ψ ∈ Ψ,ϕ ∈ Φ so that the stipulation below holds

(ψ (sσνb(Υ(e,r), Υ(µ,κ)) + ρ)

α




(Λ(e,r), Λ(r,e)),

(Υ(e,r), Υ(r,e))


α



(Λ(µ,κ), Λ(κ,µ)),

(Υ(µ,κ), Υ(κ,µ))




≤ f


 ψ(νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))2 ),

ϕ(
νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))

2
)




+ρ,(2.1)

for all e,r,µ,κ ∈ Γ,σ,ρ > 0, and α : (Γ2 × Γ2) → [0,∞). Assume that

(i) Υ(Γ2) ⊆ Λ(Γ2),

(ii) there is e0,r0 ∈ Γ so that

α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1,

α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1.

Also, suppose either

(iv) Υ is continuous, or

(v) {en},{rn} are two sequences in Γ so that

α((en+1,rn+1), (en,rn)) ≥ 1 and α((rn,en), (rn+1,en+1)) ≥ 1.

for all n ∈ N∪{0}, and en → e,rn → r as n →∞, e,r ∈ Γ, we have

α((e,r), (en,rn)) ≥ 1 and α((rn,en), (r,e)) ≥ 1.

Then Υ and Λ have a (ccp).

Proof. Let e0,r0 ∈ Γ, so by condition (ii), we have

α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1,

α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1.



Int. J. Anal. Appl. 18 (6) (2020) 1087

According to (i), define two sequences {en},{rn} in Γ by

Υ(en,rn) = Λ(en+1,rn+1), Υ(rn,en) = Λ(rn+1,en+1),∀n = 0, 1, 2, ... .

Since Υ(Γ2) ⊆ Λ(Γ2), then we can write

α((Λ(e0,r0), Λ(r0,e0)), (Λ(e1,r1), Λ(r1,e1)))

= α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1,

α((Λ(r0,e0), Λ(e0,r0)), (Λ(r1,e1), Λ(e1,r1)))

= α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1.

Again, since Υ is a generalized α-admissible mapping w.r.t. Λ, then we have that

α((Υ(e0,r0), Υ(r0,e0)), (Υ(e1,r1), Υ(r1,e1))) ≥ 1,

and

α((Υ(r0,e0), Υ(e0,r0)), (Υ(r1,e1), Υ(e1,r1))) ≥ 1.

By induction, we get for all n ∈ N∪{0},

α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1)))

= α((Υ(en,rn), Υ(rn,en)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) ≥ 1,

and α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1)))

= α((Υ(rn,en), Υ(en,rn)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) ≥ 1.

(2.2)

Denote

λn = νb(Λ(en,rn), Λ(en+1,rn+1)) + νb(Λ(rn,en), Λ(rn+1,en+1)),n ∈ N∪{0}.

We suppose that λn > 0,∀n ∈ N because if not, (en,rn) will be a (ccp) and the proof is finished.

We claim that ψ(sσλn+1) ≤ ψ(λn). Using (2.2) and letting e = en,r = rn,µ = en+1, and κ = rn+1 in (2.1),



Int. J. Anal. Appl. 18 (6) (2020) 1088

we get

ψ (sσνb(Λ(en+1,rn+1), Λ(en+2,rn+2)) + ρ

= ψ (sσνb(Υ(en,rn), Υ(en+1,rn+1)) + ρ

≤ (ψ (sσνb(Υ(en,rn), Υ(en+1,rn+1)) + ρ)
µn ,

≤ f


 ψ

(
νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1))

2

)
,

ϕ
(
νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1))

2

)

 + ρ

= f

(
ψ(
λn
2

),ϕ(
λn
2

)

)
+ ρ,(2.3)

where

µn = α((Λ(en,rn), Λ(rn,en)), (Υ(en,rn), Υ(rn,en))) ×

α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))).

Similarly, we have

ψ (sσνb(Λ(rn+2,en+2), Λ(rn+1,en+1)) + ρ

= ψ (sσνb(Υ(rn+1,en+1), Υ(rn,en)) + ρ

≤ (ψ (sσνb(Υ(rn+1,en+1), Υ(rn,en)) + ρ)
µn ,

≤ f


 ψ

(
νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn))

2

)
,

ϕ
(
νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn))

2

)

 + ρ

= f

(
ψ(
λn
2

),ϕ(
λn
2

)

)
+ ρ,(2.4)

where

µn = α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1)) ×

α((Λ(rn,en), Λ(en,rn)), (Υ(rn,en), Υ(en,rn)).

Summing (2.3), (2.4), and since ψ is nondecreasing, we get

(2.5) ψ (sσλn+1) ≤ f
(
ψ(
λn
2

),ϕ(
λn
2

)

)
≤ ψ(

λn
2

),

since ψ is nondecreasing. By inequality (2.5), one can write

λn+1 ≤
1

sσ
λn.

Hence, by Lemma 1.2, the sequence λn is b−Cauchy in Γ and then {Λ(en,rn)} and {Λ(rn,en)} are also

Cauchy sequences in Γ. By the completeness of Γ, there exist e,r ∈ Γ so that

(2.6) lim
n→∞

Λ(en,rn) = Υ(en,rn) = Λ, and lim
n→∞

Λ(rn,en) = Υ(rn,en) = r.



Int. J. Anal. Appl. 18 (6) (2020) 1089

Since the pair (Υ, Λ) satisfies the generalized compatible, by (2.6), we can write

(2.7) lim
n→∞

νb(Υ(Λ(en,rn), Λ(rn,en)), Λ(Υ(en,rn), Υ(rn,en))) = 0,

(2.8) lim
n→∞

νb(Υ(Λ(rn,en), Λ(en,rn)), Λ(Υ(rn,en), Υ(en,rn))) = 0.

Now, if (i) holds, that is Υ is continuous and Λ is already continuous from the hypothesis of the theorem,

then in view of triangle inequality, we have

νb(Λ(e,r), Υ(Λ(en,rn), Λ(rn,en))) ≤ s[νb(Λ(e,r), Λ(Υ(en,rn), Υ(rn,en)))

+ νb(Λ(Υ(en,rn), Υ(rn,en)), Υ(Λ(en,rn), Λ(rn,en)))].

Passing n → ∞ in the above inequality and using (2.6), (2.7), and the continuity of Υ and Λ, we get

Λ(e,r) = Υ(e,r). Similarly, by (2.6), (2.8), we can show that Λ(r,e) = Υ(r,e).

Next, assume that (ii) holds. Since the pair Υ,Λ satisfies the generalized compatible and Λ is continuous,

we have

lim
n→∞

Λ(Λ(en,rn), Λ(rn,en)) = Λ(e,r)

= lim
n→∞

Λ(Υ(en,rn), Υ(rn,en))

= lim
n→∞

Υ(Λ(en,rn), Λ(rn,en)),(2.9)

and

lim
n→∞

Λ(Λ(rn,en), Λ(en,rn)) = Λ(r,e)

= lim
n→∞

Λ(Υ(rn,en), Υ(en,rn))

= lim
n→∞

Υ(Λ(rn,en), Λ(en,rn)).(2.10)

Then, we have

α((Λ(Λ(en,rn),e(rn,en)), Λ(Λ(rn,en), Λ(en,rn))), (Λ(e,r), Λ(r,e))) ≥ 1,

and

α((Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))), (Λ(r,e), Λ(e,r))) ≥ 1.



Int. J. Anal. Appl. 18 (6) (2020) 1090

Applying (2.1), we get

ψ(νb(Υ(e,r),e(e,r))) = lim
n→∞

ψ(νb(Υ(e,r),e(Υ(en,rn), Υ(rn,en))))

≤ lim
n→∞

ψ(νb(Υ(e,r), Υ(e(en,rn), Λ(rn,en)))) + ρ

≤ lim
n→∞

(ψ(sσνb(Υ(e,r), Υ(e(en,rn), Λ(rn,en)))) + ρ)
µn,

≤ lim
n→∞

f


 ψ

(
νb(Λ(e,r),Λ(Λ(en,rn),Λ(rn,en)))+νb(Λ(r,e),Λ(Λ(rn,en),Λ(enrn)))

2

)
,

ϕ
(
νb(Λ(e,r),Λ(Λ(en,rn),Λ(rn,en)))+νb(Λ(r,e),Λ(Λ(rn,en),Λ(enrn)))

2

)

 + ρ,

where

µn = α(Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) ×

α


 (Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))),

(Υ(Λ(rn,en)), Λ(en,rn), Υ(Λ(en,rn)), Λ(rn,en))


 .

Using (2.9),(2.10), we get ψ(νb(Υ(e,r), Λ(e,r))) = 0 implies that Υ(e,r) = Λ(e,r). Similarly, we can prove

that Υ(r,e) = Λ(r,e). �

Theorem 2.2. Let (Γ,νb) be a complete (b-ms) (with parameter s > 1), and Υ, Λ : Γ
2 → Γ be two generalized

compatible mappings so that Υ is a generalized α−admissible mapping w.r.t. Λ and Λ is continuous. Let

there is f ∈ C and ψ ∈ Ψ,ϕ ∈ Φ so that the stipulation below holds:
 α


 (Λ(e,r), Λ(r,e)),

(Υ(e,r), Υ(r,e))


α


 (Λ(µ,κ), Λ(κ,µ)),

(Υ(µ,κ), Υ(κ,µ))




+1



ψ(sσνb(Υ(e,r),Υ(µ,κ))

≤ 2f
(
ψ(

νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))

2
),ϕ(

νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))

2
)
)
,(2.11)

for all e,r,µ,κ ∈ Γ,ρ,σ > 0, and α : (Γ2 × Γ2) → [0,∞). Assume that

(i) Υ(Γ2) ⊆ Λ(Γ2),

(ii) there is e0,r0 ∈ Γ so that

α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1,

α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1.

Also, suppose either

(iv) Υ is continuous, or

(v) {en},{rn} are two sequences in Γ such that

α((en+1,rn+1), (en,rn)) ≥ 1 and α((rn,en), (rn+1,en+1)) ≥ 1.



Int. J. Anal. Appl. 18 (6) (2020) 1091

for all n ∈ N∪{0}, and en → e,rn → r as n →∞, e,r ∈ Γ, we have

α((e,r), (en,rn)) ≥ 1 and α((rn,en), (r,e)) ≥ 1.

Then Υ and Λ have a (ccp).

Proof. As in Theorem (2.1), we can conclude that for all n ∈ N∪{0},

α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1)))

= α((Υ(en,rn), Υ(rn,en)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) ≥ 1,

and α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1)))

= α((Υ(rn,en), Υ(en,rn)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) ≥ 1.

(2.12)

Denote

λn = νb(Λ(en,rn), Λ(en+1,rn+1)) + νb(Λ(rn,en), Λ(rn+1,en+1)),n ∈ N∪{0}.

We suppose that λn > 0,∀n ∈ N because if not, (en,rn) will be a (ccp) and the proof is finished.

We claim that ψ(sσλn+1) ≤ ψ(λn). Using (2.12), letting e = en,r = rn,µ = en+1, and κ = rn+1 in (2.11),

we have

2ψ(s
σνb(Λ(en+1,rn+1),Λ(en+2,rn+2)) = 2ψ(s

σνb(Υ(en,rn),Υ(en+1,rn+1))

≤ (µn + 1)ψ(s
σνb(Υ(en,rn),Υ(en+1,rn+1))

≤ 2

f



ψ
(
νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1))

2

)
,

ϕ
(
νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1))

2

)



= 2f(ψ(
λn
2

),ϕ(
λn
2

)),(2.13)

where

µn = α((Λ(en,rn), Λ(rn,en)), (Υ(en,rn), Υ(rn,en))) ×

α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))).

Thus, we get

ψ (νb(Λ(en+1,rn+1), Λ(en+2,rn+2)) ≤ f
(
ψ(
λn
2

),ϕ(
λn
2

)

)
.



Int. J. Anal. Appl. 18 (6) (2020) 1092

Similarly, we have

2ψ(s
σνb(Λ(rn+2,en+2),Λ(rn+1,en+1)) = 2ψ(s

σνb(Υ(rn+1,en+1),Υ(rn,en))

≤ (µn + 1)ψ(s
σνb(Υ(rn+1,en+1),Υ(rn,en))

≤ 2

f



ψ
(
νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn))

2

)
,

ϕ
(
νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn))

2

)



= 2f(ψ(
λn
2

),ϕ(
λn
2

)),(2.14)

where

µn = α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) ×

α((Λ(rn,en), Λ(en,rn)), (Υ(rn,en), Υ(en,rn))).

Thus, we get

(2.15) ψ (sσνb(Λ(rn+2,en+2), Λ(rn+1,en+1)) ≤ f
(
ψ(
λn
2

),ϕ(
λn
2

)

)
.

Summing both inequalities (2), (2.15), and since ψ is nondecreasing, we have

(2.16) ψ (sσλn+1) ≤ f
(
ψ(
λn
2

),ϕ(
λn
2

)

)
≤ ψ(

λn
2

),

since ψ is nondecreasing and from inequality (2.16), one can get

λn+1 ≤
1

sσ
λn.

Hence, by Lemma 1.2, the sequence λn is b−Cauchy in Γ and then {Λ(en,rn)} and {Λ(rn,en)} are also

Cauchy sequences in Γ. By the completeness of Γ, there exist e,r ∈ Γ such that

(2.17) lim
n→∞

e(en,rn) = Υ(en,rn) = e, and lim
n→∞

e(rn,en) = Υ(rn,en) = r.

Since the pair (Υ,e) satisfies the generalized compatible condition, then by (2.17), one can write

(2.18) lim
n→∞

νb(Υ(Λ(en,rn), Λ(rn,en)), Λ(Υ(en,rn), Υ(rn,en))) = 0,

(2.19) lim
n→∞

νb(Υ(Λ(rn,en), Λ(en,rn)), Λ(Υ(rn,en), Υ(en,rn))) = 0.

Now, if (i) holds, we apply the same steps of Theorem (2.1), and we get Λ(r,e) = Υ(r,e).

Now, assume that (ii) holds. Since the pair Υ,Λ satisfies the generalized compatible and Λ is continuous, we



Int. J. Anal. Appl. 18 (6) (2020) 1093

have

lim
n→∞

Λ(Λ(en,rn),e(rn,en)) = Λ(e,r)

= lim
n→∞

Λ(Υ(en,rn), Υ(rn,en))

= lim
n→∞

Υ(Λ(en,rn), Λe(rn,en)),(2.20)

and

lim
n→∞

Λ(Λ(rn,en), Λ(en,rn)) = Λ(r,e)

= lim
n→∞

Λ(Υ(rn,en), Υ(en,rn))

= lim
n→∞

Υ(Λ(rn,en), Λ(en,rn)).(2.21)

Then, we can write

α((Λ(Λ(en,rn), Λ(rn,en)), Λ(Λ(rn,en), Λ(en,rn))), (Λ(e,r), Λ(r,e))) ≥ 1,

and

α((Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))), (Λ(r,e), Λ(e,r))) ≥ 1.

Applying (2.11), we get

2ψ(νb(Υ(e,r),Λ(e,r))) = lim
n→∞

2ψ(νb(Υ(e,r),e(Υ(en,rn),Υ(rn,en))))

= lim
n→∞

2ψ(νb(Υ(e,r),Υ(e(en,rn),Λ(rn,en))))

≤ lim
n→∞

(µn + 1)
ψ(sσνb(Υ(e,r),Υ(e(en,rn),Λ(rn,en)))),

≤ lim
n→∞

2f(ψ(χn),ϕ(χn)),

where

µn = α(Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) ×

α


 Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))),

(Υ(Λ(rn,en), Λ(en,rn)), Υ(Λ(en,rn), Λ(rn,en)))


 ,

and

χn =
νb(Λ(e,r), Λ(e(en,rn), Λ(rn,en))) + νb(Λ(r,e), Λ(Λ(rn,en), Λ(enrn)))

2
,

Using (2.20),(2.21), we get ψ(νb(Υ(e,r), Λ(e,r))) = 0 this leads to Υ(e,r) = Λ(e,r). Similarly, we can prove

that Υ(r,e) = Λ(r,e). �



Int. J. Anal. Appl. 18 (6) (2020) 1094

Theorem 2.3. Let (Γ,νb) be a complete (b-ms) (with parameter s > 1), and Υ, Λ : Γ
2 → Γ be two generalized

compatible mappings such that Υ is a generalizedα−admissible mapping w.r.t. Λ and Λ is continuous. Let

there is f ∈ C, ψ ∈ Ψ,ϕ ∈ Φ so that the stipulation below holds:

α


 (Λ(e,r), Λ(r,e)),

(Υ(e,r), Υ(r,e))




α

 (Λ(µ,κ), Λ(κ,µ)),

(Υ(µ,κ), Υ(κ,µ)))


ψ(sσνb(Υ(e,r), Υ(µ,κ)))




≤ f


 ψ(νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))2 ),

ϕ(
νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))

2
)


 ,(2.22)

for all e,r,µ,κ ∈ Γ,ρ,σ > 0,, and α : (Γ2 × Γ2) → [0,∞). Assume that

(i) Υ(Γ2) ⊆ Λ(Γ2)

(ii) there is e0,r0 ∈ Γ so that

α((Λ(e0,r0), Λ(r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1,

α((Λ(r0,e0), Λ(e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1.

Also, suppose either

(iv) Υ is continuous, or

(v) {en},{rn} are two sequences in Γ so that

α((en+1,rn+1), (en,rn)) ≥ 1,

α((rn,en), (rn+1,en+1)) ≥ 1.

for all n ∈ N∪{0}, and en → e,rn → r as n →∞, e,r ∈ Γ, we have

α((e,r), (en,rn)) ≥ 1,

α((rn,en), (r,e)) ≥ 1.

Then Υ and Λ have a (ccp).

Proof. Again, as in Theorem (2.1), we can conclude that for all n ∈ N∪{0},

α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1)))

= α((Υ(en,rn), Υ(rn,en)), (Υ(en+1,rn+1), Υ(rn+1,en+1))) ≥ 1,and

α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1)))

= α((Υ(rn,en), Υ(en,rn)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) ≥ 1.

(2.23)



Int. J. Anal. Appl. 18 (6) (2020) 1095

Denote

λn = νb(Λ(en,rn), Λ(en+1,rn+1)) + νb(Λ(rn,en), Λ(rn+1,en+1)),n ∈ N∪{0}

.

We suppose that λn > 0,∀n ∈ N because if not, (en,rn) will be a (ccp) and the proof is finished.

We claim that ψ(sσλn+1) ≤ ψ(λn). Using (2.12), letting e = en,r = rn,µ = en+1, and κ = rn+1 in (2.22),

we have

ψ (sσνb(Λ(en+1,rn+1), Λ(en+2,rn+2))

= ψ (sσνb(Υ(en,rn), Υ(en+1,rn+1))

≤ µnψ (sσνb(Υ(en,rn), Υ(en+1,rn+1))

≤ f


 ψ

(
νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1))

2

)
,

ϕ
(
νb(Λ(en,rn),Λ(en+1,rn+1))+νb(Λ(rn,en),Λ(rn+1,en+1))

2

)



= f

(
ψ(
λn
2

),ϕ(
λn
2

)

)
,(2.24)

where

µn = α((Λ(en,rn), Λ(rn,en)), (Υ(en,rn), Υ(rn,en))) ×

α((Λ(en+1,rn+1), Λ(rn+1,en+1)), (Υ(en+1,rn+1), Υ(rn+1,en+1))).

Thus, we get

ψ (sσνb(Λ(en+1,rn+1), Λ(en+2,rn+2)) ≤ f
(
ψ(
λn
2

),ϕ(
λn
2

)

)
.(2.25)

Similarly, we have

ψ (sσνb(Λ(rn+2,en+2), Λ(rn+1,en+1))

= ψ (sσνb(Υ(rn+1,en+1), Υ(rn,en))

≤ µnψ (sσνb(Υ(rn+1,en+1), Υ(rn,en))

≤ f


 ψ

(
νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn))

2

)
,

ϕ
(
νb(Λ(rn+1,en+1),Λ(rn,en))+νb(Λ(en+1,rn+1),Λ(en,rn))

2

)



= f

(
ψ(
λn
2

),ϕ(
λn
2

)

)
,(2.26)

where

µn = α((Λ(rn+1,en+1), Λ(en+1,rn+1)), (Υ(rn+1,en+1), Υ(en+1,rn+1))) ×

α((Λ(rn,en), Λ(en,rn)), (Υ(rn,en), Υ(en,rn))).



Int. J. Anal. Appl. 18 (6) (2020) 1096

Thus, we get

ψ (sσνb(Λ(rn+2,en+2), Λ(rn+1,en+1)) ≤ f
(
ψ(
λn
2

),ϕ(
λn
2

))

)
.(2.27)

By inequalities (2.25), (2.27), and since ψ is non-decreasing, we have

ψ (sσλn+1) ≤ f
(
ψ(
λn
2

),ϕ(
λn
2

)

)
≤ ψ(

λn
2

).(2.28)

since ψ is nondecreasing and by inequality (2.28), we get

λn+1 ≤
1

sσ
λn.

Thus, by Lemma 1.2, the sequence λn is b-Cauchy in Γ and then {Λ(en,rn)} and {Λ(rn,en)} are also Cauchy

sequences in Γ. By the completeness of Γ, there exist e,r ∈ Γ such that

lim
n→∞

Λ(en,rn) = Υ(en,rn) = e, and lim
n→∞

Λ(rn,en) = Υ(rn,en) = r.(2.29)

Since the pair (Υ,e) satisfies the generalized compatible condition, then by (2.29), one can write

lim
n→∞

νb(Υ(Λ(en,rn), Λ(rn,en)), Λ(Υ(en,rn), Υ(rn,en))) = 0,(2.30)

lim
n→∞

νb(Υ(Λ(rn,en), Λ(en,rn)), Λ(Υ(rn,en), Υ(en,rn))) = 0.(2.31)

Now, if (i) holds, we apply the same steps of Theorem (2.1), and we get Λ(r,e) = Υ(r,e).

Now, assume that (ii) holds. Since the pair Υ, Λ satisfies the generalized compatible condition and Λ is

continuous, we have

lim
n→∞

Λ(Λ(en,rn), Λ(rn,en)) = Λ(e,r)

= lim
n→∞

Λ(Υ(en,rn), Υ(rn,en))

= lim
n→∞

Υ(Λ(en,rn), Λ(rn,en)),(2.32)

and

lim
n→∞

Λ(Λ(rn,en), Λ(en,rn)) = Λ(r,e)

= lim
n→∞

Λ(Υ(rn,en), Υ(en,rn))

= lim
n→∞

Υ(Λ(rn,en), Λ(en,rn)).(2.33)

Then, we have

α((Λ(Λ(en,rn), Λ(rn,en)), Λ(Λ(rn,en), Λ(en,rn))), (Λ(e,r), Λ(r,e))) ≥ 1,

and

α((Λ(Λ(rn,en), Λ(en,rn)), Λ(Λ(en,rn), Λ(rn,en))), (Λ(r,e), Λ(e,r))) ≥ 1.



Int. J. Anal. Appl. 18 (6) (2020) 1097

Applying (2.22), we get

ψ(νb(Υ(e,r), Λ(e,r))) = lim
n→∞

ψ(νb(Υ(e,r), Λ(Υ(en,rn), Υ(rn,en))))

= lim
n→∞

ψ(νb(Υ(e,r), Υ(Λ(en,rn), Λ(rn,en))))

≤ lim
n→∞

µnψ(νb(Υ(e,r), Υ(Λ(en,rn), Λ(rn,en)))),

≤ lim
n→∞

f (ψ(χn),ϕ(χn)) ,

where

µn = α(Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e)) ×

α


 (Λ(Λ(en,rn), Λ(rn,en)), Λ(Λ(rn,en), Λ(en,rn))),

(Υ(Λ(en,rn), Λ(rn,en)), Υ(Λ(rn,en), Λ(en,rn)))


 .

and

χn =
νb(Λ(e,r), Λ(Λ(en,rn), Λ(rn,en))) + νb(Λ(r,e), Λ(Λ(rn,en), Λ(enrn)))

2
.

Using (2.32),(2.33), we get ψ(νb(Υ(e,r), Λ(e,r))) = 0 implies that Υ(e,r) = Λ(e,r). Similarly, we can prove

that Υ(r,e) = Λ(r,e). �

Theorem 2.4. Suppose that all requirements of Theorems (2.1) or (2.2) or (2.3) are fulfilled. In addition,

let the stipulation below holds:

(vi) If Λ(e,r) = Υ(e,r) and Λ(r,e) = Υ(r,e)

then

α((Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e))) ≥ 1,

and

α((Λ(r,e), Λ(e,r)), (Υ(r,e), Υ(e,r))) ≥ 1.

Then Λ and Υ have a unique (ccp).

Proof. From Theorem (2.1) or (2.2) or (2.3), we know that the set of (ccp) of Λ and Υ is nonempty. Let

(e,r) and (e∗,r∗) are (ccp) of Λ and Υ, this yields

Λ(e,r) = Υ(e,r), Λ(r,e) = Υ(r,e),

and

Λ(e∗,r∗) = Υ(e∗,r∗), Λ(r∗,e∗) = Υ(r∗,e∗).



Int. J. Anal. Appl. 18 (6) (2020) 1098

We will prove that Λ(e,r) = Λ(e∗,r∗) and Λ(r,e) = Λ(r∗,e∗).

It follows from (vi) that

α((Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e))) ≥ 1

α((Λ(r,e), Λ(e,r)), (Υ(r,e), Υ(e,r))) ≥ 1,

and

α ((Λ(e∗,r∗), Λ(r∗,e∗)), (Υ(e∗,r∗), Υ(r∗,e∗))) ≥ 1

α((Λ(r∗,e∗), Λ(e∗,r∗)), (Υ(r∗,e∗), Υ(e∗,r∗))) ≥ 1,

From Theorem 2.1, using above inequalities, we have

ψ (νb(Λ(e,r), Λ(e
∗,r∗)) + ρ

≤ ψ (sσνb(Υ(e,r), Υ(e∗,r∗)) + ρ

≤ (ψ (sσνb(Υ(e,r), Υ(e∗,r∗)) + ρ)
µn

≤ f


 ψ(νb(Λ(e,r),Λ(e∗,r∗))+νb(Λ(r,e),Λ(r∗,e∗))2 ),

ϕ(
νb(Λ(e,r),Λ(e

∗,r∗))+νb(Λ(r,e),Λ(r
∗,e∗))

2
)


 + ρ,(2.34)

where

µn = α((Λ(e,r), Λ(r,e)), (Υ(e,r), Υ(r,e))),α((Λ(e
∗,r∗), Λ(r∗,e∗)), (Υ(e∗,r∗), Υ(r∗,e∗))).

From Theorem 2.2, we have

2ψ(νb(Λ(e,r),Λ(e
∗,r∗))) ≤ 2ψ(s

σνb(Υ(e,r),Υ(e
∗,r∗)))

≤ (µn + 1)ψ(s
σνb(Υ(e,r),Υ(e

∗,r∗)))

≤ 2f
(
ψ(

νb(Λ(e,r),Λ(e
∗,r∗))+νb(Λ(r,e),Λ(r

∗,e∗))
2

),ϕ(
νb(Λ(e,r),Λ(e

∗,r∗))+νb(Λ(r,e),Λ(r
∗,e∗))

2
)
)
.(2.35)

From Theorem 2.3, we have

ψ(νb(Λ(e,r), Λ(e
∗,r∗))) ≤ ψ(sσνb(Υ(e,r), Υ(e∗,r∗)))

≤ (µn + 1)ψ(sσνb(Υ(e,r), Υ(e∗,r∗)))

≤ f


 ψ(νb(Λ(e,r),Λ(e∗,r∗))+νb(Λ(r,e),Λ(r∗,Λ∗))2 ),

ϕ(
νb(Λ(e,r),Λ(e

∗,r∗))+νb(Λ(r,e),Λ(r
∗,e∗))

2
)


 .(2.36)

From (2.34), (2.35) and (2.36), we have

f (ψ(νb(Λ(e,r), Λ(e
∗,r∗)),ϕ(νb(Λ(e,r), Λ(e

∗,r∗)))) = ψ(νb(Λ(e,r), Λ(e
∗,r∗)).



Int. J. Anal. Appl. 18 (6) (2020) 1099

By the hypotheses of f,ψ,ϕ, we get either ψ(νb(Λ(e,r), Λ(e
∗,r∗)) = 0 or ϕ(νb(Λ(e,r), Λ(e

∗,r∗))) = 0. Thus

we have Λ(e,r) = Λ(e∗,r∗). Similarly, we can prove that Λ(r,e) = Λ(r∗,e∗). �

An example below support Theorems 2.1, 2.2, 2.3, and 2.4.

Example 2.1. Let f(e,r) = τe, 0 < τ < 1 and Γ = [0,∞) endowed with

νb(e,r) = (e−r)
2

for all e,r ∈ Γ. It is clear that (Γ,νb) is a complete b−ms with a coefficient s = 2. Assume that Υ, Λ : Γ×Γ →

Γ by

Υ(e,r) =


 e−r e ≥ r0 otherwise and Λ(e,r) =


 e + r e ≥ r0 otherwise ,

It is obvious that Υ(Γ2) ⊆ Λ(Γ2) and the mapping Υ is continuous. Define α : Γ2 × Γ2 → [0, +∞) by

α ((e,r), (µ,κ)) =


 2, e ≥ µ, r ≤ κ0, otherwise .

Then for each e◦,r◦ ∈ Γ, we find that

α [(Λ (e◦,r◦) , Λ (r◦,e◦)) , (Υ (e◦,r◦) , Υ (r◦,e◦))] = 2 > 1,

α [(Λ (r◦,e◦) , Λ (e◦,r◦)) , (Υ (r◦,e◦) , Υ (e◦,r◦))] = 2 > 1.

For all n ∈ N, let en = nn+1 and rn =
1
n

be two sequences such that

α [(Λ (en+1,rn+1) , Λ (rn,en))] ≥ 1,

α [(Λ (rn,en) , Λ (en+1,rn+1))] ≥ 1.

Then, limn→∞en = 1 and limn→∞rn = 0. Certainly, 0, 1 ∈ Γ and

α [(Λ (0, 1) , Λ (rn,en))] = 2 > 1,

α [(Λ (1, 0) , Λ (en,rn))] = 2 > 1.

Under this sequences, we can write

lim
n→∞

νb (Υ [Λ (en,rn) , Λ (rn,en)] , Λ [Υ (en,rn) , Υ (rn,en)])

= νb (Υ [Λ (1, 0) , Λ (0, 1)] , Λ [Υ (1, 0) , Υ (0, 1)])

= νb (Υ (1, 0) , Λ (1, 0)) = νb (1, 1) = 0,

similarly, one can prove that

lim
n→∞

νb (Υ [Λ (rn,en) , Λ (en,rn)] , Λ [Υ (rn,en) , Υ (en,rn)]) = 0.



Int. J. Anal. Appl. 18 (6) (2020) 1100

whenever en,rn ∈ Γ, such that

lim
n→∞

Υ (en,rn) = Υ (1, 0) = 1 = Λ (1, 0) = lim
n→∞

Λ (en,rn) ,

lim
n→∞

Υ (rn,en) = Υ (0, 1) = 0 = Λ (0, 1) = lim
n→∞

Λ (rn,en) .

Therefore, Υ and Λ are generalized compatible.

Now, for e = κ = 1 and r = µ = 0, if

α [(Λ (e,r) , Λ (r,e)) , (Λ (µ,κ) , Λ (κ,µ))] > 1,

this implies that

α [(Υ (e,r) , Υ (r,e)) , (Υ (µ,κ) , Υ (κ,µ))]

= α [(Υ (1, 0) , Υ (0, 1)) , (Υ (0, 1) , Υ (1, 0))] = α [(1, 0) , (0, 1)] = 2 > 1

for all (1, 0), (0, 1) ∈ Γ2. This prove that Υ is a generalized α−admissible w.r.t. Λ.

Finally, we will try to verify the contractive conditions (2.1),(2.11) and (2.22) of Theorems 2.1, 2.2, and

2.3 respectively. Take ψ(θ) = θ
3

and φ(θ) = θ for all θ ∈ [0,∞). Put σ = ρ = 1, τ = 1
2
, e = κ = 1

2
and

r = µ = 1
4
, then we have

α [(Λ (e,r) , Λ (r,e)) , (Υ (e,r) , Υ (r,e))]

×α [(Λ (µ,κ) , Λ (κ,µ)) , (Υ (µ,κ) , Υ (κ,µ))]

= α

[(
Λ

(
1

2
,

1

4

)
, Λ

(
1

4
,

1

2

))
,

(
Υ

(
1

2
,

1

4

)
, Υ

(
1

4
,

1

2

))]
×α

[(
Λ

(
1

4
,

1

2

)
, Λ

(
1

2
,

1

4

))
,

(
Υ

(
1

4
,

1

2

)
, Υ

(
1

2
,

1

4

))]
= α

[(
3

4
, 0

)
,

(
0,

1

4

)]
×α

[(
0,

3

4

)
,

(
0,

1

4

)]
= 2 × 0 = 0,(2.37)

ψ

(
νb (Λ (e,r) , Λ (µ,κ)) + νb (Λ (r,e) , Λ (κ,µ))

2

)

= ψ

(
νb
(
Λ
(

1
2
, 1

4

)
, Λ
(

1
4
, 1

2

))
+ νb

(
Λ
(

1
4
, 1

2

)
, Λ
(

1
2
, 1

4

))
2

)

= ψ

(
νb
(

3
4
, 0
)

+ νb
(
0, 3

4

)
2

)
= ψ

(
9

16

)
=

3

16
,(2.38)

(2.39) φ

(
νb (Λ (e,r) , Λ (µ,κ)) + νb (Λ (r,e) , Λ (κ,µ))

2

)
= φ

(
9

16

)
=

9

16
,



Int. J. Anal. Appl. 18 (6) (2020) 1101

(2.40) sσνb (Υ (e,r) , Υ (µ,κ)) = 2νb

(
Υ

(
1

2
,

1

4

)
, Υ

(
1

4
,

1

2

))
= 2νb

(
1

4
, 0

)
=

1

8
.

It follows from definition of f and (2.37)-(2.40) that

(ψ (sσνb (Υ (e,r) , Υ (µ,κ))) + ρ)




α


 (Λ (e,r) , Λ (r,e)) ,

(Υ (e,r) , Υ (r,e))




×α


 (Λ (µ,κ) , Λ (κ,µ)) ,

(Υ (µ,κ) , Υ (κ,µ))







=

(
ψ

(
1

4

)
+ 1

)0
= 1

≤
35

32
=

1

2
×

3

16
+ 1

= f

(
3

16
,

9

16

)
+ 1

= f


 ψ

(
νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))

2

)
,

φ
(
νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))

2

)

 + ρ.(2.41)

Also, we can write




α


 (Λ (e,r) , Λ (r,e)) ,

(Υ (e,r) , Υ (r,e))




×α


 (Λ (µ,κ) , Λ (κ,µ)) ,

(Υ (µ,κ) , Υ (κ,µ))




+1




ψ(sσνb(Υ(e,r),Υ(µ,κ)))

= (0 + 1)ψ(
1
8

) = 1

< 2
3
32 = 2

3
16
×1

2 = 2f(
3
16
, 9
16 )

= 2
f
(
ψ
(
νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))

2

)
,φ
(
νb(Λ(e,r),Λ(µ,κ))+νb(Λ(r,e),Λ(κ,µ))

2

))
.(2.42)

Additionally, the contractive condition (2.22) of Theorem 2.3 is directly hold. So, by (2.41)-(2.42) all hy-

potheses of Theorems 2.1, 2.2, and 2.3 are fulfilled, so by Theorem 2.4 the mappings Υ and e have a unique

(ccp), here it is (0, 0) ∈ Γ2.

If we put Λ = I, (where I is the identity mapping) in Theorem 2.1, we get the important result below.

Corollary 2.1. Let (Γ,νb) be a complete (b-ms) (with parameter s > 1), and Υ,I : Γ
2 → Γ be two

generalized compatible mappings such that Υ is generalized α−admissible mapping w.r.t. I. Let there is



Int. J. Anal. Appl. 18 (6) (2020) 1102

f ∈ C, ψ ∈ Ψ,ϕ ∈ Φ so that the stipulation below holds

(ψ (sσνb(Υ(e,r), Υ(µ,κ)) + ρ)

α




((e,r), (r,e)),

(Υ(e,r), Υ(r,e))


α



((µ,κ), (κ,µ)) ,

(Υ(µ,κ), Υ(κ,µ)




≤ f


 ψ

(
νb((e,r),(µ,κ))+νb((r,e),(κ,µ))

2

)
,

ϕ
(
νb((e,r),(µ,κ))+νb((r,e),(κ,µ))

2

)



+ρ,(2.43)

for all e,r,µ,κ ∈ Γ,ρ,σ > 0, and α : (Γ2 × Γ2) → [0,∞). Assume that

(i) Υ(Γ2) ⊆ Γ2,

(ii) there is e0,r0 ∈ Γ so that

α(((e0,r0), (r0,e0)), (Υ(e0,r0), Υ(r0,e0))) ≥ 1,

α(((r0,e0), (e0,r0)), (Υ(r0,e0), Υ(e0,r0))) ≥ 1.

Also, suppose either

(iv) Υ is continuous, or

(v) {en},{rn} are two sequences in Γ so that

α((en+1,rn+1), (en,rn)) ≥ 1,

α((rn,en), (rn+1,en+1)) ≥ 1.

for all n ∈ N∪{0}, and en → e,rn → r as n →∞, e,r ∈ Γ, we have

α((e,r), (en,rn)) ≥ 1,

α((rn,en), (r,e)) ≥ 1.

Then Υ has a (ccp).

3. An important application

This part is very important in this paper, where the existence solution to a (nie) using Corollary 2.1 is

presented.

Here, we refers to χ by the class functions κ : [0,∞) → [0,∞) so that κ is an increasing function and

there is ψ ∈ Ψ, φ ∈ Φ, and f ∈ C such that κ(κ) = 1
2
f(ψ(κ),φ(κ)) for all κ ∈ [0,∞). Assume the problem

below:

(3.1) j($) =

v∫
u

(a1($,`) + a2($,`)) (k1(`,j(`)) + k2(`,j(`))) d`,

for all $ ∈ [u,v]. Suppose that a1,a2,k1,k2 are continuous functions which satisfy the hypotheses below:



Int. J. Anal. Appl. 18 (6) (2020) 1103

(i) for all $,` ∈ [u,v], a1($,`),a2($,`) ≥ 0,

(ii) for all y,z ∈ R with y ≥ z, there is f,U so that

0 ≤ k1(`,y) −k1(`,z) ≤ fκ(y −z),

0 ≤ k2(`,y) −k2(`,z) ≤Uκ(y −z),

(iii) we get

max{f2,U2}


 sup$∈[u,v]

v∫
u

(a1($,`) + a2($,`))d`




2

≤ 1.

To discuss the existence of a unique solution of the problem (3.1), we formulate the theorem below:

Theorem 3.1. Under the assumptions (i)-(iii) with a1,a2 ∈ C([u,v]× [u,v],R) and k1,k2 ∈ C([u,v]×R×

R), the problem (3.1) has a solution in C([u,v],R).

Proof. Let Γ = C([u,v],R) be the set of real continuous functions on [u,v] endowed with the distance

νb(e,r) = sup
$∈[u,v]

(|e($) −r($)|)2 , ∀e,r ∈ Γ.

It’s obvious that, the pair (Γ,νb) is a complete b−ms with a coefficient s = 2.

Define mappings Υ : Γ × Γ → Γ and α : Γ2 × Γ2 → R+ by

Υ(e,r)($) =

v∫
u

a1($,`) (k1(`,e(`)) + k2(`,r(`))) d`

+

q∫
p

a2($,`) (k1(`,e(`)) + k2(`,r(`))) d`,

and

α ((e,r), (µ,κ)) =


 1, e ≥ µ, r ≤ κ0, otherwise .

for all $ ∈ [u,v], (e,r), (µ,κ) ∈ Γ2. If the mapping Υ has a (ccp) in Γ, then it is a solution of the problem

(3.1).

Since, for each e,r,µ,κ ∈ Γ, α [((e,r) , (r,e)) , (I (µ,κ) ,I (κ,µ))] = 1 and

α [(Υ (e,r) , Υ (r,e)) , (Υ (µ,κ) , Υ (κ,µ))] = 1,

we conclude that Υ is a generalized α−admissible w.r.t. I and by the continuity of a1,a2,k1, and k2, we

have Υ is a continuous mapping. Also, for any two sequences {en} and {rn} in Γ, suppose that

lim
n→∞

νb (Υ [I (en) ,I (rn)] ,I [Υ (en,rn) , Υ (rn,en)]) = 0,

lim
n→∞

νb (Υ [I (rn) ,I (en)] ,I [Υ (rn,en) , Υ (en,rn)]) = 0.



Int. J. Anal. Appl. 18 (6) (2020) 1104

Thus, we have

lim
n→∞

Υ (en,rn) = lim
n→∞

Ien = lim
n→∞

en, lim
n→∞

Υ (rn,en) = lim
n→∞

rn.

Therefore, the pair (Υ,I) is generalized compatible. Again, it follows from the definition of α that if

α [(I (e) ,I (r)) , (I (µ) ,I (κ))] = α (e,r,µ,κ) = 1,

this implies that

α [(Υ (e,r) , Υ (r,e)) , (Υ (µ,κ) , Υ (κ,µ))] = 1,

and

(3.2) α [(e,r) , (Υ (e,r) , Υ (r,e))] ×α [(µ,κ) , (Υ (µ,κ) , Υ (κ,µ))] = 1.

Now we are going to verify the hypothesis (2.43) of Corollary 2.1, for all e,r,µ,κ ∈ Γ,

νb (Υ(e,r), Υ(µ,κ))

= sup
$∈[u,v]

(|Υ(e,r)($) − Υ(µ,κ)($)|)2

= sup
$∈[u,v]




∣∣∣∣ v∫
u

a1($,`) (k1(`,e(`)) + k2(`,r(`))) d` +
v∫
u

a2($,`) (k1(`,e(`)) + k2(`,r(`))) d`

−
v∫
u

a1($,`) (k1(`,µ(`)) + k2(`,κ(`))) d`−
v∫
u

a2($,`) (k1(`,µ(`)) + k2(`,κ(`))) d`
∣∣∣∣



2

= sup
$∈[u,v]




∣∣∣∣ v∫
u

a1($,`) [(k1(`,e(`)) −k1(`,µ(`))) + (k2(`,r(`)) −k2(`,κ(`)))] d`

+
v∫
u

a2($,`) [(k1(`,e(`)) −k1(`,µ(`))) + (k2(`,r(`)) −k2(`,κ(`)))] d`
∣∣∣∣



2

.

Applying assumption (ii), one can get

νb (Υ(e,r), Υ(µ,κ))

≤ sup
$∈[u,v]




∣∣∣∣ v∫
u

a1($,`) [fκ(e(`) −µ(`))) + Uκ(r(`) −κ(`))] d`

+
v∫
u

a2($,`) [fκ(e(`) −µ(`))) + Uκ(r(`) −κ(`))] d`
∣∣∣∣



2

≤ max{f2,U2}×

sup
$∈[u,v]



∣∣∣∣∣∣
v∫
u

(a1($,`) + a2($,`)) [κ(|e(`) −µ(`)|) + κ(|r(`) −κ(`)|)] d`

∣∣∣∣∣∣

2 .(3.3)

By using the definition of κ and the distance νb, we have

(3.4) κ |e(`) −µ(`)|2 ≤ κνb(e,µ) and κ |r(`) −κ(`)|
2 ≤ κνb(r,κ), ∀$ ∈ [u,v].



Int. J. Anal. Appl. 18 (6) (2020) 1105

It follows from (3.3), (3.4) and assumption (iii) that

νb (Υ(e,r), Υ(µ,κ))

≤ max{f2,U2}× [κ2νb(e,µ) + κ2νb(r,κ)] ×


 sup$∈[u,v]

v∫
u

(a1($,`) + a2($,`)) d`




2

≤ κ2νb(e,µ) + κ2νb(r,κ)

= 2π2
(
νb(e,µ) + νb(r,κ)

2

)
≤ 2 ×

1

4
f

(
ψ

(
νb(e,µ) + νb(r,κ)

2

)
,φ

(
νb(e,µ) + νb(r,κ)

2

))
=

1

2
f

(
ψ

(
νb(e,µ) + νb(r,κ)

2

)
,φ

(
νb(e,µ) + νb(r,κ)

2

))
.

Thus, for all e,r,µ,κ ∈ Γ, we

21νb (Υ(e,r), Υ(µ,κ)) ≤ f
(
ψ

(
νb(e,µ) + νb(r,κ)

2

)
,φ

(
νb(e,µ) + νb(r,κ)

2

))
.

Add ρ > 0 to the both sides, we have

(
21νb (Υ(e,r), Υ(µ,κ)) + ρ

)
≤ f

(
ψ

(
νb(e,µ) + νb(r,κ)

2

)
,φ

(
νb(e,µ) + νb(r,κ)

2

))
+ ρ.

Put ψ(κ) = κ, for all κ ∈ [0,∞), s = 2, σ = 1, and using (3.2), we get

ψ(sσνb (Υ(e,r), Υ(µ,κ)) + ρ)
α[(e,r),(Υ(e,r),Υ(r,e))]×α[(µ,κ),(Υ(µ,κ),Υ(κ,µ))]

≤ f
(
ψ

(
νb(e,µ) + νb(r,κ)

2

)
,φ

(
νb(e,µ) + νb(r,κ)

2

))
+ ρ.

Therefore all stipulations of Corollary 2.1 are fulfilled. Then the mapping Υ has a (ccp) which is a solution

of the system (3.1) in Γ. �

Availability of data and material: Not applicable.

Funding: This work was supported in part by the Basque Government under Grant IT1207-19.

Author Contributions: All authors contributed equally and significantly in writing this article. All

authors read and approved the final manuscript.

Acknowledgments: The authors are grateful to the Spanish Government and the European Commission

for Grant IT1207-19.

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication

of this paper.

References

[1] M. Berzig, S. Chandok, M.S. Khan, Generalized Krasnoselskii fixed point theorem involving auxiliary functions in bimetric

spaces and application to two-point boundary value problem, Appl. Math. Comput. 248 (2014), 323–327.



Int. J. Anal. Appl. 18 (6) (2020) 1106

[2] D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in manger PM-spaces with application to Volterra type

integral equation, Appl. Math. Comput. 232 (2014), 955–967.

[3] Z. Liu, X. Li, S.M. Kang, S.Y. Cho, Fixed point theorems for mappings satisfying contractive condition of integral type

and applications, Fixed Point Theory Appl. 2011 (2011), 64.

[4] H.K. Pathak, M.S. Khan, R. Tiwari, A common fixed point theorem and its application to nonlinear integral equations,

Comput. Math. Appl. 53 (2007), 961–971.

[5] H.A. Hammad, M. De la Sen, A Solution of Fredholm integral equation by using the cyclic r
q
s -rational contractive mappings

technique in b−metric-like spaces, Symmetry, 11 (2019), 1184.

[6] H. A. Hammad, M. De la Sen, Solution of nonlinear integral equation via fixed point of cyclic α
q
s−rational contraction

mappings in metric-like spaces, Bull. Braz. Math. Soc. New Ser. 51 (2020), 81-105.

[7] N. Shahzad, O. Valero, M.A. Alghamdi, A fixed point theorem in partial quasi-metric spaces and an application to software

engineering, Appl. Math. Comput. 268 (2015), 1292–1301.

[8] N.Hussain, M.A. Taoudi, Krasnoselskii-type fixed point theorems with applications to Volterra integral equations, Fixed

Point Theory Appl. 2013, (2013), 196.

[9] I.A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal. 30 (1989) 26-37.

[10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5-11.

[11] A. Aghajani, M. Abbas, J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered

b-metric spaces, Math. Slovaca, 64 (4) (2014), 941-960.

[12] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory

Appl. 19 (2017), 2153-2163.

[13] M. Shah, S. Simic, N. Hussain, A. Sretenovic, S. Radenović, Common fixed points theorems for occasionally weakly

compatible pairs on cone metric type spaces, J. Comput. Anal. Appl. 14 (2012), 290-297.

[14] N. Hussain, M. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl. 62 (2011), 1677-1684.

[15] M. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., Theory Meth. Appl. 73 (2010),

3123-3129.

[16] S. Radenović, K. Zoto, N. Dedović, V. Šešum-Cavic, A. Ansari, Bhaskar-Guo-Lakshmikantam-Ćirić type results via new

functions with applications to integral equations, Appl. Math. Comput. 357 (2019), 75-87.

[17] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., Theory Meth.

Appl. 11 (1987), 623-632.

[18] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear

Anal., Theory Meth. Appl. 65 (2006), 1379-1393.

[19] M. Abbas, M.A. Khan, S. Radenović, Common coupled fixed point theorems in cone metric spaces for w-compatible

mappings, Appl. Math. Comput. 217 (2010), 195-202.

[20] H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ,φ)−weakly contractive mappings in ordered

G-metric spaces, Comput. Math. Appl. 63 (2012), 298-309.

[21] V. Berinde, Coupled fixed point theorems for contractive mixed monotone mappings in partially ordered metric spaces,

Nonlinear Anal., Theory Meth. Appl. 75 (2012), 3218-3228.

[22] B.S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Model. 54 (2011),

73-79.

[23] H.A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear

integral equations, Mathematics, 7 (2019), 634.



Int. J. Anal. Appl. 18 (6) (2020) 1107

[24] H.A. Hammad, D.M. Albaqeri, R.A. Rashwan, Coupled coincidence point technique and its application for solving nonlinear

integral equations in RPOCbML spaces, J. Egypt. Math. Soc. 28 (2020), 8.

[25] N. Hussain, M. Abbas, A. Azam, J. Ahmad, Coupled coincidence point results for a generalized compatible pair with

applications, Fixed Point Theory Appl. 2014 (2014), 62.

[26] H.A. Hammad, H. Aydi, M. De la Sen, Generalized dynamic process for an extended multi-valued F-contraction in metric-

like spaces with applications, Alex. Eng. J. 59 (2020), 3817–3825.

[27] V. Lakshmikantham, Lj. B. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric

spaces, Nonlinear Anal. Theory Methods Appl. 70, (2009), 4341-4349.

[28] H. Alsulami, S. Gulyaz, E. Karapinar, I.M. Erhan, Fixed point theorems for a class of α− admissible contractions and

applications to boundary value problem, Abstr. Appl. Anal. 2014 (2014), Article ID 187031.

[29] A.H. Ansari, S. Chandok, C. Ionescu, Fixed point theorems on b-metric spaces for weak contractions with auxiliary

functions, J. Inequal. Appl. 2014 (2014), 429.


	1. Introduction and elementary discussions
	2. Main results
	3. An important application
	References