Int. J. Anal. Appl. (2022), 20:23 Received: Feb. 14, 2022. 2010 Mathematics Subject Classification. 65C20. Key words and phrases. bounded model; mathematical statistics; probability model; entropy; simulation; unit interval data. https://doi.org/10.28924/2291-8639-20-2022-23 Β© 2022 the author(s) ISSN: 2291-8639 1 On Some Properties of a New Truncated Model With Applications to Lifetime Data Muhammad Zeshan Arshad1, Oluwafemi Samson Balogun2,*, Muhammad Zafar Iqbal1, Pelumi E. Oguntunde3 1Department of Mathematics and Statistics, University of Agriculture, Faisalabad, Pakistan 2School of Computing, University of Eastern Finland, Kuopio, Northern Europe, 70211, Finland 3Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria *Corresponding author: samson.balogun@uef.fi ABSTRACT. This research explored the exponentiated left truncated power distribution which is a bounded model. Various statistical properties which include the moments and their associated measures, Bonferroni and Lorenz curves, reliability measures, shapes, quantile function, entropy, and order statistics were discussed in detail. A simulation study was provided and applications to two real-world data were considered. The performance of the exponentiated left truncated power distribution over other bounded models like Topp- Leone distribution, Beta distribution, Kumaraswamy distribution, Lehmann type–I distribution, Lehmann type–II distribution, generalized power function, Weibull power function, and Mustapha type–II distribution is quite commendable. 1. Introduction Probability models play important roles in describing real-life events. They have been discussed in the past to model several real-time events so proficiently. The rainfall event was addressed by [1]. Pollution events were addressed by ([2], [3], [4]). Manifold dynamics of COVID-19 were addressed by ([5], [6]). Engineering issues were addressed by ([7], [8]), and several others. Some https://doi.org/10.28924/2291-8639-20-2022-23 2 Int. J. Anal. Appl. (2022), 20:23 probability models are bounded while some are unbounded. Unbounded distributions extend from negative infinity to positive infinity while bounded ones are confined to lie between two determined values. According to [9], probability models with unit intervals are useful in the area of biology, economics, engineering, and psychology among others. Examples of bounded models include the continuous uniform distribution, beta distribution, Kumaraswamy distribution by [10], [11], [12], [13], and several other notable ones. It is also worthy of note that some of these bounded probability models have been used to develop generalized families of distributions, examples include the Beta-G family of distributions by [14], Kumaraswamy-G family of distributions by [15], Topp-Leone G family of distributions by ([16], [17]), and so on. A quest to develop models that can adequately fit real-life events has led to the extension of the existing probability models. 1.1. Definition A random variable X is said to follow the ELTr-PF distribution if the associated cumulative distribution function (CDF) and corresponding probability density function (PDF) begin at k, and are given respectively by; πΉπΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = ( π‘₯π‘Ž βˆ’π‘˜π‘Ž 1βˆ’π‘˜π‘Ž ) 𝑏 ,π‘˜ < π‘₯ < 1,π‘Ž,𝑏 > 0, (1) π‘“πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 π‘₯ π‘Žβˆ’1(π‘₯π‘Ž βˆ’π‘˜π‘Ž)π‘βˆ’1 , (2) where π‘˜ < π‘₯ is a possible minimum assured life, and it can be defined as an unknown starting point at which age of some certain component/device initiates, and (π‘Ž,𝑏 > 0) are two shape parameters. However, if parameters b=1 and k=0, the model reduces to the baseline model (π‘₯π‘Ž). This research is aimed at extending the power function and introducing a new bounded probability model; the exponentiated left truncated power (ELTr-PF) function which can be used as an alternative to the existing ones because of its superior modeling capabilities. Its properties are identified, a simulation and real-life applications are provided. The rest of the paper is structured as follows; general mathematical properties of the ELTr-PF distribution including reliability measures are derived in Section 2, its miscellaneous measures are established in Section 3. The model parameters are estimated in Section 4 while a simulation experiment is performed in Section 5. Applications to real-world data sets are discussed in Section 6, and finally, the conclusion is reported in Section 7. 3 Int. J. Anal. Appl. (2022), 20:23 2. Mathematical Properties This section covers several mathematical properties of the exponentiated left truncated power distribution. 2.1. Useful representation Linear combination provides a much informal approach to discuss the CDF and PDF than the conventional integral computation when determining the mathematical properties. For this, the following binomial expansion is considered: (1βˆ’π‘¦)𝛽 = βˆ‘( 𝛽 𝑖 )(βˆ’1)𝑖𝑦𝑖 ∞ 𝑖=0 , |𝑦| < 1. Owing to Equations (1) and (2), infinite linear combinations (LC) of the ELTr-PF CDF becomes: πΉπΏπΆβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = 1 (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 𝑖 )(βˆ’1)π‘–π‘˜π‘Žπ‘–π‘₯π‘Ž(π‘βˆ’π‘–), ∞ 𝑖=0 (3) and the corresponding PDF is given as follows: π‘“πΏπΆβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 )(βˆ’1)π‘—π‘˜π‘Žπ‘—π‘₯π‘Ž(π‘βˆ’π‘—)βˆ’1. ∞ 𝑗=0 (4) 2.2. Moments with associated measures Moments play remarkable roles in the discussion of distribution theory in studying the significant characteristics of a probability distribution like the mean, variance, skewness, and kurtosis. Theorem 1. If X~ πΈπΏπ‘‡π‘Ÿ βˆ’π‘ƒπΉ(π‘₯;π‘˜,π‘Ž,𝑏), with π‘Ž,𝑏 > 0, and k < x, then the r-th ordinary moment (ΞΌ π‘Ÿ / ) of X is given by: πœ‡ π‘Ÿβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ / = π‘Žπ‘ (1βˆ’π‘˜ π‘Ž ) 𝑏 βˆ‘ ( π‘βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜ π‘Žπ‘— π‘Ÿ+π‘Ž(π‘βˆ’π‘—) (1βˆ’π‘˜ π‘Ÿ+π‘Ž(π‘βˆ’π‘—) ) . ∞ 𝑗=0 Proof πœ‡ π‘Ÿ / can be written directly following Equation (4) as follows: πœ‡ π‘Ÿβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ / = π‘Žπ‘ (1βˆ’π‘˜ π‘Ž ) 𝑏 ∫ π‘₯π‘Ÿ 1 π‘˜ π‘₯π‘Žβˆ’1(π‘₯π‘Ž βˆ’π‘˜ π‘Ž ) π‘βˆ’1 𝑑π‘₯, πœ‡ π‘Ÿβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ / = π‘Žπ‘ (1βˆ’π‘˜ π‘Ž ) 𝑏 βˆ‘ ( π‘βˆ’1 𝑗 )(βˆ’1)π‘—π‘˜ π‘Žπ‘— ∫ π‘₯π‘Ÿ+π‘Ž(π‘βˆ’π‘—)βˆ’1 1 π‘˜ 𝑑π‘₯ ∞ 𝑗=0 . 4 Int. J. Anal. Appl. (2022), 20:23 Further, by solving the simple integral computation, it leads to the final form of the r-th ordinary moment, and it is given by: πœ‡ π‘Ÿβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ / = π‘Žπ‘ (1βˆ’π‘˜ π‘Ž ) 𝑏 βˆ‘ ( π‘βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜ π‘Žπ‘— π‘Ÿ+π‘Ž(π‘βˆ’π‘—) (1βˆ’π‘˜ π‘Ÿ+π‘Ž(π‘βˆ’π‘—) ) ∞ 𝑗=0 . (5) The expression in Equation (5) is quite impressive and useful in the development of several statistical measures. For instance, to obtain the mean of X, substitute r = 1 in Equation (5) as follows: πœ‡ 1βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ / = π‘Žπ‘ (1βˆ’π‘˜ π‘Ž ) 𝑏 βˆ‘ ( π‘βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜ π‘Žπ‘— 1+π‘Ž(π‘βˆ’π‘—) (1βˆ’π‘˜ 1+π‘Ž(π‘βˆ’π‘—) ) ∞ 𝑗=0 . (6) One may perhaps further determine the well-established statistics such as skewness (𝛽1 = πœ‡3 2 πœ‡2 3⁄ ), and kurtosis (𝛽2 = πœ‡4 πœ‡2 2⁄ ), of X by integrating Equation (6). A well-established relationship between the central moments (πœ‡π‘ ) and cumulants (𝐾𝑠) of X may easily be defined by ordinary moments πœ‡π‘  = βˆ‘ ( 𝑠 π‘˜ )(βˆ’1)π‘˜ (πœ‡1 / ) 𝑠 πœ‡π‘ βˆ’π‘˜ /𝑠 π‘˜=0 . Hence, the first four cumulants can be calculated by 𝐾1 = πœ‡1 / , 𝐾2 = πœ‡2 / βˆ’ πœ‡1 /2 , 𝐾3 = πœ‡3 / βˆ’3πœ‡2 / πœ‡1 / +2πœ‡1 /3 , and 𝐾4 = πœ‡4 / βˆ’4πœ‡3 / πœ‡1 / βˆ’3πœ‡2 /2 +12πœ‡2 / πœ‡1 /2 βˆ’6πœ‡1 /4 , etc., respectively. Table 1 presents some numerical results of the first four ordinary moments (πœ‡/ 1 ,πœ‡/ 2 ,πœ‡/ 3 ,πœ‡/ 4 ), 𝜎2 = variance, 𝛽1 = skewness, and 𝛽2 = kurtosis for some choices of model parameters (k = 0.1) for the ELTr-PF distribution. Table 1. Some numerical results of moments, variance, skewness, and kurtosis. Statistics π‘Ž = 0.1,π‘˜ = 0.1 Remarks πœ‡/ π‘Ÿ 𝑏 = 1.2 𝑏 = 1.3 𝑏 = 1.4 𝑏 = 1.5 𝑏 = 1.6 πœ‡/ 1 0.4425 0.4586 0.4737 0.4880 0.5015 D e c re a si n g πœ‡/ 2 0.2607 0.2752 0.2890 0.3023 0.3151 πœ‡/ 3 0.1814 0.1931 0.2045 0.2155 0.2262 πœ‡/ 4 0.1386 0.1482 0.1576 0.1668 0.1758 𝜎2 0.0373 0.0314 0.0244 0.0165 0.0078 𝛽1 0.0016 0.0029 0.0031 0.0021 0.0008 Decreasing 𝛽2 0.1329 0.1266 0.1150 0.0971 0.0714 Decreasing 5 Int. J. Anal. Appl. (2022), 20:23 Table 2. Some numerical results of moments, variance, skewness, and kurtosis. Statistics 𝑏 = 1.5,π‘˜ = 0.1 𝑏 = 1.7,π‘˜ = 0.1 Remarks πœ‡/ π‘Ÿ π‘Ž = 0.1 π‘Ž = 0.2 π‘Ž = 0.01 π‘Ž = 0.03 π‘Ž = 0.05 πœ‡/ 1 0.4880 0.5063 0.4972 0.5009 0.5047 D e c re a si n g πœ‡/ 2 0.3023 0.3208 0.3101 0.3138 0.3177 πœ‡/ 3 0.2155 0.2317 0.2214 0.2247 0.2281 πœ‡/ 4 0.1668 0.1807 0.1714 0.1743 0.1772 𝜎2 0.0166 0.0046 0.0103 0.0079 0.0053 𝛽1 0.0022 0.0006 0.0008 0.0005 0.0004 Decreasing 𝛽2 0.0971 0.0645 0.0730 0.0671 0.0602 Decreasing Tables 1 and 2 illustrate decreasing behavior of the first four moments, variance, skewness, and kurtosis with some choices of model parameters. Moment generating function 𝑀𝑋(𝑑) can be defined as: 𝑀𝑋(𝑑) = βˆ‘ π‘‘π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 πœ‡π‘Ÿ / . Therefore, the moment generating function (mgf) of X is given by: π‘€π‘‹βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑑) = π‘Žπ‘ (1 βˆ’π‘˜π‘Ž)𝑏 βˆ‘ π‘‘π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— π‘Ÿ +π‘Ž(𝑏 βˆ’π‘—) (1βˆ’π‘˜π‘Ÿ+π‘Ž(π‘βˆ’π‘—)) ∞ 𝑗=0 . Characteristic function is defined as: βˆ…π‘‹(𝑑) = βˆ‘ (𝑖𝑑)π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 πœ‡ π‘Ÿ β€² . By following Equation (5), it is obtained as: βˆ…π‘‹βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑑) = π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ (𝑖𝑑)π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— π‘Ÿ +π‘Ž(𝑏 βˆ’π‘—) (1 βˆ’π‘˜π‘Ÿ+π‘Ž(π‘βˆ’π‘—)) ∞ 𝑗=0 . The factorial generating function of X is defined as: 𝐹π‘₯(𝑑) = 𝐸(1+𝑑) π‘₯ = 𝐸(𝑒π‘₯𝑙𝑛(1+𝑑)) = βˆ‘ (𝑙𝑛(1+𝑑)) π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 πœ‡π‘Ÿ β€² . By using Equation (5), it is obtained as: 𝐹π‘₯βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑑) = ( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ (𝑙𝑛(1+𝑑)) π‘Ÿ π‘Ÿ! ∞ π‘Ÿ=0 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— π‘Ÿ +π‘Ž(𝑏 βˆ’π‘—) (1βˆ’π‘˜π‘Ÿ+π‘Ž(π‘βˆ’π‘—)) ∞ 𝑗=0 ). 6 Int. J. Anal. Appl. (2022), 20:23 Negative moments of X, substitute r with – w in Equation (5) and it is given by: πœ‡βˆ’π‘€βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ β€² = π‘Žπ‘ (1 βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— π‘Ž(𝑏 βˆ’π‘—)βˆ’π‘€ (1βˆ’π‘˜π‘Ž(π‘βˆ’π‘—)βˆ’π‘€) ∞ 𝑗=0 . Furthermore, for fractional positive and fractional negative moments of X, substitute r with ( π‘š 𝑛 ) and (βˆ’ π‘š 𝑛 ) in Equation (6) respectively. In the theory of statistics, the Mellin transformation is famous as a distribution of the product as well as a quotient for independent random variables. The Mellin transformation is represented by 𝑀π‘₯(π‘š) = 𝐸(π‘₯ π‘šβˆ’1) = ∫ π‘₯π‘šβˆ’1𝑓(π‘₯)𝑑π‘₯ π‘˜ 1 . Mellin transformation of X is given by: 𝑀π‘₯βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘š) = π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— π‘Ž(𝑏 βˆ’π‘—)+π‘š βˆ’1 (1βˆ’π‘˜π‘Ž(π‘βˆ’π‘—)+π‘šβˆ’1) ∞ 𝑗=0 . 2.3. Incomplete moments The r – th lower incomplete moments of X is defined as: π›·π‘Ÿ(𝑑) = ∫ π‘₯ π‘Ÿπ‘“(π‘₯)𝑑π‘₯ 𝑑 π‘˜ , and it is given by: π›·π‘Ÿβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑑) = π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— π‘Ÿ +π‘Ž(𝑏 βˆ’π‘—) (π‘‘π‘Ÿ+π‘Ž(π‘βˆ’π‘—) βˆ’π‘˜π‘Ÿ+π‘Ž(π‘βˆ’π‘—)) ∞ 𝑗=0 . (7) The first incomplete moment can be obtained by substituting r = 1 in Equation (7) as follows: 𝛷1βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑑) = π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— 1 +π‘Ž(𝑏 βˆ’π‘—) (𝑑1+π‘Ž(π‘βˆ’π‘—) βˆ’π‘˜1+π‘Ž(π‘βˆ’π‘—)) ∞ 𝑗=0 . (8) The residual life function is the probability that a component whose life says x, will survive in an additional interval at t. It is given by: 𝑅(𝑑 π‘₯⁄ ) = 𝑆(π‘₯ +𝑑) 𝑆(𝑑) . Therefore, the residual life function of X is: 𝑆𝑅(𝑑)βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ( 𝑑 π‘₯⁄ ) = (1βˆ’π‘˜π‘Ž)𝑏 βˆ’((π‘₯ +𝑑)π‘Ž βˆ’π‘˜π‘Ž)𝑏 (1βˆ’π‘˜π‘Ž)𝑏 βˆ’(π‘‘π‘Ž βˆ’π‘˜π‘Ž)𝑏 , π‘₯ > 0. The reverse residual life is obtained by 𝑆�̅�(𝑑)βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπ‘œπ‘€( 𝑑 π‘₯⁄ ) = 𝑆(π‘₯βˆ’π‘‘) 𝑆(𝑑) . The reverse residual life function of X is therefore given by: 𝑆�̅�(𝑑)βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ( 𝑑 π‘₯⁄ ) = (1βˆ’π‘˜π‘Ž)𝑏 βˆ’((π‘₯ βˆ’π‘‘)π‘Ž βˆ’π‘˜π‘Ž)𝑏 (1βˆ’π‘˜π‘Ž)𝑏 βˆ’(π‘‘π‘Ž βˆ’π‘˜π‘Ž)𝑏 , π‘₯ > 0. Mean residual life (MRL) function is defined as 1βˆ’π›·1(𝑑) 𝑆(𝑑)βˆ’π‘‘ . It is obtained for X as 7 Int. J. Anal. Appl. (2022), 20:23 MRL = 1βˆ’ π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— 1+π‘Ž(π‘βˆ’π‘—) (𝑑1+π‘Ž(π‘βˆ’π‘—) βˆ’π‘˜1+π‘Ž(π‘βˆ’π‘—)) βˆžπ‘—=0 𝑆(𝑑) βˆ’π‘‘ . Mean inactivity time (MIT) is defined as 𝑑 βˆ’ 𝛷1(𝑑) 𝑃(𝑑) . It is obtained for X as MRL = 𝑑 βˆ’ 1 𝑃(𝑑) ( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— 1+π‘Ž(𝑏 βˆ’π‘—) (𝑑1+π‘Ž(π‘βˆ’π‘—) βˆ’π‘˜1+π‘Ž(π‘βˆ’π‘—)) ∞ 𝑗=0 ) Vitality function is defined as 𝑉(π‘₯) = 1 𝑆(π‘₯) ∫ π‘₯𝑓(π‘₯)𝑑π‘₯ 1 π‘₯ . It is obtained for X as 𝑉(π‘₯) = 1 1βˆ’πΉ(π‘₯) ( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— 1+π‘Ž(𝑏 βˆ’π‘—) (1βˆ’π‘₯1+π‘Ž(π‘βˆ’π‘—)) ∞ 𝑗=0 ). The conditional moments are defined as𝐸(π‘₯π‘Ÿ|π‘₯ > 𝑑) = 1 οΏ½Μ…οΏ½(𝑑) ∫ π‘₯π‘Ÿπ‘“(π‘₯)𝑑π‘₯ 1 𝑑 . It is obtained for X as 𝐸(π‘₯π‘Ÿ|π‘₯ > 𝑑) = 1 1βˆ’π‘ƒ(𝑑) ( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— π‘Ÿ +π‘Ž(𝑏 βˆ’π‘—) (1βˆ’π‘‘π‘Ÿ+π‘Ž(π‘βˆ’π‘—)) ∞ 𝑗=0 ) 2.4. Bonferroni and Lorenz curves The Bonferroni 𝐡(π‘₯) and Lorenz 𝐿(π‘₯) curves are important not only in the study of economics, the distribution of income, poverty, or wealth, but they play a vital role in the fields of insurance, demography, medicine, reliability, and others. These curves are defined respectively by: 𝐡(π‘₯) = ∫ π‘₯𝑓(π‘₯)𝑑π‘₯ 𝑑 0 πœ‡1 / , 𝐿(π‘₯) = 𝐡(π‘₯) 𝐹(π‘₯) , Lorenz curve 𝐿(π‘₯) πΏπΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑑) = βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— 1+π‘Ž(π‘βˆ’π‘—) (𝑑1+π‘Ž(π‘βˆ’π‘—) βˆ’π‘˜1+π‘Ž(π‘βˆ’π‘—)) βˆžπ‘—=0 βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— 1+π‘Ž(π‘βˆ’π‘—) (1βˆ’π‘˜1+π‘Ž(π‘βˆ’π‘—)) βˆžπ‘—=0 , (9) and Bonferroni curve 𝐡(π‘₯) are given by: π΅πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑑) = βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— 1+π‘Ž(π‘βˆ’π‘—) (𝑑1+π‘Ž(π‘βˆ’π‘—) βˆ’π‘˜1+π‘Ž(π‘βˆ’π‘—)) βˆžπ‘—=0 (( π‘₯π‘Žβˆ’π‘˜π‘Ž 1βˆ’π‘˜π‘Ž ) 𝑏 )βˆ‘ ( 𝑏 βˆ’1 𝑗 ) (βˆ’1)π‘—π‘˜π‘Žπ‘— 1+π‘Ž(π‘βˆ’π‘—) (1βˆ’π‘˜1+π‘Ž(π‘βˆ’π‘—)) βˆžπ‘—=0 . 2.5.Reliability measures The survival function is defined as the probability that a component will survive till time x. Analytically, it is defined as: 𝑆(π‘₯) = 1βˆ’πΉ(π‘₯). The survival function of X is therefore given by: 8 Int. J. Anal. Appl. (2022), 20:23 π‘†πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = 1βˆ’( π‘₯π‘Ž βˆ’π‘˜π‘Ž 1βˆ’π‘˜π‘Ž ) 𝑏 . The hazard rate function (HRF) is defined as measuring the failure rate of a component in a particular time x. Mathematically, it is defined as: β„Ž(π‘₯) = 𝑓(π‘₯) 𝑆(π‘₯)⁄ . Hence, the hazard rate function of X is given by: β„ŽπΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = π‘Žπ‘π‘₯π‘Žβˆ’1(π‘₯π‘Ž βˆ’π‘˜π‘Ž)π‘βˆ’1 (1 βˆ’π‘˜π‘Ž)𝑏 βˆ’(π‘₯π‘Ž βˆ’π‘˜π‘Ž)𝑏 . Further, several notable reliability measures may be derived for X such as the reversed hazard rate function. It is defined as: β„Žπ‘Ÿ(π‘₯) = 𝑓(π‘₯) 𝐹(π‘₯)⁄ . The reversed hazard rate function of X is given by: β„Žπ‘Ÿβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = π‘Žπ‘π‘₯π‘Žβˆ’1 (π‘₯π‘Ž βˆ’π‘˜π‘Ž) . The Mills ratio is defined as 𝑀(π‘₯) = 𝑆(π‘₯) 𝑓(π‘₯)⁄ . Hence, the Mills ratio of X is given by: π‘€πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = (1βˆ’π‘˜π‘Ž)𝑏 βˆ’(π‘₯π‘Ž βˆ’π‘˜π‘Ž)𝑏 π‘Žπ‘π‘₯π‘Žβˆ’1(π‘₯π‘Ž βˆ’π‘˜π‘Ž)π‘βˆ’1 . The Odd function is defined as 𝑂(π‘₯) = 𝐹(π‘₯) 𝑆(π‘₯)⁄ . Therefore, the Odd function of X is given by: π‘‚πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘₯;π‘Ž,𝑏) = ( π‘₯π‘Ž βˆ’π‘˜π‘Ž 1βˆ’π‘˜π‘Ž ) βˆ’π‘ βˆ’1. 3. Miscellaneous measures This section covers several measures including limiting behavior, shapes of density and hazard rate functions, quantile function, entropy measures, and distribution of order statistics, bivariate, and multivariate extensions for ELTr-PF distribution. 3.1.Limiting behavior The limiting behavior of the CDF, PDF, and HRF of X for x β†’ π‘˜ and x β†’ 1 is discussed in propositions 1 and 2. Proposition 1. Limiting behaviors of the CDF, PDF, and HRF of X for x β†’ π‘˜ are given respectively by: πΉπΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ (π‘˜)~0, π‘“πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(π‘˜)~0, β„ŽπΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ (π‘˜)~0. 9 Int. J. Anal. Appl. (2022), 20:23 Proposition 2. Limiting behaviors of the CDF, PDF, and HRF of X for x β†’ 1 are given respectively by: πΉπΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ (1)~1, π‘“πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ (1)~ π‘Žπ‘ (1βˆ’π‘˜π‘Ž) , β„ŽπΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ (1)~πΌπ‘›π‘‘π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘Žπ‘‘π‘’. 3.2.Shapes of density and hazard rate functions Different curves of PDF and HRF of X are presented in Figures 1 and 2, for different choices of model parameters. Note that in Figure 1, curves of the PDF present some possible shapes including increasing, upside-down increasing, and decreasing. However, possible shapes of the HRF in Figure 2 present increasing and bathtub-shaped. (a) (b) Figure 1. Plots of PDF (a) and HRF (b) for ELTr-PF distribution. 3.3.Quantile function The concept of quantile function was introduced by [18]. The qth quantile function of the ELTr-PF distribution is obtained by inverting the CDF in Equation (1). It is defined by: π‘ž = 𝐹(π‘₯π‘ž) = 𝑃(𝑋 ≀ π‘₯π‘ž), π‘ž ∈ (0,1). Then, the quantile function of X is given by: π‘₯π‘žβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ = (π‘˜ π‘Ž +(1βˆ’π‘˜π‘Ž)π‘ž 1 𝛽⁄ ) 1 𝛼⁄ . (10) To derive the 1st quartile, median and 3rd quartile of X, one may place q = 0.25, 0.5, and 0.75 respectively in Equation (10). Henceforth, to generate random numbers, one may assume that the expression in Equation (10) follows to uniform distribution u= U (0, 1). 10 Int. J. Anal. Appl. (2022), 20:23 3.4.Entropy measures This subsection covers several well-known entropy measures addressed by ([19], [20], [21], [22], [23], [24]). The entropy of r.v. X is a measure of uncertainty. The RΓ©nyi entropy of X is defined by: 𝐼𝛿(𝑋) = 1 1 βˆ’π›Ώ π‘™π‘œgβˆ«π‘“π›Ώ(π‘₯)𝑑π‘₯ 1 π‘˜ , 𝛿 > 0 π‘Žπ‘›π‘‘π›Ώ β‰  1. (11) First, π‘“πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπ‘œπ‘€(π‘₯) is simplified in terms of 𝑓 𝛿 πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπ‘œπ‘€ (π‘₯) by considering Equation (2) as: 𝑓𝛿 πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ (π‘₯) = ( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) 𝛿 π‘₯𝛿(π‘Žβˆ’1)(π‘₯π‘Ž βˆ’π‘˜π‘Ž)𝛿(π‘βˆ’1 ), by applying the binomial expansion, 𝑓𝛿 πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ (π‘₯) = ( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) 𝛿 βˆ‘( 𝛿(𝑏 βˆ’1) 𝑖 ) ∞ 𝑖=0 (βˆ’1)π‘–π‘˜π‘Žπ‘–π‘₯𝛿(π‘Žπ‘βˆ’1)βˆ’π‘Žπ‘–, and substituting this into Equation (11) gives the RΓ©nyi entropy of X as: πΌπ›Ώβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑋) = ( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) 𝛿 βˆ‘( 𝛿(𝑏 βˆ’1) 𝑖 ) ∞ 𝑖=0 (βˆ’1)π‘–π‘˜π‘Žπ‘– ∫π‘₯𝛿(π‘Žπ‘βˆ’1)βˆ’π‘Žπ‘–π‘‘π‘₯ 1 π‘˜ , hence, by integrating the last expression the reduced form of the RΓ©nyi entropy for X is obtained and it is given by: πΌπ›Ώβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ (𝑋) = ( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) 𝛿 π‘™π‘œgβˆ‘π΄π‘–,𝛿 1 πœ“π‘–,𝛿 (1βˆ’π‘˜πœ“π‘–,𝛿) ∞ 𝑖=0 , (12) where πœ“π‘–,𝛿 = 𝛿(π‘Žπ‘ βˆ’1)βˆ’π‘Žπ‘–, 𝐴𝑖,𝛿 = ( 𝛿(𝑏 βˆ’1) 𝑖 )(βˆ’1)π‘–π‘˜π‘Žπ‘–. A generalization of the Boltzmann-Gibbs entropy is the – entropy. Although in physics, it is referred to as the Tsallis entropy. Tsallis entropy / – entropy is defined by 𝐻 (𝑋) = 1 βˆ’1 (1βˆ’ βˆ«π‘“ (π‘₯)𝑑π‘₯ 1 π‘˜ ) , > 0 π‘Žπ‘›π‘‘ β‰  1. The Tsallis entropy of X is given by 𝐻 βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑋) = 1 βˆ’1 (1βˆ’( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) π‘™π‘œgβˆ‘π΄π‘–, 1 πœ“π‘–, (1βˆ’π‘˜πœ“π‘–, ) ∞ 𝑖=0 ), where πœ“π‘–, = (π‘Žπ‘ βˆ’1)βˆ’π‘Žπ‘–, 𝐴𝑖, = ( (𝑏 βˆ’1) 𝑖 )(βˆ’1)π‘–π‘˜π‘Žπ‘–. The Havrda and Charvat introduced πœ” βˆ’ entropy measure. It is defined by π»πœ”(𝑋) = 1 21βˆ’πœ” βˆ’1 (βˆ«π‘“πœ”(π‘₯)𝑑π‘₯ 1 π‘˜ βˆ’1) , πœ” > 0 π‘Žπ‘›π‘‘ πœ” β‰  1. 11 Int. J. Anal. Appl. (2022), 20:23 Havrda and Charvat entropy of X is given by π»πœ”βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑋) = 1 21βˆ’πœ” βˆ’1 ((( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) πœ” π‘™π‘œgβˆ‘π΄π‘–,πœ” 1 πœ“π‘–,πœ” (1βˆ’π‘˜πœ“π‘–,πœ”) ∞ 𝑖=0 )βˆ’1), where πœ“π‘–,πœ” = πœ”(π‘Žπ‘ βˆ’1)βˆ’π‘Žπ‘–, 𝐴𝑖,πœ” = ( πœ”(𝑏 βˆ’1) 𝑖 )(βˆ’1)π‘–π‘˜π‘Žπ‘–. Arimoto generalized the work of Havrda and Charvat by introducing βˆ’ entropy measure. It is defined by 𝐻 (𝑋) = 21βˆ’ βˆ’1 ( (βˆ«π‘“ (π‘₯)𝑑π‘₯ 1 π‘˜ ) 1 βˆ’1 ) , > 0 π‘Žπ‘›π‘‘ β‰  1. Arimoto entropy of X is given by 𝐻 βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑋) = 21βˆ’ βˆ’1 ( (( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) 1 π‘™π‘œgβˆ‘π΄ 𝑖, 1 1 πœ“ 𝑖, 1 (1βˆ’π‘˜ πœ“ 𝑖, 1 ) ∞ 𝑖=0 ) βˆ’1 ) , where πœ“ 𝑖, 1 = 1 (π‘Žπ‘ βˆ’1)βˆ’π‘Žπ‘–, 𝐴 𝑖, 1 = ( 1 (𝑏 βˆ’1) 𝑖 )(βˆ’1)π‘–π‘˜π‘Žπ‘–. Booker and Lubba developed the 𝜏 βˆ’ entropy measure. It is defined by 𝐻𝜏(𝑋) = 𝜏 𝜏 βˆ’1 ( 1βˆ’(βˆ«π‘“πœ (π‘₯)𝑑π‘₯ 1 π‘˜ ) 1 𝜏 ) , 𝜏 > 0 π‘Žπ‘›π‘‘ 𝜏 β‰  1. Boekee and Lubba entropy of X is given by π»πœβˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑋) = 𝜏 𝜏 βˆ’1 (1βˆ’(( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) 𝜏 π‘™π‘œgβˆ‘π΄π‘–,𝜏 1 πœ“π‘–,𝜏 (1βˆ’π‘˜πœ“π‘–,𝜏) ∞ 𝑖=0 ) 1 𝜏 ). where πœ“π‘–,𝜏 = 𝜏(π‘Žπ‘ βˆ’1)βˆ’π‘Žπ‘–, 𝐴𝑖,𝜏 = ( 𝜏(𝑏 βˆ’1) 𝑖 )(βˆ’1)π‘–π‘˜π‘Žπ‘–. Mathai and Haubold generalized the classical Shannon entropy is known as βˆ’ entropy. It is defined by 𝐻 (𝑋) = 1 βˆ’1 (βˆ«π‘“2βˆ’ (π‘₯)𝑑π‘₯ 1 π‘˜ βˆ’1) , > 0 π‘Žπ‘›π‘‘ β‰  1. Mathai and Haubold entropy of X is given by 𝐻 βˆ’πΈπΏπ‘‡π‘Ÿβˆ’π‘ƒπΉ(𝑋) = 1 βˆ’1 ((( π‘Žπ‘ (1βˆ’π‘˜π‘Ž)𝑏 ) 2βˆ’ π‘™π‘œgβˆ‘π΄π‘–,2βˆ’ 1 πœ“π‘–,2βˆ’ (1 βˆ’π‘˜πœ“π‘–,2βˆ’ ) ∞ 𝑖=0 )βˆ’1), 12 Int. J. Anal. Appl. (2022), 20:23 where πœ“π‘–,2βˆ’ = (2βˆ’ )(π‘Žπ‘ βˆ’1)βˆ’π‘Žπ‘–, 𝐴𝑖,2βˆ’ = ( (2βˆ’ )(𝑏 βˆ’1) 𝑖 )(βˆ’1)π‘–π‘˜π‘Žπ‘–. Table 3 presents the flexible behavior of the entropy measures for some choices of model parameters for S-I (𝒂 = 𝟏.𝟏,𝒃 = 𝟐.𝟏,π’Œ = 𝟎.𝟎𝟏), S-II(𝒂 = 𝟏.𝟏,𝒃 = 𝟏.πŸ“,π’Œ = 𝟎.πŸŽπŸπŸ“), and S-III(𝒂 = 𝟏.πŸ“,𝒃 = 𝟏.𝟏,π’Œ = 𝟎.πŸŽπŸ“). Table 3. Some numerical results of RΓ©nyi, Tsallis, Havrda and Charvat, Arimoto, Boekee and Lubba, Mathai and Haubold entropy measures. Entropy Int. S-I S-II S-III RΓ©nyi 𝛿 = 1.1 4.8902 1.3591 0.4750 𝛿 = 1.5 1.3337 0.3706 0.1295 𝛿 = 1.7 1.0796 0.3000 0.1048 𝛿 = 1.9 0.9385 0.2608 0.0911 Tsallis = 1.1 0.3634 0.1047 0.0323 = 1.5 0.1500 0.0431 -0.0070 = 1.7 0.0780 0.0181 -0.0248 = 1.9 0.0174 -0.0044 -0.0417 Havrda and Charvat πœ” = 1.1 0.0028 0.0019 0.0045 πœ” = 1.5 0.0820 0.0389 0.0554 πœ” = 1.7 0.1887 0.0851 0.1109 πœ” = 1.9 0.3680 0.1601 0.1969 Arimoto = 1.1 0.0039 0.0010 0.0004 = 1.5 0.3128 0.0529 0.0213 = 1.7 1.5767 0.1481 0.0596 = 1.9 85.315 0.3558 0.1333 Boekee and Lubba 𝜏 = 1.1 0.3701 0.1063 0.0333 𝜏 = 1.5 0.2238 0.0665 0.0087 𝜏 = 1.7 0.1871 0.0552 0.0012 𝜏 = 1.9 0.1606 0.0466 -0.0045 Mathai and Haubold = 1.1 -0.1569 0.0401 0.3761 = 1.5 -0.1500 -0.0431 0.0070 = 1.7 -0.1031 -0.0306 -0.0051 = 1.9 -0.0403 -0.0116 -0.0035 13 Int. J. Anal. Appl. (2022), 20:23 Table 3 presents’ versatile behavior of entropy measures for different parametric values. Note that the RΓ©nyi entropy is decreasing, Tsallis entropy is decreasing, Havrda and Charvat entropy is increasing, Arimoto entropy is increasing, Boekee and Lubba entropy is decreasing, and Mathai and Haubold's entropy is decreasing. 3.5.Distribution of order statistics This subsection covers i-th order statistics PDF, minimum order statistics PDF, maximum order statistics PDF, order statistics CDF, median order statistics PDF, and Joint order statistics PDF. In reliability analysis and life testing of a component in quality control, OS has a noteworthy contribution. Let X1 , X2 , X3 , ..., Xn be a random sample of size n which follows the ELTr-PF distribution and {X(1) < X(2) 0, 0 < x < 1 [25] L-II 𝐺𝐼𝐼(π‘₯) = 1βˆ’(1βˆ’π‘₯) π‘Ž Beta 𝐺𝐼𝐼𝐼(π‘₯) = 𝐼π‘₯(π‘Ž,𝑏) π‘Ž,𝑏 > 0 0 < x < 1 Topp-Leone 𝐺𝐼𝑉(π‘₯) = (2π‘₯ βˆ’π‘₯ 2)π‘Ž π‘Ž > 0, 0 < x < 1 [11] Kum 𝐺𝑉(π‘₯) = 1 βˆ’(1 βˆ’π‘₯ π‘Ž )𝑏 π‘Ž,𝑏 > 0, 0 < x < 1 [10] GPF 𝐺𝑉𝐼(π‘₯) = 1βˆ’(gβˆ’π‘₯) π‘Ž(gβˆ’π‘˜)βˆ’π‘Ž π‘Ž > 0 π‘˜ < π‘₯ < g [26] WPF 𝐺𝑉𝐼𝐼(π‘₯) = 1βˆ’ 𝑒 βˆ’π‘Ž( π‘₯𝑏 gπ‘βˆ’π‘₯𝑏 ) 𝑐 π‘Ž,𝑏,𝑐 > 0 0 < π‘₯ < g [27] MT-II 𝐺𝑉𝐼𝐼𝐼(π‘₯) = 𝑒 π‘₯π‘Žlog2 βˆ’1 π‘Ž > 0, 0 < x < 1 [28] Lehmann Type–I =L–I, Lehmann Type–II =L–II, Kumaraswamy=Kum, Generalized Power Function=GPF, Weibull Power Function=WPF, Mustapha Type–II = MT-II. 6.1. Application 1 The first data set relates to 30 measurements of tensile strength of polyester fibers discussed by [29]. The parameter estimates with standard errors (in parenthesis) and goodness of fit statistics are obtained and illustrated in Table 7. https://www.r-project.org/ 19 Int. J. Anal. Appl. (2022), 20:23 Table 7. Parameter estimates, standard errors (in parenthesis), and goodness of fit statistics for tensile strength of polyester fibers data. Model Parameter estimates (Standard errors) Statistics οΏ½Μ‚οΏ½ οΏ½Μ‚οΏ½ οΏ½Μ‚οΏ½ AIC BIC CM AD KS P-value ELTr-PF 0.2169 (0.4352) 1.4096 (0.7666) - -5.3369 -2.5345 0.0097 0.0791 0.0474 1.0000 WPF 3.0299 (2.2330) 1.3464 (0.9412) 0.7957 (0.373) 0.2444 4.4480 0.0174 0.1382 0.0611 0.9995 Kum 0.9627 (0.2017) 1.6081 (0.4135) - -2.6221 0.1803 0.0183 0.1550 0.0650 0.9987 Top-Leon 1.1091 (0.2024) - - -3.8078 -2.4066 0.0189 0.1600 0.0665 0.9981 Beta 0.9666 (0.2237) 1.6204 (0.4106) - -2.6101 0.1923 0.0184 0.1559 0.0669 0.9979 L-II 1.6624 (0.3035) - - -4.5885 -3.1873 0.0184 0.1558 0.0740 0.9924 L-I 0.7254 (0.1324) - - -1.4495 -0.0483 0.0168 0.1425 0.1374 0.5754 MT-II 0.5847 (0.1176) - - 0.4176 1.8188 0.0212 0.1788 0.1555 0.4201 The minimum goodness of fit statistics is the criteria of a better fit model which the ELTr-PF distribution eventually satisfies. Hence, this research supports that the ELTr-PF distribution provides a better fit than its competitors. Furthermore, the curves of fitted density (a) Kaplan-Meier survival (b), and Probability-Probability (PP) (c) plots are presented in Figure 2. (a) (b) (c) Figure 2. Fitted plots for 30 measurements of tensile strength of polyester fibers data. 20 Int. J. Anal. Appl. (2022), 20:23 6.2. Application 2 The second data set represents the failure times of 20 mechanical components studied by [30]. The parameter estimates with standard errors (in parenthesis) and goodness of fit statistics are obtained and illustrated in Table 8. Table 8. Parameter estimates, standard errors (in parenthesis), and goodness of fit statistics for the mechanical components data. Model Parameter estimates (Standard errors) statistics οΏ½Μ‚οΏ½ οΏ½Μ‚οΏ½ οΏ½Μ‚οΏ½ AIC BIC CM AD KS P-value ELTr-PF -2.9668 (0.7335) 2.3598 (0.8327) - -74.6350 -72.6435 0.0488 0.3594 0.1054 0.9794 Beta 3.1119 (0.9365) 21.8184 (7.0402) - -51.7626 -49.7711 0.3700 2.3155 0.2538 0.1520 Kum 1.5877 (0.2444) 21.8682 (10.210) - -47.2969 -45.3054 0.4370 2.6508 0.2626 0.1267 WPF 25.3216 (10.981) 8.6983 (30.616) 0.1887 (0.6640) -46.8444 -43.8572 0.3972 2.4524 0.2642 0.1226 L-II 7.3406 (1.6414) - - -43.1863 -42.1906 0.3698 2.3142 0.3989 0.0034 GPF 3.1354 (0.7011) - - -50.4166 -49.4209 0.4156 2.5011 0.4263 0.0014 Top-Leon 0.6247 (0.1397) - - -25.4857 -24.4900 0.3391 2.1565 0.4842 0.0002 L-I 0.4484 (0.1002) - - -15.1164 -14.1207 0.3211 2.0627 0.5104 0.0001 MT-II 0.3402 (0.0843) - - -12.1937 -11.1979 0.3386 2.1538 0.5000 0.0001 In Table 8, it is also clear that the ELTr-PF distribution has the lowest values for all the goodness of fit statistics. Therefore, the ELTr-PF distribution is recommended over its competing distributions. 21 Int. J. Anal. Appl. (2022), 20:23 The corresponding curves of fitted density (a) Kaplan-Meier survival (b), and Probability-Probability (PP) (c) plots are presented in Figure 3. (a) (b) (c) Figure 3. Fitted plots for failure times of 20 mechanical components data. 7. Conclusion The Exponentiated Left Truncated Power (ELTr-PF) distribution has been successfully explored in this research. Its various statistical properties were investigated and established. The simulation study showed that the parameters of the ELTr-PF distribution are good and stable, as the root mean square error reduces as the sample size increases. The two datasets provided in this research support that the ELTr-PF distribution is a better fit compared to the Beta distribution, Kumaraswamy distribution, Lehmann Type I and Type II distributions, Generalized Power Function, Weibull Power Function, and Mustapha Type–II distribution. The density, Kaplan-Meier, and PP curves/plots also provide sufficient information about the closest fit to subject datasets. Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper. References [1] M. Ahsan-ul-Haq, M. Ahmed, J. Zafar, P.L. Ramos, Modeling of COVID-19 cases in Pakistan using lifetime probability distributions, Ann. Data. Sci. 9 (2022), 141–152. https://doi.org/10.1007/s40745-021-00338- 9. [2] A. Al Mutair, A. Al Mutairi, Y. Alabbasi, A. Shamsan, S. Al-Mahmoud, S. Alhumaid, M. zeshan Arshad, M. Awad, A. Rabaan, Level of anxiety among healthcare providers during COVID-19 pandemic in Saudi Arabia: cross-sectional study, PeerJ. 9 (2021), e12119. https://doi.org/10.7717/peerj.12119. https://doi.org/10.1007/s40745-021-00338-9 https://doi.org/10.1007/s40745-021-00338-9 https://doi.org/10.7717/peerj.12119 22 Int. J. Anal. Appl. (2022), 20:23 [3] A. Al Mutairi, M.Z. Iqbal, M.Z. Arshad, B. Alnssyan, H. Al-Mofleh, A.Z. Afify, A new extended model with bathtub-shaped failure rate: Properties, inference, simulation, and applications, Mathematics. 9 (2021), 2024. https://doi.org/10.3390/math9172024. [4] A. Al-Shomrani, O. Arif, A. Shawky, S. Hanif, M.Q. Shahbaz, Topp–Leone family of distributions: Some properties and application, Pak. J. Stat. Oper. Res. 12 (2016), 443. https://doi.org/10.18187/pjsor.v12i3.1458. [5] S. Arimoto, Information-theoretical considerations on estimation problems, Inform. Control. 19 (1971), 181–194. https://doi.org/10.1016/S0019-9958(71)90065-9. [6] O.S. Balogun, M.Z. Arshad, M.Z. Iqbal, M. Ghamkhar, A new modified Lehmann type – II G class of distributions: exponential distribution with theory, simulation, and applications to engineering sector, F1000Res. 10 (2021), 483. https://doi.org/10.12688/f1000research.52494.1. [7] D.E. Boekee, J.C.A. Van der Lubbe, The R-norm information measure, Inform. Control. 45 (1980), 136– 155. https://doi.org/10.1016/S0019-9958(80)90292-2. [8] G.M. Cordeiro, M. de Castro, A new family of generalized distributions, J. Stat. Comput. Simul. 81 (2011), 883–898. https://doi.org/10.1080/00949650903530745. [9] N. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Commun. Stat. – Theory Methods. 31 (2002), 497–512. https://doi.org/10.1081/STA-120003130. [10] M.D.P. Esberto, Probability distribution fitting of rainfall patterns in Philippine regions for effective risk management, Environ. Ecol. Res. 6 (2018), 178–186. https://doi.org/10.13189/eer.2018.060305. [11] H.D. Kan, B.H. Chen, Statistical distributions of ambient air pollutants in Shanghai, China, Biomed. Environ. Sci. 17(3) (2004), 366-272. https://pubmed.ncbi.nlm.nih.gov/15602835/. [12] P. Kumaraswamy, A generalized probability density function for double-bounded random processes, J. Hydrol. 46 (1980), 79–88. https://doi.org/10.1016/0022-1694(80)90036-0. [13] R.J. Hyndman, Y. Fan, Sample quantiles in statistical packages, Amer. Stat. 50 (1996), 361–365. https://doi.org/10.1080/00031305.1996.10473566. [14] J. Havrda, F. Charvat, Quantification method of classification processes. Concept of structural Ξ±-entropy. Kybernetika, 3 (1967), 30-35. [15] E.L. Lehmann, The power of rank tests, Ann. Math. Statist. 24 (1953) 23–43. https://doi.org/10.1214/aoms/1177729080. [16] K. Modi, V. Gill, Unit Burr-III distribution with application, J. Stat. Manage. Syst. 23 (2020), 579–592. https://doi.org/10.1080/09720510.2019.1646503. [17] J. Mazucheli, A.F. Menezes, M.E. Ghitany. The unit-Weibull distribution and associated inference, J. Appl. Probab. Stat. 13(2018), 1-22. [18] A. Mathai, H. Haubold, On a generalized entropy measure leading to the pathway model with a preliminary application to solar neutrino data, Entropy. 15 (2013), 4011–4025. https://doi.org/10.3390/e15104011. https://doi.org/10.3390/math9172024 https://doi.org/10.18187/pjsor.v12i3.1458 https://doi.org/10.1016/S0019-9958(71)90065-9 https://doi.org/10.12688/f1000research.52494.1 https://doi.org/10.1016/S0019-9958(80)90292-2 https://doi.org/10.1080/00949650903530745 https://doi.org/10.1081/STA-120003130 https://doi.org/10.13189/eer.2018.060305 https://pubmed.ncbi.nlm.nih.gov/15602835/ https://doi.org/10.1016/0022-1694(80)90036-0 https://doi.org/10.1080/00031305.1996.10473566 https://doi.org/10.1214/aoms/1177729080 https://doi.org/10.1080/09720510.2019.1646503 https://doi.org/10.3390/e15104011 23 Int. J. Anal. Appl. (2022), 20:23 [19] M. Muhammad, A new lifetime model with a bounded support, Asian Res. J. Math. 7 (2017), ARJOM.35099. https://doi.org/10.9734/ARJOM/2017/35099. [20] D.N.P. Murthy, M. Xie, R. Jiang, Weibull models, J. Wiley, Hoboken, N.J, 2004. [21] S. Nasiru, A.G. Abubakari, I.D. Angbing, Bounded odd inverse pareto exponential distribution: Properties, estimation, and regression, Int. J. Math. Math. Sci. 2021 (2021), 9955657. https://doi.org/10.1155/2021/9955657. [22] P.E. Oguntunde, O.A. Odetunmibi, A.O. Adejumo, A study of probability models in monitoring environmental pollution in Nigeria, J. Probab. Stat. 2014 (2014), 864965. https://doi.org/10.1155/2014/864965. [23] C.P. Quesenberry, C. Hales, Concentration bands for uniformity plots, J. Stat. Comput. Simul. 11 (1980), 41–53. https://doi.org/10.1080/00949658008810388. [24] A. RΓ©nyi. On measures of entropy and information, In: Proceedings of the 4th Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, (1961), 547- 561. [25] Y. Sangsanit, S.P. Ahmad. The Topp-Leone generator of distributions: properties and inferences. Songklanakarin J. Sci. Technol. 38 (2016), 537-548. [26] J. Saran, A. Pandey, Estimation of parameters of a power function distribution and its characterization by k-th record values, Statistica. 64 (2004), 523-536. https://doi.org/10.6092/ISSN.1973-2201/56. [27] C.W. Topp, F.C. Leone, A family of J-shaped frequency functions, J. Amer. Stat. Assoc. 50 (1955), 209– 219. https://doi.org/10.1080/01621459.1955.10501259. [28] M. Alizadeh, M. Mansoor, G.M. Cordeiro, M. Zubair, M.H. Tahir, The Weibull-power function distribution with applications, Hacettepe J. Math. Stat. 45 (2016), 245-265. https://doi.org/10.15672/HJMS.2014428212. [29] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988), 479–487. https://doi.org/10.1007/BF01016429. [30] A. Zaharim, S. Najid, A. Razali, K. Sopian. Analyzing Malaysian wind speed data using statistical distribution, In: Proceedings of the 4th IASME/WSEAS International Conference on Energy and Environment (EE ’09), Cambridge, UK (2009), 363-370. https://doi.org/10.9734/ARJOM/2017/35099 https://doi.org/10.1155/2021/9955657 https://doi.org/10.1080/00949658008810388 https://doi.org/10.6092/ISSN.1973-2201/56 https://doi.org/10.1080/01621459.1955.10501259 https://doi.org/10.15672/HJMS.2014428212 https://doi.org/10.1007/BF01016429