Int. J. Anal. Appl. (2022), 20:24 K −g−Duals in Hilbert C∗−Modules Mohamed Rossafi1, Fakhr-dine Nhari2,∗ 1LaSMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco 2Laboratory Analysis, Geometry and Applications Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, P. O. Box 133 Kenitra, Morocco ∗Corresponding author: nharidoc@gmail.com Abstract. Generalized frames with adjointable operators called K−g−frame is a generalization of a g−frame. In this paper, we give some results of dual K−g−bessel sequence, finally we obtain a new properties of approximate K−g−duals in Hilbert C∗−module. 1. introduction Frames, introduced by Duffin and Schaefer [1] in 1952 to analyse some deep problems in nonhar- monic Fourier series by abstracting the fundamental notion of Gabor [2] for signal processing. In 2000, Frank-larson [4] introduced the concept of frames in Hilbet C∗−modules as a generalization of frames in Hilbert spaces. The basic idea was to consider modules over C∗−algebras of linear spaces and to allow the inner product to take values in the C∗−algebras [5]. Many generalizations of the concept of frame have been defined in Hilbert C∗-modules [3,6,8–10,12–15]. Throughout this paper, H is considered to be a countably generated Hilbert A−module. Let {Hj}j∈J be the collection of submodules of H where I is a finite or countable index set. End∗A(H,Hj) is the set of all adjointable operator from H to Hj. In particular End∗A(H) denote the set of all adjointable operators on H. Received: Feb. 28, 2022. 2010 Mathematics Subject Classification. Primary 41A58, Secondary 42C15. Key words and phrases. g-Frame, K-g-Frame, C∗-algebra, Hilbert A-modules. https://doi.org/10.28924/2291-8639-20-2022-24 ISSN: 2291-8639 © 2022 the author(s). https://doi.org/10.28924/2291-8639-20-2022-24 2 Int. J. Anal. Appl. (2022), 20:24 Define the module l2({Hj}j∈J) = {{xj}j∈J : xj ∈ Hj,‖ ∑ j∈J 〈xj,xj〉‖ < ∞} with A−valued inner product 〈x,y〉 = ∑ j∈J〈xj,yj〉, where x = {xj}j∈J and y = {yj}j∈J, clearly l2({Hj}j∈J) is a Hilbert A−module. In the following we briefly recall some definitions and basic properties. For a C∗-algebra A if a ∈A is positive we write a ≥ 0 and A+ denotes the set of positive elements of A. Definition 1.1. [7]. Let A be a unital C∗-algebra and H be a left A-module, such that the linear structures of A and U are compatible. H is a pre-Hilbert A-module if H is equipped with an A-valued inner product 〈., .〉 : H ×H → A, such that is sesquilinear, positive definite and respects the module action. In the other words, (i) 〈x,x〉≥ 0 for all x ∈ H and 〈x,x〉 = 0 if and only if x = 0. (ii) 〈ax + y,z〉 = a〈x,z〉 + 〈y,z〉 for all a ∈A and x,y,z ∈ H. (iii) 〈x,y〉 = 〈y,x〉∗ for all x,y ∈ H. For x ∈ H, we define ||x|| = ||〈x,x〉|| 1 2 . If H is complete with ||.||, it is called a Hilbert A-module or a Hilbert C∗-module over A. For every a in C∗-algebra A, we have |a| = (a∗a) 1 2 and the A-valued norm on H is defined by |x| = 〈x,x〉 1 2 for x ∈ H. Definition 1.2. Suppose that X and Y are Hilbert A−modules and T ∈ End∗A(X,Y ). The Moore- Penrose inverse of T (if it exists) is an element T + of End∗A(Y,X) satisfying TT +T = T, T +TT + = T +, (TT +)∗ = TT +, (T +T )∗ = T +T Lemma 1.1. Let X and Y be two Hilbert A−modules and T ∈ End∗A(X,Y ) Then the Moore-Penrose inverse T + exixts if and only if T has a closed range. Definition 1.3. Suppose that K ∈ End∗A(H) and {Λj}j∈J is a K − g−frame for H. A g−bessel sequence {Γj}j∈J for H is said to be a dual K −g−bessel sequence of {Λj}j∈J if Kx = ∑ j∈J Λ∗j Γjx, ∀x ∈ H. Definition 1.4. [3] A sequence {Λj ∈ End∗A(H,Hj), j ∈ J} is called a g−frame with respect to {Hj}j∈J if there exist constants C,D > 0 such that for every x ∈ H C〈x,x〉≤ ∑ j∈J 〈Λjx, Λjx〉≤ D〈x,x〉. (1.1) As usual C and D are g−frame bounds of {Λj}j∈J. If only upper inequality of (1.1) holds, then {Λj}j∈J is called g−bessel sequence for H. Int. J. Anal. Appl. (2022), 20:24 3 Definition 1.5. Let K ∈ End∗A(H) and {Λj ∈ End ∗ A(H,Hj), j ∈ J}. A sequence {Λj}j∈J is called K −g−frame for H with respect to {Hj}j∈J, if there exist constants 0 < A ≤ B < ∞ such that A〈K∗x,K∗x〉≤ ∑ j∈J 〈Λjx, Λjx〉≤ B〈x,x〉,∀x ∈ H. A K −g−frame {Λj}j∈J is said to be tight if there exists a constant A > 0 such that ∑ j∈J 〈Λjx, Λjx〉 = A〈K∗x,K∗x〉,∀x ∈ H. 2. Main Results Theorem 2.1. Suppose K ∈ End∗A(H) has closed range and {Λj ∈ End ∗ A(H,Hj)} is a K −g−frame for H. for each j ∈ J, let Γj ∈ End∗A(H,Hj). Then the following statement are equivalent (1) The sequence {Γj}j∈J is a dual K −g−bessel sequence of {Λj}j∈J. (2) For each a ∈ Ker(K), ∑ j∈J Λ ∗ j Γja = 0. the sequence {Γj}j∈J is a g−bessel sequence for H, which can naturally generate a g−bessel sequence {θj}j∈J for H in the forme θj = ΓjK +Prange(K) for each j ∈ J such that h = ∑ j∈J Λ∗j θjh = ∑ j∈J θ∗j Λjh, ∀h ∈ range(K) (2.1) where Prange(K) denotes the orthogonal projection onto range(K). (1) =⇒ (2) Assume that {Γj}j∈J is a dual K − g−bessel sequence of {Λj}j∈J, then for each a ∈ Ker(K), ∑ j∈J Λ ∗ j Γja = Ka = 0 and we have for any h ∈ range(K) h = KK+h = ∑ j∈J Λ∗j ΓjK +h = ∑ j∈J Λ∗j ΓjK +Prange(K)h, put θj = ΓjK+Prange(K), for each j ∈ J so for any x ∈ H ∑ j∈J 〈θjx,θjx〉 = ∑ j∈J 〈ΓjK+Prange(K)x, ΓjK +Prange(K)x〉 ≤ DΓ〈K+x,K+x〉 ≤ DΓ‖K+‖2〈x,x〉, hence {θj}j∈J is g−bessel sequence for H. 4 Int. J. Anal. Appl. (2022), 20:24 Let g,h ∈ range(K) 〈g,h〉 = 〈 ∑ j∈J Λ∗j θjg,h〉 = ∑ j∈J 〈θjg, Λjh〉 = ∑ j∈J 〈ΓjK+Prange(K)g, Λjh〉 = ∑ j∈J 〈g, (ΓjK+Prange(K)) ∗Λjh〉 = 〈g, ∑ j∈J θ∗j Λjh〉, therefore, ∑ j∈J θ ∗ j Λjh = h (2) =⇒ (1) We have range(K +) = (Ker(K))⊥ then each x ∈ H can be expressed as x = x1 + x2, where x1 ∈ range(K+) and x2 ∈ (range(K+))⊥ = Ker(K), so Kx1 = ∑ j∈J Λ∗j ΓjK +Prange(K)Kx1 = ∑ j∈J Λ∗j ΓjK +Kx1 = ∑ j∈J Λ∗j Γjx1. And we have, Kx2 = ∑ j∈J Λ ∗ j Γjx2 = 0, we obtain Kx = K(x1 + x2) = Kx1 = ∑ j∈J Λ∗j Γjx1 = ∑ j∈J Λ∗j Γj(x1 + x2) = ∑ j∈J Λ∗j Γjx. Hence, {Γj}j∈J is a dual K −g−bessel sequence of {Λj}j∈J. Theorem 2.2. Suppose that K ∈ End∗A(H), Λj, Λ ′ j ∈ End ∗ A(H,Hj) for each j ∈ J and that {Γj ∈ End∗A(Hj,Wji )}i∈Ij is a g−frame for Hj with bounds Cj,Dj such that 0 < C = infj∈J Cj ≤ supj∈J Dj = D < ∞. Let {Γ ′ ji ∈ End ∗ A(Hj,Wji )}i∈Ij be a dual g−frame of {Γji}i∈Ij for each j ∈ J. Then the following conditions are equivalent (1) The pair {Λj}j∈J and {Λ ′ j}j∈J are a dual K −g−frame pair. (2) The pair {Γji Λj}j∈J,i∈Ij and {Γ ′ ji Λ ′ j}j∈J,i∈Ij are a dual K −g−frame pair. Int. J. Anal. Appl. (2022), 20:24 5 Proof. Suppose that {Λj}j∈J is a K −g−frame for H with bounds DΛ and CΛ. For each x ∈ H, we have ∑ j∈J ∑ i∈Ij 〈Γji Λjx, Γji Λjx〉≤ ∑ j∈J Dj〈Λjx, Λjx〉 ≤ DDΛ〈x,x〉. On the other hand ∑ j∈J ∑ i∈Ij 〈Γji Λjx, Γji Λjx〉≥ ∑ j∈J CjΛjx, Λjx〉 ≥ CCΛ〈K∗x,K∗x〉. Assume now that {Γji Λj}j∈J,i∈Ij is a K −g−frame for H with bounds A,B. For each x ∈ H Cj〈Λjx, Λjx〉≤ ∑ i∈Ij 〈Γji Λjx, Γji Λjx〉≤ Dj〈Λjx, Λjx〉, then ∑ j∈J 〈Λjx, Λjx〉≤ ∑ j∈J 1 Cj ∑ i∈Ij 〈Γji Λjx, Γji Λjx〉 ≤ 1 c ∑ j∈J ∑ i∈Ij 〈Γji Λjx, Γji Λjx〉 ≤ B C 〈x,x〉. On the other hand ∑ j∈J 〈Λjx, Λjx〉≥ ∑ j∈J 1 Dj ∑ i∈Ij 〈Γji Λjx, Γji Λjx〉 ≥ 1 D ∑ j∈J ∑ i∈Ij 〈Γji Λjx, Γji Λjx〉 ≥ A D 〈K∗x,K∗x〉. Therefore {Λj}j∈J being a K −g−frame for H is equivalent to {Γji Λj}j∈J,i∈Ij being a K −g−frame for H, it remains only to prove the duality, then for each x ∈ H, we have∑ j∈J Λ∗j Λ ′ jx = ∑ j∈J Λ∗j (∑ i∈Ij Γ∗ji Γ ′ ji Λ ′ jx ) = ∑ j∈J ∑ i∈Ij Λ∗j Γ ∗ ji Γ ′ ji Λ ′ jx = ∑ j∈J ∑ i∈Ij (Γji Λj) ∗Γ ′ ji Λ ′ jx, 6 Int. J. Anal. Appl. (2022), 20:24 so {Λ ′ j}j∈J is a dual K−g−bessel sequence of {Λj}j∈J if and only if {Γ ′ ji Λ ′ j}j∈J,i∈Ij is a dual K−g−bessel sequence of {Γji Λj}j∈J,i∈Ij . � Theorem 2.3. Let {Λj}j∈J be a Parseval K−g−frame for H where K ∈ End∗A(H) has closed range. Then {Λj(K+)∗}j∈J is a dual K −g−bessel sequence of {Λj}j∈J. Proof. For each x ∈ H, we have∑ j∈J 〈Λj(K+)∗x, Λj(K+)∗x〉 = 〈K∗(K+)∗x,K∗(K+)∗x〉 ≤ ‖K‖2‖K+‖2〈x,x〉, then {Λj(K+)∗}j∈J is g−bessel sequence for H. And we have for each g ∈ range(K∗), g = K∗(K∗)+g = K∗(K+)∗g, so Kg = KK∗(K+)∗g = ∑ j∈J Λ∗j Λj(K +)∗g. If h ∈ (range(K∗))⊥ = Ker(K) we obtain h ∈ Ker((K+)∗) implying that ∑ j∈J Λ ∗ j Λj(K +)∗h = 0 = Kh, altogether we have Kf = ∑ j∈J Λ ∗ j Λj(K +)∗f for each f ∈ H. � Theorem 2.4. Suppose that K ∈ End∗A(H) has closed range and that {Λj ∈ End ∗ A(H,Hj)}j∈J is a Parseval K −g−frame for H. Then the following condition hold. (1) For any dual K −g−bessel sequence {θj}j∈J of {Λj}j∈J we have T∗Λ̃TΛ̃ = T ∗ Λ̃ Tθ, where TΛ̃ is the analysis operator of {Λj(K+)∗}j∈J. (2) If {Γj ∈ End∗A(H,Hj)}j∈J is also a Parseval K − g−frame for H such that T ∗ ΛTΓ = 0, then {Λj}j∈J and {Γj}j∈J admit a common dual K−g−bessel sequence {Λj(K+)∗ + Γj(K+)∗}j∈J. Proof. Assume that {θj}j∈J is a dual K −g−bessel sequence of {Λj}j∈J. So T∗Λ (TΛ̃x −Tθx) = ∑ j∈J Λ∗j Λj(K +)∗x − ∑ j∈J Λ∗j θjx = Kx −Kx = 0, then, 〈T∗ Λ̃ (T Λ̃ −Tθ)x,y〉 = 〈K+T∗Λ (TΛ̃ −Tθ)x,y〉 = 0, hence, T∗ Λ̃ (T Λ̃ −Tθ)x = 0, so T∗Λ̃TΛ̃ = T ∗ Λ̃ Tθ. (2) Since T∗ΛTΓ = 0, then∑ j∈J Λ∗j (Λj(K +)∗ + Γj(K +)∗)x = ∑ j∈J Λ∗j Λj(K +)∗x = Kx = ∑ j∈J Γ∗j Γj(K +)∗x = ∑ j∈J Γ∗j (Λj(K +)∗ + Γj(K +)∗)x Int. J. Anal. Appl. (2022), 20:24 7 � Theorem 2.5. Let {Λj ∈ End∗A(H,Hj); j ∈ J} be a K −g−frame for H with bound A and B. Then {Λj}j∈J is a g−frame for H if K∗ is bounded below. Proof. Since K∗ is bounded below, then there exists C > 0 such that 〈K∗x,K∗x〉≤ C〈x,x〉,∀x ∈ H. And we have A〈K∗x,K∗x〉≤ ∑ j∈J 〈Λjx, Λjx〉≤ B〈x,x〉,∀x ∈ H. So, AC〈x,x〉≤ A〈K∗x,K∗x〉≤ ∑ j∈J 〈Λjx, Λjx〉≤ B〈x,x〉,∀x ∈ H. Hence, {Λj}j∈J is a g−frame for H. � Theorem 2.6. If {Λj ∈ End∗A(H,Hj); j ∈ J} is a tight K−g−frame with bounded A, then {Λj}j∈J is a tight g−frame with bounded B if and only if the right inverse of the operator K is A B K∗. Proof. Now if {Λj}j∈J is a tight g−frame with bounded B, then∑ j∈J 〈Λjx, Λjx〉 = B〈x,x〉,∀x ∈ H. Since {Λj}j∈J is a tight K −g−frame with bounded A then, A〈K∗x,K∗x〉 = B〈x,x〉,∀x ∈ H, hence, 〈KK∗x,x〉 = 〈 B A x,x〉, therefore, KK∗ = B A IH, so, A B K∗ is the right inverse of the operator K. Conversely, assume that A B K∗ is the right inverse of the operator K, then KK∗ = B A IH so, A〈KK∗x,x〉 = B〈x,x〉, hence, A〈K∗x,K∗x〉 = B〈x,x〉, since, {Λj}j∈J is tight K −g−frame with bound A, then B〈x,x〉 = ∑ j∈J 〈Λjx, Λjx〉,∀x ∈ H. 8 Int. J. Anal. Appl. (2022), 20:24 � Theorem 2.7. Let I ⊂ J be given. Suppose that {Λj ∈ End∗A(H,Hj), j ∈ J} is a K −g−frame with bounds A,B and K −g−frame operator SΛ,J. Then the following statements are equivalent: (1) Irange(K) −S−1Λ,JSΛ,I is boundedly invertible on range(K), (2) The sequence {Λj}j∈J−I is a K − g−frame for H with lower K − g−frame bound B−1 ‖S−1 Λ,J ‖2‖K∗(Irange(K)−S −1 Λ,J SΛ,I) −1‖2 . Proof. Denote the frame operator of the K −g−frame {Λj}j∈J−I by SΛ,J−I. We have SΛ,J−I = SΛ,J −SΛ,I = SΛ,J(Irange(K) −S −1 Λ,JSΛ,I), then, {Λj}j∈J−I is a K −g−frame if and only if Irange(K) −S−1Λ,JSΛ,I is boundedly invertible. Suppose that Irange(K) −S−1Λ,JSΛ,I is invertible. for any x ∈ H x = S−1Λ,JSΛ,Jx = S−1Λ,J (∑ j∈J Λ∗j Λjx + ∑ j∈J−I Λ∗j Λjx ) = S−1Λ,JSΛ,Ix + ∑ j∈J−I S−1Λ,JΛ ∗ j Λjx. So, (Irange(K) −S −1 Λ,JSΛ,I)x = ∑ j∈J−I S−1Λ,JΛ ∗ j Λjx. Hence, ‖(Irange(K) −S −1 Λ,JSΛ,I)x‖ = ‖ ∑ j∈J−I S−1Λ,JΛ ∗ j Λjx‖ = sup ‖y‖=1 ∣∣∣∣ ∣∣∣∣〈 ∑ j∈J−I S−1Λ,JΛ ∗ j Λjx,y〉 ∣∣∣∣ ∣∣∣∣ = sup ‖y‖=1 ∣∣∣∣ ∣∣∣∣ ∑ j∈J−I 〈Λjx, ΛjS−1Λ,Jy〉 ∣∣∣∣ ∣∣∣∣ ≤ sup ‖y‖=1 ∣∣∣∣ ∣∣∣∣ ∑ j∈J−I 〈Λjx, Λjx〉 ∣∣∣∣ ∣∣∣∣ 1 2 ∣∣∣∣ ∣∣∣∣ ∑ j∈J−I 〈ΛjS−1Λ,Jy, ΛjS −1 Λ,Jy〉 ∣∣∣∣ ∣∣∣∣ 1 2 ≤ √ B‖S−1Λ,J‖ ∣∣∣∣ ∣∣∣∣ ∑ j∈J−I 〈Λjx, Λjx〉 ∣∣∣∣ ∣∣∣∣ 1 2 , therefore, ‖(Irange(K) −S −1 Λ,JSΛ,I)x‖≤ √ B‖S−1Λ,J‖ ∣∣∣∣ ∣∣∣∣ ∑ j∈J−I 〈Λjx, Λjx〉 ∣∣∣∣ ∣∣∣∣ 1 2 , Int. J. Anal. Appl. (2022), 20:24 9 then Irange(K) −S−1Λ,JSΛ,I is well defined. If Irange(K) −S −1 Λ,J SΛ,I is invertible on H, then for any x ∈ H we have ‖K∗x‖≤‖K∗(Irange(K) −S −1 Λ,JSΛ,I) −1‖‖(Irange(K) −S −1 Λ,JSΛ,I)x‖ hence, B−1 ‖S−1 Λ,J ‖2‖K∗(Irange(K) −S−1Λ,JSΛ,I)−1‖2 ‖K∗x‖2 ≤‖ ∣∣∣∣ ∣∣∣∣ ∑ j∈J−I 〈Λjx, Λjx〉 ∣∣∣∣ ∣∣∣∣. � Definition 2.1. Consider two g−bessel sequences {Λj ∈ End∗A(H,Hj), j ∈ J} and {θj ∈ End∗A(H,Hj), j ∈ J}. The sequence {Λj}j∈J and {θj}j∈J are said to be approximately K − g−dual frames if ‖Irange(K) −TΛT∗θ‖ < 1. In this case, we say that {θj}j∈J is an approximate K −g−dual of {Λj}j∈J. Theorem 2.8. If {θj}j∈J is an approximate K −g−dual of {Λj}j∈J, then {θj(TΛT∗θ ) −1}j∈J is a K − g−dual of {Λj}j∈J. Proof. it is easy to see that {θj(TΛT∗θ ) −1}j∈J is a g−bessel sequence and x = (TΛT ∗ θ )(TΛT ∗ θ ) −1x = ∞∑ j=0 Λ∗j θj(TΛT ∗ θ ) −1x = ∞∑ j=0 Λ∗j ( θj ∞∑ j=0 (Irange(K) −−TΛT ∗ θ ) nx ) . Then, θj(TΛT∗θ ) −1 = {θj ∑∞ j=0(Irange(K) −−TΛT ∗ θ ) n}j∈J is a K −g−dual of {Λj}j∈J. � Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper. References [1] R.J. Duffin, A.C. Schaeffer, A Class of Nonharmonic Fourier Series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6. [2] D. Gabor, Theory of Communication, J. Inst. Electric. Eng. 93 (1946), 429-457. [3] A. Khosravi, B. Khosravi, Fusion Frames and g-Frames in Hilbert C*-Modules, Int. J. Wavelets Multiresolut. Inf. Process. 06 (2008), 433–446. https://doi.org/10.1142/S0219691308002458. [4] M. Frank, D.R. Larson, A Module Frame Concept for Hilbert C*-Modules, in: L.W. Baggett, D.R. Larson (Eds.), Contemporary Mathematics, American Mathematical Society, Providence, Rhode Island, 1999: pp. 207–233. https://doi.org/10.1090/conm/247/03803. [5] E.C. Lance, Hilbert C*-modules: A Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995. [6] S. Kabbaj, M. Rossafi, ∗-Operator Frame for End∗A(H), Wavelet Linear Algebra, 5 (2018), 1-13. [7] I. Kaplansky, Modules Over Operator Algebras, Amer. J. Math. 75 (1953), 839. https://doi.org/10.2307/ 2372552. https://doi.org/10.1090/S0002-9947-1952-0047179-6 https://doi.org/10.1142/S0219691308002458 https://doi.org/10.1090/conm/247/03803 https://doi.org/10.2307/2372552 https://doi.org/10.2307/2372552 10 Int. J. Anal. Appl. (2022), 20:24 [8] F.D. Nhari, R. Echarghaoui, M. Rossafi, K−g−Fusion Frames in Hilbert C∗−Modules, Int. J. Anal. Appl. 19 (6) (2021), 836-857. https://doi.org/10.28924/2291-8639-19-2021-836. [9] M. Rossafi, F.D. Nhari, C. Park, S. Kabbaj, Continuous g-Frames with C∗-Valued Bounds and Their Properties, Complex Anal. Oper. Theory. 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4. [10] M. Rossafi, F.D. Nhari, Controlled K−g−Fusion Frames in Hilbert C∗−Modules, Int. J. Anal. Appl. 20 (2022), 1. https://doi.org/10.28924/2291-8639-20-2022-1. [11] M. Rossafi, S. Kabbaj, ∗-K-Operator Frame for End∗A(H), Asian-Eur. J. Math. 13 (2020), 2050060. https: //doi.org/10.1142/S1793557120500606. [12] M. Rossafi, S. Kabbaj, Operator Frame for End∗A(H), J. Linear Topol. Algebra, 8 (2019), 85-95. [13] M. Rossafi, S. Kabbaj, ∗-K-g-Frames in Hilbert A-Modules, J. Linear Topol. Algebra, 7 (2018), 63-71. [14] M. Rossafi, S. Kabbaj, ∗-G-Frames in Tensor Products of Hilbert C∗-Modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17-25. https://doi.org/10.2478/aupcsm-2018-0002. [15] M. Rossafi, S. Kabbaj, Generalized Frames for B(H,K), Iran. J. Math. Sci. Inf. accepted. https://doi.org/10.28924/2291-8639-19-2021-836 https://doi.org/10.1007/s11785-022-01229-4 https://doi.org/10.28924/2291-8639-20-2022-1 https://doi.org/10.1142/S1793557120500606 https://doi.org/10.1142/S1793557120500606 https://doi.org/10.2478/aupcsm-2018-0002 1. introduction 2. Main Results References