Int. J. Anal. Appl. (2022), 20:28

A New Ostrowski’s Type Inequality for Quadratic Kernel

M. M. Saleem1, Z. Ullah2, T. Abbas1, M. B. Raza1, A. Qayyum1,∗

1Institute of Southern Punjab Multan, Pakistan
2Department of Mathematics, Division of Science and Technology, University of Education Lahore,

Pakistan

∗Corresponding author: atherqayyum@isp.edu.pk

Abstract. From the past few decades, the integral inequalities have been extensively researched. In-

tegral inequalities are applied in innumerable mathematical problems. In current paper, we obtain new

versions of Ostrowski’s type integral inequalities by implementing proposed general form of 7-step

quadratic kernel. Applications for cumulative distribution are also provided.

1. Introduction

In 1938, a Ukrainian Mathematician A. M. Ostrowski [1] discovered the integral inequality. Many

articles and research books have been dedicated to inequalities and its applications [3]-[7]. In this

paper we present 7-step quadratic kernel that further generalize many earlier results contained in [8]-

[12]. Several authors have recently addressed the generalization of the Ostrowski’s type inequalities.

Qayyum et.al [9]-[10] applied a 5-step kernel to generalize some Ostrowski’s type inequalities.

2. Main Findings

Theorem 2.1. Let f :
[
č, ď

]
→R be differentiable on

(
č, ď

)
, f ′is absolutely continuous on

[
č, ď

]
and

γ ≤ f ′′(ţ) ≤ Γ,∀ ţ∈
[
č, ď

]
,then ∀ ÿ ∈

[
č, č+ď

2

]
, we get

Received: Mar. 29, 2022.

2010 Mathematics Subject Classification. 26D10.

Key words and phrases. Ostrowski inequality; numerical integration; quadratic kernel.

https://doi.org/10.28924/2291-8639-20-2022-28
ISSN: 2291-8639

© 2022 the author(s).

https://doi.org/10.28924/2291-8639-20-2022-28


2 Int. J. Anal. Appl. (2022), 20:28

∣∣∣∣14
[
f (ÿ) + f

(
č + ď − ÿ

)
+

1

2
f

(
č + ÿ

2

)
+

1

2
f

(
3č + ÿ

4

)
(2.1)

+
1

2
f

(
č + 2ď − ÿ

2

)
+

1

2
f

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f ′
(
č + ď − ÿ

)
− f ′ (ÿ) +

1

4
f ′
(
č + 2ď − ÿ

2

)
−

1

4
f ′
(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

){
f ′
(
č + 4ď − ÿ

4

)
− f ′

(
3č + ÿ

4

)}]
+
f ′(ď) − f ′(č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}
−

1

ď − č

∫ ď
č

f (ţ) dţ

∣∣∣∣∣
≤ ω(ÿ)(ď − č)(S −γ)

and ∣∣∣∣14
[
f (ÿ) + f

(
č + ď − ÿ

)
+

1

2
f

(
č + ÿ

2

)
+

1

2
f

(
3č + ÿ

4

)
(2.2)

+
1

2
f

(
č + 2ď − ÿ

2

)
+

1

2
f

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f ′
(
č + ď − ÿ

)
− f ′ (ÿ) +

1

4
f ′
(
č + 2ď − ÿ

2

)
−

1

4
f ′
(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

){
f ′
(
č + 4ď − ÿ

4

)
− f ′

(
3č + ÿ

4

)}]
+
f ′(ď) − f ′(č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}
−

1

ď − č

∫ ď
č

f (ţ) dţ

∣∣∣∣∣
≤ ω(ÿ)(ď − č)(Γ −S),

where

S =
f ′(ď) − f ′(č)

ď − č
and

ω(ÿ)

=
1

768
max

{∣∣−65č2 + 231čÿ + 165ďÿ − 101čď
−32ď2 − 198ÿ2

∣∣ ,∣∣−35č2 + 135čÿ + 117ďÿ − 65čď − 26ď2 − 126ÿ2∣∣ ,



Int. J. Anal. Appl. (2022), 20:28 3∣∣−83č2 + 255čÿ + 141čÿ − 89čď − 26ď2 − 198ÿ2∣∣ ,∣∣127č2 − 297čÿ − 27ďÿ + 43čď − 8ď2 + 162ÿ2∣∣ ,∣∣7č2 − 105čÿ − 219ďÿ + 91čď + 64ď2 + 162ÿ2∣∣ ,∣∣−65č2 + 183čÿ + 69ďÿ − 53čď − 8ď2 − 126ÿ2∣∣ ,∣∣89č2 − 279čÿ − 165ďÿ + 101čď + 32ď2 + 222ÿ2∣∣} .
Proof. To prove our required results, first of all we introduce a mapping. Let f :

[
č, ď

]
→R be such

that f ′ is absolutely continuous on
[
č, ď

]
. Define the kernel K (ÿ,ţ) as:

K (ÿ,ţ) =




1
2

(ţ− č)2 ţ ∈
(
č,

3č+ÿ
4

]
1
2

(
ţ− 7č+ď

8

)2
ţ ∈

(
3č+ÿ

4
,
č+ÿ

2

]
1
2

(
ţ− 3č+ď

4

)2
ţ ∈

(
č+ÿ

2
, ÿ
]

1
2

(
ţ− č+ď

2

)2
ţ ∈

(
ÿ, č + ď − ÿ

]
1
2

(
ţ− č+3ď

4

)2
ţ ∈

(
č + ď − ÿ, č+2ď−ÿ

2

]
1
2

(
ţ− č+7ď

8

)2
ţ ∈

(
č+2ď−ÿ

2
,
č+4ď−ÿ

4

]
1
2

(
ţ− ď

)2
ţ ∈

(
č+4ď−ÿ

4
, ď
]

(2.3)

∀ ÿ ∈
[
č, č+ď

2

]
. Then the following identity

∫ ď
č

K (ÿ,ţ) df ′ (ţ) (2.4)

=

∫ ď
č

f (ţ) dţ−
ď − č

4

[
f (ÿ) + f

(
č + ď − ÿ

)
+

1

2
f

(
č + ÿ

2

)
+

1

2
f

(
3č + ÿ

4

)
+

1

2
f

(
č + 2ď − ÿ

2

)
+

1

2
f

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f ′
(
č + ď − ÿ

)
− f ′ (ÿ) +

1

4
f ′
(
č + 2ď − ÿ

2

)
−

1

4
f ′
(
č + ÿ

2

)}
+

1

8

(
ÿ −

3a + ď

4

){
f ′
(
č + 4ď − ÿ

4

)
− f ′

(
3č + ÿ

4

)}]
holds. We know that

1

ď − č

∫ ď
č

f ′′ (ţ) dţ =
f ′(ď) − f ′(č)

ď − č
(2.5)



4 Int. J. Anal. Appl. (2022), 20:28

1

ď − č

∫ ď
č

K (ÿ,ţ) dţ =
1

ď − č

[
1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3
(2.6)

−
73

192

(
ÿ −

č + ď

2

)3]

and implies that

1

ď − č

∫ ď
č

K (ÿ,ţ) f ′′ (ţ) dţ−
1(

ď − č
)2
∫ ď
č

K (ÿ,ţ) dţ
∫ ď
č

f ′′ (ţ) dţ (2.7)

=
1

ď − č

∫ ď
č

f (ţ) dţ−
1

4

[
f (ÿ) + f

(
č + ď − ÿ

)
+

1

2
f

(
č + ÿ

2

)
+

1

2
f

(
3č + ÿ

4

)
+

1

2
f

(
č + 2ď − ÿ

2

)
+

1

2
f

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f ′
(
č + ď − ÿ

)
− f ′ (ÿ) +

1

4
f ′
(
č + 2ď − ÿ

2

)
−

1

4
f ′
(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

){
f ′
(
č + 4ď − ÿ

4

)
− f ′

(
3č + ÿ

4

)}]
−
f ′(ď) − f ′(č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}
.

We suppose that

Rn(ÿ) (2.8)

=
1

ď − č

∫ ď
č

K (ÿ,ţ) f ′′ (ţ) dt −
1(

ď − č
)2
∫ ď
č

K (ÿ,ţ) dt
∫ ď
č

f ′′ (ţ) dt.

If C ∈ R is an arbitray constant, then we have

Rn(ÿ) (2.9)

=
1

ď − č

∫ ď
č

(
f ′′ (ţ) −C

)[
K (ÿ,ţ) −

1

ď − č

∫ ď
č

K (ÿ, s) ds

]
dţ.

Furthermore, we have

|Rn(ÿ)| (2.10)

≤
1

ď − č
max

ţ∈[č,ď]

∣∣∣∣∣K (ÿ,ţ) − 1ď − č
∫ ď
č

K (ÿ, s) ds

∣∣∣∣∣
∫ ď
č

∣∣f ′′ (ţ) −C∣∣dţ.



Int. J. Anal. Appl. (2022), 20:28 5

Now

max

∣∣∣∣∣K (ÿ,ţ) − 1ď − č
∫ ď
č

K (ÿ, s) ds

∣∣∣∣∣ (2.11)
= max

{∣∣∣∣∣12
(
ÿ − č

4

)2
−
β(ÿ)

ď − č

∣∣∣∣∣ ,
∣∣∣∣∣18
(
ÿ −

3č + ď

4

)2
−
β(ÿ)

ď − č

∣∣∣∣∣ ,∣∣∣∣∣ 132
(
ÿ −

č + ď

2

)2
−
β(ÿ)

ď − č

∣∣∣∣∣ ,
∣∣∣∣∣12
(
ÿ −

3č + ď

4

)2
−
β(ÿ)

ď − č

∣∣∣∣∣ ,∣∣∣∣∣12
(
ÿ −

č + ď

2

)2
−
β(ÿ)

ď − č

∣∣∣∣∣ ,
∣∣∣∣∣18
(
ÿ −

č + ď

2

)2
−
β(ÿ)

ď − č

∣∣∣∣∣ , β(ÿ)ď − č
}

where

β(ÿ) =
1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3
−

73

192

(
ÿ −

č + ď

2

)3
.

and

ω(ÿ) (2.12)

=
1

768
max

{∣∣−65č2 + 231čÿ + 165ďÿ − 101čď
−32ď2 − 198ÿ2

∣∣ ,∣∣−35č2 + 135čÿ + 117ďÿ − 65čď − 26ď2 − 126ÿ2∣∣ ,∣∣−83č2 + 255čÿ + 141čÿ − 89čď − 26ď2 − 198ÿ2∣∣ ,∣∣127č2 − 297čÿ − 27ďÿ + 43čď − 8ď2 + 162ÿ2∣∣ ,∣∣7č2 − 105čÿ − 219ďÿ + 91čď + 64ď2 + 162ÿ2∣∣ ,∣∣−65č2 + 183čÿ + 69ďÿ − 53čď − 8ď2 − 126ÿ2∣∣ ,∣∣89č2 − 279čÿ − 165ďÿ + 101čď + 32ď2 + 222ÿ2∣∣} .
We also have ∫ ď

č

∣∣f ′′ (ţ) −γ∣∣dt = (S −γ) (ď − č) (2.13)
and ∫ ď

č

∣∣f ′′ (ţ) − Γ∣∣dţ = (Γ −S) (ď − č) . (2.14)
So, we attain (2.1) and (2.2) by using (2.5) to (2.14) and taking C = γ and C = Γ in (2.10)

respectively.

Corollary 2.1. By replacing ÿ = č in (2.1) and (2.2) , we get∣∣∣∣∣f (č) + f (ď)2 −(ď − č) f
′(ď) − f ′(č)

12
−

1

ď − č

∫ ď
č

f (ţ)dţ

∣∣∣∣∣
≤

1

96

(
ď − č

)3
(S −γ) ,



6 Int. J. Anal. Appl. (2022), 20:28∣∣∣∣∣f (č) + f (ď)2 −(ď − č) f
′(ď) − f ′(č)

12
−

1

ď − č

∫ ď
č

f (ţ)dţ

∣∣∣∣∣
≤

1

96

(
ď − č

)3
(Γ −S) .

�

Now some new perturbed Ostrowski type inequalities are presented by working with differentiable

mapping whose first derivatives are absolutely continuous and the second derivatives belong to f ′′′ ∈ L2

the usual Lebesgue spaces which refine and generalize some previous inequalities of this domain.

Theorem 2.2. Let f :
[
č, ď

]
→ R be three times differentiable function on

(
č, ď

)
. If f ′′′ ∈

L2
[
č, ď

]
,then for all ÿ ∈

[
č, č+ď

2

]
, we have∣∣∣∣14

[
f (ÿ) + f

(
č + ď − ÿ

)
+

1

2
f

(
č + ÿ

2

)
+

1

2
f

(
3č + ÿ

4

)
(2.15)

+
1

2
f

(
č + 2b− ÿ

2

)
+

1

2
f

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f ′
(
č + ď − ÿ

)
− f ′ (ÿ) +

1

4
f ′
(
č + 2ď − ÿ

2

)
−

1

4
f ′
(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

){
f ′
(
č + 4ď − ÿ

4

)
− f ′

(
3č + ÿ

4

)}]
+
f ′(ď) − f ′(č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}
−

1

ď − č

∫ ď
č

f (ţ) dţ

∣∣∣∣∣
≤

1

π

∥∥f ′′′∥∥
2

[
1

10240
(ÿ − č)5 +

33

320

(
ÿ −

3č + ď

4

)5
−

1057

10240

×
(
ÿ −

č + ď

2

)5
−

1

ď − č

{
1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}2
1
2

.

Proof. Let Rn(x) be defined by (2.7) and (2.8), If we take C = f ′′
(
č+ď

2

)
in (2.9) by applying the

Cauchy Inequality, then

|Rn(ÿ)| ≤
1

ď − č

∫ ď
č

∣∣∣∣
(
f ′′ (ţ) − f ′′

(
č + ď

2

))∣∣∣∣ (2.16)
×

∣∣∣∣∣K (ÿ,ţ) − 1ď − č
∫ ď
č

K (ÿ, s) ds

∣∣∣∣∣dţ.



Int. J. Anal. Appl. (2022), 20:28 7

≤
1

ď − č

[∫ ď
č

(
f ′′ (ţ) − f ′′

(
č + ď

2

))2
dţ

]1
2

×


∫ ď
č

(
K (ÿ,ţ) −

1

ď − č

∫ ď
č

K (ÿ, s) ds

)2
dţ




1
2

.

We apply the Diaze-Metcalf inequality from [16] to get∫ ď
č

(
f ′′ (ţ) − f ′′

(
č + ď

2

))2
dţ ≤

(
ď − č

)2
π2

∥∥f ′′′∥∥2
2

and ∫ ď
č

(
K (ÿ,ţ) −

1

ď − č

∫ ď
č

K (ÿ, s) ds

)2
dţ (2.17)

=

∫ ď
č

K (ÿ,ţ)2 dţ−
1

ď − č

{
1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}2

=
1

10240
(ÿ − č)5 +

33

320

(
ÿ −

3č + ď

4

)5
−

1057

10240

(
ÿ −

č + ď

2

)5
−

1

ď − č

{
1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3
−

73

192

(
ÿ −

č + ď

2

)3}2
.

So, by using the above relations (2.18)-(2.19) , we attain (2.17) .

Corollary 2.2. By replacing ÿ = č in (2.17) , we get∣∣∣∣∣f (č) + f (ď)2 −(ď − č) f
′(č) + f ′(ď)

12
−

1

ď − č

∫ ď
č

f (ţ)dţ

∣∣∣∣∣
≤

1

π

∥∥f ′′′∥∥
2

(
ď − č

)5
2

1

12

1
√

5
.

�

Theorem 2.3. Let f :
[
č, ď

]
→R be an absolutely continuous function on

(
č, ď

)
, with f ′′ ∈ L2

[
č, ď

]
.

Then ∣∣∣∣14
[
f (ÿ) + f

(
č + ď − ÿ

)
+

1

2
f

(
č + ÿ

2

)
+

1

2
f

(
3č + ÿ

4

)
(2.18)

+
1

2
f

(
č + 2ď − ÿ

2

)
+

1

2
f

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f ′
(
č + ď − ÿ

)
− f ′ (ÿ) +

1

4
f ′
(
č + 2ď − ÿ

2

)
−

1

4
f ′
(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

){
f ′
(
č + 4ď − ÿ

4

)
− f ′

(
3č + ÿ

4

)}]



8 Int. J. Anal. Appl. (2022), 20:28

+
f ′(ď) − f ′(č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}
−

1

ď − č

∫ ď
č

f (ţ) dţ

∣∣∣∣∣
≤
√
σ(f ′′)

ď − č

[
1

10240
(ÿ − č)5 +

33

320

(
ÿ −

3č + ď

4

)5

−
1057

10240

(
ÿ −

č + ď

2

)5
−

1

ď − č

{
1

192
(ÿ − č)3

+
3

8

(
ÿ −

3č + ď

4

)3
−

73

192

(
ÿ −

č + ď

2

)3}2
1
2

∀ÿ ∈
[
č, č+ď

2

]
, where

σ(f ′′) =
∥∥f ′′∥∥2

2
−
(
f ′(ď) − f ′(č)

)2
ď − č

=
∥∥f ′′∥∥2

2
−S2

(
ď − č

)
(2.19)

where

S =
f ′(ď) − f ′(č)

ď − č
.

Proof. Let Rn(x) be defined by (2.7) and (2.8) .If we take C =
1
ď−č

∫ ď
č
f
′′

(s) ds in (2.9) and applying

the Cauchy Inequality, then we have

|Rn(ÿ)|

≤
1

ď − č

∫ ď
č

∣∣∣∣∣
(
f ′′ (ţ) −

1

ď − č

∫ ď
č

f
′′

(s) ds

)∣∣∣∣∣
×

∣∣∣∣∣K (ÿ,ţ) − 1ď − č
∫ ď
č

K (ÿ, s) ds

∣∣∣∣∣dţ.
≤

1

ď − č


∫ ď
č

(
f ′′ (ţ) −

1

ď − č

∫ ď
č

f
′′

(s) ds

)2
dţ




1
2

×


∫ ď
č

(
K (ÿ,ţ) −

1

ď − č

∫ ď
č

K (ÿ, s) ds

)2
dţ




1
2

=

√
σ(f ′′)

ď − č

[
1

10240
(ÿ − č)5 +

33

320

(
ÿ −

3č + ď

4

)5

−
1057

10240

(
ÿ −

č + ď

2

)5
−

1

ď − č

{
1

192
(ÿ − č)3



Int. J. Anal. Appl. (2022), 20:28 9

+
3

8

(
ÿ −

3č + ď

4

)3
−

73

192

(
ÿ −

č + ď

2

)3}2
1
2

.

Hence proved (2.21) �

Corollary 2.3. By replacing ÿ = č in (2.21) we get∣∣∣∣∣f (č) + f (ď)2 −(ď − č) f
′(č) + f ′(ď)

12
−

1

ď − č

∫ ď
č

f (ţ)dţ

∣∣∣∣∣
≤
√
σ(f ′′)

(
ď − č

)3
2

1

12

1
√

5
.

3. An Application to Cumulative Distribution Function

Consider X is a random variable taking values in the finite interval
[
č, ď

]
with the probability density

function f :
[
č, ď

]
→ [0, 1] and cumulative distributive function

F (ÿ) = Pr (X ≤ ÿ) =
∫ ÿ
č

f (ţ)dţ, (3.1)

F
(
ď
)

= Pr
(
X ≤ ď

)
=

∫ ď
č

f (u)du = 1. (3.2)

In this section, we may use the inequalities (2.1)-(2.2), (2.17) and (2.21) to get useful application

for cumulative distribution function by using probability density function with smaller error than that

which may be obtained by the classical results.

Theorem 3.1. Under the assumption of Theorem 2.1, we get the following inequality which holds∣∣∣∣ď −E(X)ď − č − 14
[
F (ÿ) + F

(
č + ď − ÿ

)
+

1

2
F

(
č + ÿ

2

)
(3.3)

+
1

2
F

(
3č + ÿ

4

)
+

1

2
F

(
č + 2ď − ÿ

2

)
+

1

2
F

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f
(
č + ď − ÿ

)
− f (ÿ) +

1

4
f

(
č + 2ď − ÿ

2

)
−

1

4
f

(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

){
f

(
č + 4ď − ÿ

4

)
− f

(
3č + ÿ

4

)}]
−
f (ď) − f (č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3
≤ ω(ÿ)(ď − č)(S −γ)



10 Int. J. Anal. Appl. (2022), 20:28

and

∣∣∣∣ď −E(X)ď − č − 14
[
F (ÿ) + F

(
č + ď − ÿ

)
+

1

2
F

(
č + ÿ

2

)
(3.4)

+
1

2
F

(
3č + ÿ

4

)
+

1

2
F

(
č + 2ď − ÿ

2

)
+

1

2
F

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f
(
č + ď − ÿ

)
− f (ÿ) +

1

4
f

(
č + 2ď − ÿ

2

)
−

1

4
f

(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

){
f

(
č + 4ď − ÿ

4

)
− f

(
3č + ÿ

4

)}]
−
f (ď) − f (č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}∣∣∣∣∣ ≤ ω(ÿ)(ď − č)(Γ −S)
for all ÿ ∈

[
č, č+ď

2

]
.

Proof. By (3.1) and (3.2) on taking f = F and by applying the fact

E(X) =

∫ ď
č

ţdF (ţ) = ď −
∫ ď
č

F (ţ)dţ (3.5)

we attain (3.3) and (3.4) . �

Theorem 3.2. By using Theorem 2.1, we get the following inequality which holds

∣∣∣∣ď −E(X)ď − č − 14
[
F (ÿ) + F

(
č + ď − ÿ

)
+

1

2
F

(
č + ÿ

2

)
(3.6)

+
1

2
F

(
3č + ÿ

4

)
+

1

2
F

(
č + 2ď − ÿ

2

)
+

1

2
F

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f
(
č + ď − ÿ

)
− f (ÿ) +

1

4
f

(
č + 2ď − ÿ

2

)
−

1

4
f

(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

)
×
{
f

(
č + 4ď − ÿ

4

)
− f

(
3č + ÿ

4

)}]



Int. J. Anal. Appl. (2022), 20:28 11

−
f (ď) − f (č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3

−
73

192

(
ÿ −

č + ď

2

)3}∣∣∣∣∣
≤

1

π

∥∥f ′′′∥∥
2

[
1

10240
(ÿ − č)5 +

33

320

(
ÿ −

3č + ď

4

)5

−
1057

10240

(
ÿ −

č + ď

2

)5
−

1

ď − č

{
1

192
(ÿ − č)3

+
3

8

(
ÿ −

3č + ď

4

)3
−

73

192

(
ÿ −

č + ď

2

)3}2
1
2

.

Proof. Using (4.36) and by the conditions that we used in above Theorem , we get (3.6). �

Theorem 3.3. With the statement of Theorem 2.1, we have the following inequality which holds∣∣∣∣ď −E(X)ď − č − 14
[
F (ÿ) + F

(
č + ď − ÿ

)
+

1

2
F

(
č + ÿ

2

)
(3.7)

+
1

2
F

(
3č + ÿ

4

)
+

1

2
F

(
č + 2ď − ÿ

2

)
+

1

2
F

(
č + 4ď − ÿ

4

)
+

(
ÿ −

5č + 3ď

8

)
×
{
f
(
č + ď − ÿ

)
− f (ÿ) +

1

4
f

(
č + 2ď − ÿ

2

)
−

1

4
f

(
č + ÿ

2

)}
+

1

8

(
ÿ −

3č + ď

4

)
×
{
f

(
č + 4ď − ÿ

4

)
− f

(
3č + ÿ

4

)}]
−
f (ď) − f (č)(
ď − č

)2
{

1

192
(ÿ − č)3 +

3

8

(
ÿ −

3č + ď

4

)3
−

73

192

(
ÿ −

č + ď

2

)3}∣∣∣∣∣
≤
√
σ(f ′′)

ď − č

[
1

10240
(ÿ − č)5 +

33

320

(
ÿ −

3č + ď

4

)5

−
1057

10240

(
ÿ −

č + ď

2

)5
−

1

ď − č

{
1

192
(ÿ − č)3

+
3

8

(
ÿ −

3č + ď

4

)3
−

73

192

(
ÿ −

č + ď

2

)3}2
1
2

.

Proof. Applying (4.43) and by set of conditions that we used in Theorem 3.1, we get (3.7). �

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the

publication of this paper.



12 Int. J. Anal. Appl. (2022), 20:28

References

[1] A. Ostrowski, Über die absolutabweichung einer differentienbaren funktionen von ihren integralmittelwert, Comment.

Math. Helv. 10 (1938), 226–227.

[2] J. Amjad, A. Qayyum, S. Fahad, M. Arslan, Some new generalized Ostrowski type inequalities with new error

bounds, Innov. J. Math. 1 (2022), 30–43. https://doi.org/10.55059/ijm.2022.1.2/23.

[3] A. Qayyum, S. Hussain, A new generalized Ostrowski Grüss type inequality and applications, Appl. Math. Lett. 25

(2012), 1875–1880. https://doi.org/10.1016/j.aml.2012.02.052.

[4] A. Qayyum, M. Shoaib, A.E. Matouk, M.A. Latif, On new generalized Ostrowski type integral inequalities, Abstr.

Appl. Anal. 2014 (2014), 275806. https://doi.org/10.1155/2014/275806.

[5] A. Qayyum, M. Shoaib, M.A. Latif, A generalized inequality of Ostrowski type for twice differentiable bounded

mappings and applications, Appl. Math. Sci. 8 (2014), 1889–1901. https://doi.org/10.12988/ams.2014.4222.

[6] A. Qayyum, I. Faye, M. Shoaib, M.A. Latif, A generalization of Ostrowski type inequality for mappings whose

second derivatives belong to L1(a,b) and applications, Int. J. Pure Appl. Math. 98 (2015), 169-180. https:

//doi.org/10.12732/ijpam.v98i2.1.

[7] A. Qayyum, M. Shoaib, I. Faye, Some new generalized results on Ostrowski type integral inequalities with application,

J. Comput. Anal. Appl. 19 (2015), 693-712. https://doi.org/10.48550/arXiv.1505.01520.

[8] M.W. Alomari, A companion of Ostrowski’s inequality for mappings whose first derivatives are bounded and appli-

cations numerical integration, Kragujevac J. Math. 36 (2012), 77-82.

[9] A. Qayyum, M. Shoaib, I. Faye, A companion of Ostrowski type integral inequality using a 5-step kernel with some

applications, Filomat. 30 (2016), 3601–3614. https://doi.org/10.2298/fil1613601q.

[10] A. Qayyum, M. Shoaib, I. Faye, Companion of Ostrowski-type inequality based on 5-step quadratic kernel and

applications, J. Nonlinear Sci. Appl. 09 (2016), 537–552. https://doi.org/10.22436/jnsa.009.02.19.

[11] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Inequalities involving functions and their integrals and derivatives, Springer,

Dordrecht, 1991. https://doi.org/10.1007/978-94-011-3562-7.

https://doi.org/10.55059/ijm.2022.1.2/23
https://doi.org/10.1016/j.aml.2012.02.052
https://doi.org/10.1155/2014/275806
https://doi.org/10.12988/ams.2014.4222
https://doi.org/10.12732/ijpam.v98i2.1
https://doi.org/10.12732/ijpam.v98i2.1
https://doi.org/10.48550/arXiv.1505.01520
https://doi.org/10.2298/fil1613601q
https://doi.org/10.22436/jnsa.009.02.19
https://doi.org/10.1007/978-94-011-3562-7

	1. Introduction
	2. Main Findings
	3. An Application to Cumulative Distribution Function
	References