Int. J. Anal. Appl. (2023), 21:34 Solvability of Nonlinear Wave Equation with Nonlinear Integral Neumann Conditions Iqbal M. Batiha1,2,∗, Zainouba Chebana3, Taki-Eddine Oussaeif3, Adel Ouannas3, Iqbal H. Jebril1, Mutaz Shatnawi4 1Department of Mathematics, Al-Zaytoonah University of Jordan, Amman 11733, Jordan 2Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, UAE 3Department of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi, Algeria 4Department of Mathematics, Irbid National University, Irbid 21110, Jordan ∗Corresponding author: i.batiha@zuj.edu.jo Abstract. In this paper, we examine a nonlinear hyperbolic equation with a nonlinear integral condition. In particular, we prove the existence and the uniqueness of the linear problem by the Fadeo Galerkin method, and by applying an iterative process to some significant results obtained for the linear problem, the existence and the uniqueness of the weak solution for the nonlinear problem are additionally examined. 1. Introduction The nonlinear hyperbolic equations describes important processes in the nonlinear evolution equation basis of mathematical models of diverse phenomena and processes in mechanics, physics, technology, biophysics, biology, ecology, and many other areas [1–4]. Such ubiquitous occurrence of nonlinear hyperbolic equations is to be explained, first of all, by the fact that they are derived from fundamental laws in the real world [5,6]. Let us remark only that for broad classes of equations, the fundamental questions of solvability and uniqueness of solutions of various boundary value problems have been solved and that the differentia- bility properties of the solutions have been studied in detail [7–9]. General results of the solvability and uniqueness were inferred by different methods such as the energy method, upper lower method Received: Dec. 25, 2022. 2010 Mathematics Subject Classification. 35D30, 35L05, 35L70. Key words and phrases. hyperbolic equation; nonlinear integral condition; weak existence. https://doi.org/10.28924/2291-8639-21-2023-34 ISSN: 2291-8639 © 2023 the author(s). https://doi.org/10.28924/2291-8639-21-2023-34 2 Int. J. Anal. Appl. (2023), 21:34 and the Fadeo Galerkin methods. The later one is regarded one of the most important methods that were mainly developed in the 1960s, but they are still powerful tools today to deal with nonlinear evo- lution equations, especially those who are modeled by non-classical boundary conditions that consist of integral conditions [10–13]. Non-local and integral partial differential equations are used to solve a vast range of current physics and technology challenges [14–19]. When it is hard to directly measure the minimum and maximum values on the border, the overall value or average is known. This method might be utilized for modeling where we can model more complicated domain with nonlinear integral condition. Motivated by the above perspective, we trait in this work to discuss a nonlinear evolution equation with a nonlinear integral condition. In particular, we aim to focus on the solvability of the solution of nonlinear hyperbolic problems with the integral condition of the second type by the method of Fadeo-Galerkin. In the following sections, we present first the existence of the linear problem, and then by applying an iterative process based on the results obtained for the linear problem, we prove the existence and the uniqueness of the weak solution of the nonlinear problem. 2. The statement of the main problem In this section, we let Q = { (x,t) ∈R2, x ∈ Ω = ]0, l[ and 0 < t < T } , besides we consider the main following initial boundary value problem for a nonlinear hyperbolic equation:  ∂2u ∂t2 −a ∂2u ∂x2 = f (x,t,u,ux ) u(x, 0) = ϕ(x) ut(x, 0) = ψ(x) ∂u ∂x (0,t) = ∫ l 0 k(x,t)g(ut)(x,t)dx ∂u ∂x (l, t) = ∫ l 0 k(x,t)h(ut)(x,t)dx. (P1) Assuming that f ∈ L2 (Q) and ϕ,ψ ∈ L2 (Ω). The nonlinear hyperbolic equation is given as follows: Lu = ∂2u ∂t2 −a ∂2u ∂x2 = f (x,t,u,ux ), (2.1) which satisfies the following identities: • The initial conditions `u = { u(x, 0) = ϕ (x) ut (x, 0) = ψ (x) , x ∈ (0, l) . • The boundary conditions are integral conditions of the second type defined as: ∂u ∂x (0,t) = ∫ l 0 k(x,t)g(ut)(x,t)dx, t ∈ (0,T ) , ∂u ∂x (l, t) = ∫ l 0 k(x,t)h(ut)(x,t)dx, t ∈ (0,T ) , Int. J. Anal. Appl. (2023), 21:34 3 where k(x,t) ≥ 0 ∀(x,t) ∈ Qand g(ut)(x,t) ≤ h(ut)(x,t) ∀(x,t) ∈ Q, and for all v ∈ L2(Q), we have: ‖g(v)‖L2(Q) ≤ C‖v‖L∞(0,T,L2(Ω)) , in which we define the space V by V = H1 (Ω). Actually, the space V is provided with the norm ‖v‖V = ‖v‖H1(Ω), and hence it is a Hilbert space. From this point of view, we are now able to formulate problem (P2) in order to precisely study it. From this fact, we will need to the following hypothesis: (H) : { f ∈ L2 ( 0,T ; L2 (Ω) ) (H.1) ϕ ∈ H1 (Ω) (H.2) . 3. Position of problem (P1) In the rectangular area Q = Ω×(0,T ), and T < ∞, we consider the following linear problem (P2):  ∂2u ∂t2 −a ∂2u ∂x2 = f (x,t) ∀(x,t) ∈ Q u (x, 0) = ϕ (x) ∀x ∈ (0, l) ut (x, 0) = ψ (x) ∀x ∈ (0, l) ∂u ∂x (0,t) = ∫ l 0 k(x,t)g(ut)(x,t)dx ∀t ∈ (0,T ) ∂u ∂x (l, t) = ∫ l 0 k(x,t)g(ut)(x,t)dx ∀t ∈ (0,T ) (P2) in which the hyperbolic equation is given as follows: Lu = ∂2u ∂t2 −a ∂2u ∂x2 = f (x,t), (3.1) with the initial conditions: `u = { u(x, 0) = ϕ (x) ut (x, 0) = ψ (x) , x ∈ (0, l) , and with the integral condition of the second type: ∂u ∂x (0,t) = ∫ l 0 k(x,t)g(ut)(x,t)dx, t ∈ (0,T ) , ∂u ∂x (l, t) = ∫ l 0 k(x,t)h(ut)(x,t)dx, t ∈ (0,T ) , where k(x,t) ≥ 0 ∀(x,t) ∈ Q and 0 ≤ g(ut)(x,t) ≤ h(ut)(x,t) ∀(x,t) ∈ Q, and ‖g(v)‖L2(Q) ≤ C‖v‖L∞(0,T,L2(Q)) , 4 Int. J. Anal. Appl. (2023), 21:34 such that the space V = H1 (Ω) provided with the norm ‖v‖V = ‖v‖H1(Ω) is a Hilbert space. We are now able to formulate the problem (P2), precisely to study it, according to the following hypothesis: (H) : { f ∈ L2 ( 0,T ; L2 (Ω) ) (H.1) ϕ ∈ H1 (Ω) (H.2) . Definition 3.1. The weak solution of problem (P2) is a function that satisfies: • u ∈ L2 ( 0,T ; H1 (Ω) ) ∩L∞ ( 0,T ; H1 (Ω) ) . • u admits a strong derivative ∂u ∂t ∈ L2 ( 0,T ; L2 (Ω) ) . • u (0) = ϕ,ut (0) = ψ. • The following identity: (utt,v) + a (ux,vx ) = (f ,v) + ux (l, t)v(l) −ux (0,t)v(0) ∀v ∈ V, ∀t ∈ [0,T ] . 3.1. Variational formulation. By multiplying the equation: ∂2u ∂t2 −a ∂2u ∂x2 = f (x,t) (3.2) by an element v ∈ V , and the by integrating the result over Ω, we obtain:∫ Ω ∂2u ∂t2 ·vdx −a ∫ Ω ∂2u ∂x2 ·vdx = ∫ Ω f ·vdx. (3.3) By using the boundary conditions and using Green’s formula, ( 3.3) becomes (utt,v) + a (ux,vx ) = (f ,vt) + ux (l, t)v(l) −ux (0,t)v(0), ∀v ∈ V, (3.4) where (·, ·) denotes the scalar product L2 (Ω). 3.2. Study of the existence of weak solution of problem (P2). The demonstration of the existence of the solution of problem (P2) can be discussed based on the Faedo-Galerkin method which consists of carrying out the next three steps. 3.2.1. Step 1: Construction of the approximate solutions. As the space V is separable, then there exists a sequence w1,w2, · · · ,wm having the following properties:  wi ∈ V, ∀i, ∀m,w1,w2, ...,wm are linearly independent, Vm = 〈{w1,w2, ...,wm}〉 is dense in V. (3.5) In particular, we can say: ∀ϕ ∈ V =⇒ ∃(αkm)m ∈ IN∗, ϕm = m∑ k=1 αkmwk −→ ϕ when m −→ +∞. (3.6) ∀ψ ∈ V =⇒ ∃(βkm)m ∈ IN∗, ψm = m∑ k=1 βkmwk −→ ϕ when m −→ +∞. (3.7) Int. J. Anal. Appl. (2023), 21:34 5 Now, the Faedo Galerkin’s approximation aims to search about a function in which t 7→ um (x,t) = m∑ i=1 gim (t) wi (x) verifies { um (t) ∈ Vm, ∀t ∈ [0,T ] ((um(t))tt ,wk) + A (um(t),wk) = (f (t),wk) ∀k = 1,m , (P3) for any integer m ≥ 1, where ((um(t))tt ,wk) = (( m∑ i=1 gim (t) wi ) tt ,wk ) = ( m∑ i=1 ∂2gim ∂t (t) wi (x) ,wk ) = m∑ i=1 (wi,wk) ∂2gim ∂t2 (t) , (3.8) and A (um(t),wk) = A ( m∑ i=1 gim (t) wi,wk ) = a m∑ i=1 gim (t)  ∫ Ω ∂wi ∂x ∂wk ∂x dx − ∂wi ∂x (l) wk(l) + ∂wi ∂x (0) wk(0)   = a m∑ i=1 gim (t) ∫ Ω ∂wi (x) ∂x ∂wk(x) ∂x dx −a m∑ i=1 gim (t) ∂wi ∂x (l) wk(l) + a m∑ i=1 gim (t) ∂wi ∂x (0) wk(0) = m∑ i=1 A (wi,wk) gim (t) . (3.9) In addition, we have um(0) = m∑ i=1 gim (0) wi (x) = ϕm = m∑ i=1 αimwi (x). and u′m(0) = m∑ i=1 g′im (0) wi (x) = βm = m∑ i=1 βimwi (x). We obtain consequently a system of first-order nonlinear differential equations:  m∑ i=1 (wi,wk) ∂2gim ∂t2 (t) + a m∑ i=1 ( ∂wi ∂x , ∂wk ∂x ) gim (t) = (f (t),wk) + a m∑ i=1 gim (t) ∂wi ∂x (l) wk(l) −a m∑ i=1 gim (t) ∂wi ∂x (0) wk(0) gim (0) = αim ∀i = 1,m. g′im (0) = βim ∀i = 1,m. , (P4) From this view, we consider the vector: gm = (g1m(t), · · · ,gmm(t)) , fm = ((f ,w1) , · · · , (f ,wm)) , 6 Int. J. Anal. Appl. (2023), 21:34 coupled with the matrices: Bm = (( wi,wj )) 1≤i≤m 1≤j≤m ,Am = (( ∂wi ∂x , ∂wj ∂x )) 1≤i≤m 1≤j≤m , and Cm = ( ∂wi ∂x (l) ·wj(l) ) 1≤i≤m 1≤j≤m ,Dm = ( ∂wi ∂x (0) ·wj(0) ) 1≤i≤m 1≤j≤m . Now, we can immediately write problem (P4) in the matrix form as:  Bm ∂gm ∂t (t) + aAmgm + aDmgm = fm + aCmgm gm (0) = (αim)1≤i≤m g′m (0) = (βim)1≤i≤m , As the matrix entries Bm are linearly independent (because it is a diagonal matrix), then det Bm 6= 0. So, it is invertible, and then gm is the solution of the following states:  ∂2gm ∂t2 (t) + ( aB−1m Am + bB −1 m Dm −aB−1m Cm ) gm = B −1 m fm gm (0) = (αim)1≤i≤m . g′m (0) = (βim)1≤i≤m . (P5) Now, it is easy to verify that this ordinary differential system has a solution where the matrix: ( aB−1m Am + bB −1 m Bm −aB −1 m Cm ) is of constant coefficients and the vector B−1m fm are continuous functions and majorized by integrable functions on (0,T ). Consequently, we can conclude that there exists a tm that depends only on |αim| and |βim|. 3.2.2. Step 2: A priori estimate. Herein, we intend to begin this step with state and prove the next result. Lemma 3.1. For all m ∈N∗, if 1 8a > k2, the solution um ∈ L2 (0,T ; Vm) of problem (P2) satisfies: ‖um‖L2(0,T ; H1(Ω)) ≤ c1,∥∥∥∥∂um∂t ∥∥∥∥ L2(0,T ; L2(Ω)) ≤ c2, where c1 and c2 are two positive constants independent of m. Int. J. Anal. Appl. (2023), 21:34 7 Proof. By multiplying the equation of (P3) by gkm(t), and then by summing the result over k, we obtain: m∑ k=1 ((um(t))tt ,wk) g ′ km(t) + a m∑ k=1 ( ∂um ∂x (t), ∂wk ∂x∂t ) g′km(t) = m∑ k=1 (f (t),wk) ·g′km(t) + a m∑ i=1 gim (t) ∂wi ∂x (l) m∑ k=1 g′km(t)wk(l) −a m∑ i=1 gim (t) ∂wi ∂x (0) m∑ k=1 g′km(t)wk(0). So, we obtain ((um(t))tt , (um(t))t) + a ( ∂um ∂x (t), ∂um ∂x∂t (t) ) = (f (t), (um(t))t) + a m∑ i=1 gim (t) ∂wi ∂x (l) m∑ k=1 g′km(t)wk(l) −a m∑ i=1 gim (t) ∂wi ∂x (0) m∑ k=1 g′km(t)wk(0). Thus, we get ((um(t))tt , (um(t))t) + a ∥∥∥∥∂um∂x ∥∥∥∥2 L2(Ω) = (f (t),um(t)) + a m∑ i=1 gim (t) ∂wi ∂x (l) m∑ k=1 g′km(t)wk(l) −a m∑ i=1 gim (t) ∂wi ∂x (0) m∑ k=1 g′km(t)wk(0). Integrating the above equality over 0 to t coupled wit using the Cauchy inequality with ε, i.e. |ab| ≤ a2 2ε + εb2 2 , we get 1 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Ω) + a 2 ‖∇um‖2L2(Ω) ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) + a m∑ i=1 gim (t) ∂wi ∂x (l) m∑ k=1 g′km(t)wk(l) −a m∑ i=1 gim (t) ∂wi ∂x (0) m∑ k=1 g′km(t)wk(0) + 1 2 ‖ϕm‖2L2(Ω) + a 2 ‖∇ψm‖2L2(Ω) , ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) + a ∂um ∂x (l, t) ∂um ∂t (l, t) −a ∂um ∂x (0,t) ∂um ∂t (0,t), ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) + 1 2 ‖ϕm‖2L2(Ω) + a 2 ‖∇ψm‖2L2(Ω) + a ∫ τ 0 [(∫ Ω k(x,t)g ((ut)m) (x,t)dx ) ∂um ∂t (l, t) 8 Int. J. Anal. Appl. (2023), 21:34 − (∫ Ω k(x,t)h ((ut)m) (x,t)dx ) ∂um ∂t (0,t) ] ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) + 1 2 ‖ϕm‖2L2(Ω) + a 2 ‖∇ψm‖2L2(Ω) + a ∫ τ 0 [(∫ Ω k(x,t)g ((ut)m) (x,t)dx ) ∂um ∂t (l, t) − (∫ Ω k(x,t)h ((ut)m) (x,t)dx ) ∂um ∂t (0,t) ] . This means 1 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Ω) + a 2 ‖∇um‖2L2(Ω) ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) + 1 2 ‖ϕm‖2L2(Ω) + a 2 ‖∇ψm‖2L2(Ω) + a ∫ τ 0 [(∫ Ω k(x,t)g ((ut)m) (x,t)dx ) ∂um ∂t (l, t) − (∫ Ω k(x,t)g ((ut)m) (x,t)dx ) ∂um ∂t (0,t) ] ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) + 1 2 ‖ϕm‖2L2(Ω) + a 2 ‖∇ψm‖2L2(Ω) + aCk ∥∥∥∥∂um∂t ∥∥∥∥ L∞(0,T ;L2(Ω)) [∫ τ 0 ∫ Ω ∂2um ∂t∂x dxdt ] ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) + 1 2 ‖ϕm‖2L2(Ω) + a 2 ‖∇ψm‖2L2(Ω) + akC ∥∥∥∥∂um∂t ∥∥∥∥ L∞(0,T ;L2(Ω)) [∫ Ω ∂um ∂x dx − ∫ Ω ∂ψm ∂x dx ] , which yields 1 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Ω) + a 2 ‖∇um‖2L2(Ω) ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) + [(aCk)2 2δ ∥∥∥∥∂um∂t ∥∥∥∥2 L∞(0,T ;L2(Ω)) + δ [ ‖∇um‖2L∞(0,T ;L2(Ω)) + ‖∇ϕm‖ 2 L∞(0,T ;L2(Ω)) ]] + 1 2 ‖ϕm‖2L2(Ω) + a 2 ‖∇ψm‖2L2(Ω) ≤ 1 2ε ‖f‖2L2(Q) + ε 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Q) (aCk) 2 2δ ∥∥∥∥∂um∂t ∥∥∥∥2 L∞(0,T ;L2(Ω)) + δ‖∇um‖2L∞(0,T ;L2(Ω)) + a 2 ‖∇ψm‖2L2(Ω) + max( 1 2 ,δ)‖ϕm‖2H1(Ω) , Int. J. Anal. Appl. (2023), 21:34 9 or 1 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Ω) + a 2 ‖∇um‖2L2(Ω) ≤ 1 2ε ‖f‖2L2(Q) + ( εCT 2 + (aCk) 2 2δ )∥∥∥∥∂um∂t ∥∥∥∥2 L∞(0,T ;L2(Ω)) + δ‖∇um‖2L∞(0,T ;L2(Ω)) + a 2 ‖∇ψm‖2L2(Ω) + max( 1 2 ,aCkδ)‖ϕm‖2H1(Ω) , (3.10) where K = max ∫ Q k2 (x,t) dxdt. Consequently, we obtain 1 2 ∥∥∥∥∂um∂t ∥∥∥∥2 L2(Ω) + a 2 ‖∇um‖2L2(Ω) ≤ 1 2ε ‖f‖2L2(Q) + ( εCT 2 + (aCk) 2 2δ )∥∥∥∥∂um∂t ∥∥∥∥2 L∞(0,T ;L2(Ω)) + δ‖∇um‖2L∞(0,T ;L2(Ω)) + a 2 ‖∇ψm‖2L2(Ω) + max( 1 2 ,δ)‖ϕm‖2H1(Ω) , which gives:( 1 2 − ( εCT 2 + (aCk) 2 2δ ))∥∥∥∥∂um∂t ∥∥∥∥2 L∞(0,T ;L2(Ω)) + (a 2 −δ ) ‖∇um‖2L∞(0,T ;L2(Ω)) ≤ 1 2ε ‖f‖2L2(Q) + a 2 ‖∇ψm‖2L2(Ω) + max( 1 2 ,δ)‖ϕm‖2H1(Ω) By putting ε = 1 4CT and δ = 4 (aCk)2, we get∥∥∥∥∂um∂t ∥∥∥∥2 L∞(0,T ;L2(Ω)) + ‖∇um‖2L∞(0,T ;L2(Ω)) ≤ C1 [ ‖f‖2L2(Q) + ‖∇ψm‖ 2 L2(Ω) + ‖ϕm‖ 2 H1(Ω) ] , (3.11) or C1 = max ( 2CT , a 2 , max( 1 2 , (aCk) 2 ) ) min { 1 4 , ( a 2 − 4 (aCk)2) )} . From (3.11), we can also get:∥∥∥∥∂um∂t ∥∥∥∥ L2(Ω) ≤ √ C1 [ ‖f‖2L2(Q) + ‖∇ψm‖ 2 L2(Ω) + ‖ϕm‖ 2 H1(Ω) ]1 2 . (3.12) By integrating (3.12) over [0,T ], we obtain:∥∥∥∥∥∥ τ∫ 0 ∂um ∂t ∥∥∥∥∥∥ L2(Ω) ≤ τ∫ 0 ∥∥∥∥∂um∂t ∥∥∥∥ L2(Ω) ≤ T √ C1 [ ‖f‖2L2(Q) + ‖∇ψm‖ 2 L2(Ω) + ‖ϕm‖ 2 H1(Ω) ]1 2 , 10 Int. J. Anal. Appl. (2023), 21:34 or ∥∥∥∥∥∥ τ∫ 0 ∂um ∂t ∥∥∥∥∥∥ L2(Ω) ≤ T √ C1 [ ‖f‖2L2(Q) + ‖∇ψm‖ 2 L2(Ω) + ‖ϕm‖ 2 H1(Ω) ]1 2 , which implies: ‖um −ϕm‖L2(Ω) ≤ T √ C1 [ ‖f‖2L2(Q) + ‖∇ψm‖ 2 L2(Ω) + ‖ϕm‖ 2 H1(Ω) ]1 2 , i.e., ‖um‖2L2(Ω) + ‖ϕm‖ 2 L2(Ω) ≤ TC1 [ ‖f‖2L2(Q) + ‖∇ψm‖ 2 L2(Ω) + ‖ϕm‖ 2 H1(Ω) ] + 2‖um‖L2(Ω) ‖ϕm‖L2(Ω) . By applying Cauchy inequality with γ, we get: ‖um‖2L2(Ω) + ‖ϕm‖ 2 L2(Ω) ≤ TC1 [ ‖f‖2L2(Q) + ‖∇ψm‖ 2 L2(Ω) + ‖ϕm‖ 2 H1(Ω) ] + 1 γ ‖um‖2L2(Ω) + γ‖ϕm‖ 2 L2(Ω) . By putting γ = 2, we can have: ‖um‖2L2(Ω) ≤ 4TC1 [ ‖f‖2L2(Q) + ‖∇ψm‖ 2 L2(Ω) + ‖ϕm‖ 2 H1(Ω) ] . (3.13) Now, it follows from (3.11) and (3.13) that the solution of the initial value problem for system (P4) can be extended to [0,T ]. This confirms what we have demonstrated in the first step. Consequently, when m → +∞ in (3.13), we obtain:{ um uniformly bounded in L2(0,T ; H1 (Ω)) (um)t uniformly bounded in L 2 ( 0,T ; L2 (Ω) ) . (3.14) � 3.2.3. Step 3: Convergence and the result of existence. Theorem 3.1. There is a function u ∈ L2(0,T ; H1 (Ω)) ∩ L∞(0,T ; L2 (Ω)) with ∂u ∂t ∈ L2 ( 0,T;L2 (Ω) ) and a subsequence denoted by ( umk ) k ⊆ (um)m such that  umk ⇀ u in L 2(0,T;H1 (Ω)) ∂umk ∂t ⇀ ∂u ∂t in L2 ( 0,T;L2 (Ω) ) , as m −→ +∞. Proof. From Lemma 1.2, we might deduce that there are subsequences denoted respectively by ( umk ) ,( ∂umk ∂t ) of (um) and (um)t such that umk ⇀ u in L 2(0,T ; H1 (Ω)) , (3.15) and ∂umk ∂t ⇀ w in L2 ( 0,T ; L2 (Ω) ) . (3.16) Int. J. Anal. Appl. (2023), 21:34 11 We know that according to Relikh-Kondrachoff’s theorem the injection of H1 (Q) into L2 (Q) is compact. In addition, like the results of Rellich’s theorem, any weakly convergent sequence in H1 (Q) has a subsequence which converges strongly in L2 (Q) . So, we can assert: umk −→ u in L 2(Q) . (3.17) On the other hand, from Lemma 1.3, there is a subsequence of ( umk ) k , which is still denoted by umk, converges almost everywhere to u such that umk −→ u almost everywhere Q . (3.18) It is still essential to demonstrate that w = ∂u ∂t . This actually suffices to prove: u(t) = ϕ + t∫ 0 w(τ)dτ. (3.19) To this aim, we note that as umk ⇀ u inL 2(0,T;L2 (Ω)) , then the proof of (3.19) is equivalent to prove that umk ⇀ ϕ + χ in L 2(0,T ;L2 (Ω)) , which means lim ( umk −ϕ−χ,v ) L2(0,T ;L2(Ω)) = 0, ∀v ∈ L 2(0,T;L2 (Ω)), as χ (t) = t∫ 0 w(τ)dτ. In fact, by using the equality umk −ϕmk = t∫ 0 ∂umk ∂τ dτ, for all t ∈ [0,T ] , with the help of using umk ∈ L 2 ( 0,T ; Vmk ) and ( umk ) t ∈ L2 ( 0,T ; Vmk ) , we can get:( umk −ϕ− t∫ 0 w(τ)dτ,v ) L2(0,T ;L2(Ω)) =  umk −ϕmk − t∫ 0 w(τ)dτ,v   L2(0,T ;L2(Ω)) + ( ϕmk −ϕ,v ) L2(0,T ;L2(Ω)) =   t∫ 0 ( ∂umk ∂τ −w(τ) ) dτ,v   L2(0,T ;L2(Ω)) + ( ϕmk −ϕ,v ) L2(0,T ;L2(Ω)) , 12 Int. J. Anal. Appl. (2023), 21:34 for all t ∈ [0,T ]. By virtue of part (ii) of Lemma 1.6, it comes( umk −ϕ− t∫ 0 w(τ)dτ,v ) L2(0,T ;L2(Ω)) = t∫ 0 ( ∂umk ∂τ −w(τ),v ) L2(0,T ;L2(Ω)) dτ + ( ϕmk −ϕ,v ) L2(0,T ;L2(Ω)) , for all t ∈ [0,T ]. On the one hand, we have lim k−→∞ t∫ 0 ( ∂umk ∂τ −w(τ),v ) L2(0,T ;L2(Ω)) dτ = 0, (3.20) for t ∈ [0,T ]. Besides, we have: lim k−→∞ (ϕm −ϕ,v)L2(0,T ;L2(Ω)) = 0, (3.21) which implies: lim k−→∞ ( umk −ϕ−χ,v ) L2(0,T ; L2(Ω)) = 0, ∀v ∈ L 2 ( 0,T ; L2 (Ω) ) . � Theorem 3.2. The function u of the Theorem (3.1) is the weak solution to the problem (P2) in the sense of the definition 3.1. Proof. From Theorem (3.1), we have shown that the limit function u satisfies the first two conditions of the definition 3.1. Now we will demonstrate (iii). According to the Theorem 3.1, we have: umk (0) ⇀ u (0) in L 2(Ω) . On the other hand, we have umk (0) −→ ϕ in L 2(Ω) , which implies: umk (0) ⇀ ϕ in L 2(Ω) . From the uniqueness of the limit, we get u (0) = ϕ. By using the same previous steps, we demonstrate ut (0) = ψ. It remains to demonstrate (iv). To this aim, we have: (utt,v) + a (u,v) = (f ,v) ∀v ∈ V, and ∀t ∈ [0,T ] . Integrating (P3) over (0,T ), we obtain: t∫ 0 ((um(t))tt ,wk) dτ + t∫ 0 a (um(t),wk) dτ = t∫ 0 (f (t),wk) dτ, (3.22) Int. J. Anal. Appl. (2023), 21:34 13 for all k = 1,m and for all t ∈ [0,T ]. Using (3.13) and that Vm dense in V and passing to the limit in (3.22), we get: T∫ 0 (utt,wk) dτ + T∫ 0 a (u,wk) dτ = T∫ 0 (f ,wk) dτ, ∀t ∈ [0,T ] . This immediately implies that (iv) is verified. � Corollary 3.1. The uniqueness of the solution of problem (P2) comes straight through the estimate (3.11). 4. Weak solution of the nonlinear problem Initially, we present the considered solution’s concept. For this purpose, we let v = v(x,t) be any function of V such that V = { v ∈ C1 (Q) , vx (l, t) = vx (0,t) = 0, t ∈ [0,T ] } . By multiplying ∂2u ∂t2 −a ∂2u ∂x2 = f (x,t,u,ux ) by v and integrating the result over Qτ, we obtain∫ Qτ ∂2y ∂t2 (x,t) · ∂v ∂t (x,t)dxdt −a ∫ Qτ ∆y(x,t) · ∂v ∂t (x,t)dxdt = ∫ Qτ G (x,t,y,yx ) · ∂v ∂t (x,t)dxdt. Now, by using integration by parts and the conditions on y and v, we get∫ Qτ ∂2y ∂t2 (x,t) · ∂v ∂t (x,t)dxdt + a ∫ Qτ ∂y ∂x (x,t) · ∂2v ∂x∂t (x,t)dxdt = ∫ Qτ G(x,t,y,yx ) · ∂v ∂t (x,t)dxdt. (4.1) It then results from (4.1) that A (y,v) = ∫ Qτ G(x,t,y,yx ) · ∂v ∂t (x,t)dxdt, (4.2) or A (y,v) = ∫ Qτ ∂2y ∂t2 (x,t) · ∂v ∂t (x,t)dxdt + a ∫ Qτ ∂y ∂x (x,t) · ∂2v ∂x∂t (x,t)dxdt. 14 Int. J. Anal. Appl. (2023), 21:34 Thus, it is the time to build a recurring sequence starting with y(0) = 0. The sequence ( y(n) ) n∈N is defined as follows: Given the element y(n−1), then for n = 1, 2, 3, · · · , we can solve the following problem:   ∂2y(n) ∂t2 −a∆y(n) = G ( x,t,y(n−1),y (n−1) x ) y(n) (x, 0) = 0 y (n) t (x, 0) = 0 y (n) x (0,t) = 0 y (n) x (l, t) = 0 . (P4) According to the last linear problem, we fix the n each time. Problem (P4) admits then a unique solution y(n) (x,t), which can be given by the Fadeo-Galarkin method. In this regard, we assume z(n) (x,t) = y(n+1) (x,t) −y(n)(x,t). As a result, we have the following new problem:  ∂2z(n) ∂t2 −a∆z(n) = p(n−1)(x,t) z(n) (x.0) = 0 z (n) t (x.0) = 0 z (n) x (0,t) = 0 z (n) x (l, t) dx = 0 , (P5) or p(n−1)(x,t) = G ( x,t,y(n),y (n) x ) −G ( x,t,y(n−1),y (n−1) x ) . Multiplying ∂2z(n) ∂t2 −a∆z(n) = p(n−1)(x,t) by z(n) and then integrating the result over Qτ yield:∫ Qτ ∂2z(n) ∂t2 (x,t) · ∂z(n) ∂t (x,t)dxdt −a ∫ Qτ ∆z(n)(x,t) · ∂z(n) ∂t (x,t) dxdt = ∫ Qτ p(n−1)(x,t) · ∂z(n) ∂t (x,t) dxdt. If we apply an integration by parts for each term of the above equality, keeping in view the initial and boundary conditions, we get: 1 2 ∫ Ω ( ∂z(n) ∂t (x,τ))2dx + a 2 ∫ Ω ( ∂z(n) ∂x (x,t) )2 dxdt = ∫ Qτ p(n−1)(x,t) · ∂z(n) ∂t (x,t) dxdt. Int. J. Anal. Appl. (2023), 21:34 15 When the Cauchy Schwarz inequality is applied to the second portion of the above equation, the following result is obtained: 1 2 ∫ Ω ( ∂z(n) ∂t (x,τ))2dx + a 2 ∫ Ω ( ∂z(n) ∂x (x,t) )2 dxdt 6 1 2ε ∫ Qτ | p(n−1)(x,t) |2 dxdt + ε 2 ∫ Qτ ( ∂z(n) ∂t (x,t) )2 dxdt, or 1 2 ∫ Ω ( ∂z(n) ∂t (x,τ))2dx + a 2 ∫ Ω ( ∂z(n) ∂x (x,t) )2 dx 6 1 2ε ∫ Qτ | G ( x,t,y(n),y (n) x ) −G ( x,t,y(n−1),y (n−1) x ) |2 dxdt + ε 2 ∫ Qτ ( ∂z(n) ∂t (x,t) )2 dxdt. We deduce consequently that: 1 2 ∫ Ω ( ∂z(n) ∂t (x,τ))2dx + a 2 ∫ Ω ( ∂z(n) ∂x (x,t) )2 dx 6 k2 2ε ∫ Qτ (| y(n) −y(n−1) | + | y(n)x −y (n−1) x |)2dxdt + ε 2 ∫ Qτ ( ∂z(n) ∂t (x,t) )2 dxdt 6 k2 2ε ∫ Qτ (| z(n−1) | + | z(n−1)x |)2dxdt + ε 2 ∫ Qτ ( ∂z(n) ∂t (x,t) )2 dxdt 6 k2 ε ∫ Qτ (| z(n−1) |2 + | z(n−1)x |2)dxdt + ε 2 ∫ Qτ ( ∂z(n) ∂t (x,t) )2 dxdt 6 k2 ε ∥∥∥z(n−1)∥∥∥ L2(0,T,H1(0,l)) + ε 2 ∫ Qτ ( ∂z(n) ∂t (x,t) )2 dxdt. By multiplying by 2 and applying Grenwell’s Lemma, we get ∫ Ω ( ∂z(n) ∂t (x,τ))2dx + a ∫ Ω ( ∂z(n) ∂x (x,t) )2 dx 6 k2 ε ∥∥∥z(n−1)∥∥∥ L2(0,T,H1(0,l)) + ε ∫ Qτ ( ∂z(n) ∂t (x,t) )2 dxdt ≤ k2 ε exp(εT ) ∥∥∥z(n−1)∥∥∥ L2(0,T,H1(0,l)) . 16 Int. J. Anal. Appl. (2023), 21:34 Integrating over t yields:∫ QT ( ∂z(n) ∂t (x,τ))2dxdt + a ∫ QT ( ∂z(n) ∂x (x,t) )2 dxdt 6 Tk2 ε ∥∥∥z(n−1)∥∥∥ L2(0,T,H1(0,l)) exp(εT ), or ∫ QT ( ∂z(n) ∂t (x,τ))2dxdt + ∫ QT ( ∂z(n) ∂x (x,t) )2 dxdt 6 Tk2 exp(εT ) ε min(1,a) ∥∥∥z(n−1)∥∥∥ L2(0,T,H1(0,1)) . By putting c = Tk2 exp(εT ) ε min(1,a) , we get: ‖ ∂z(n) ∂t ‖2L2(0,T,H1(0,1)) + ‖ ∂z(n) ∂x ‖2L2(0,T,H1(Ω))6 c ∥∥∥z(n−1)∥∥∥2 L2(0,T,H1(Ω)) . Thus, by applying Pointcarre, we have ‖ z(n) ‖2L2(0,T,H1(Ω))6 Tc ∥∥∥z(n−1)∥∥∥2 L2(0,T,H1(Ω)) , and n−1∑ i=1 z(i) = y(n). According to the convergence criterion of the series ∞∑ n=1 z(n) that converges if |c| < 1, we obtain: ∣∣∣∣∣(Tk) 2 exp(εT ) ε min(1,a) ∣∣∣∣∣ < 1 ⇒ Tk √ exp(εT ) ε min(1,a) < 1. Consequently, we get: k < √ ε min(1,a) exp(−εT ) T . Then (y(n))n converges to an element of L2(0,T,H1(Ω)), say y. Now, we will show that lim n−→∞ y(n)(x,t) = y(x,t) is a solution to the problem (P5) by showing that y satisfies: A (y,v) = ∫ Qτ G(x,t,y,yx ) ·v(x,t)dxdt. We therefore consider the weak formulation of the problem (P1) as follows: A ( y(n),v ) = ∫ Qτ ∂2y(n) ∂t2 (x,t) · ∂v ∂t (x,t)dxdt + a 2 ∫ Qτ ∂y(n) ∂x (x,t) · ∂2v ∂t∂x (x,t)dxdt. Int. J. Anal. Appl. (2023), 21:34 17 From the linearity of A, we can have: A ( y(n),v ) = A ( y(n) −y,v ) + A (y,v) = ∫ Qτ ∂2(y(n) −y) ∂t2 (x,t) · ∂v ∂t (x,t)dxdt + a 2 ∫ Qτ ∂(y(n) −y) ∂x (x,t) · ∂2v ∂t∂x (x,t)dxdt − ∫ Qτ ∂2y ∂t2 (x,t) · ∂v ∂t (x,t)dxdt + a 2 ∫ Qτ ∂y ∂x (x,t) · ∂2v ∂t∂x (x,t)dxdt, which implies A ( y(n) −y,v ) = ∫ Qτ ∂2(y(n) −y) ∂t2 (x,t) · ∂v ∂t (x,t)dxdt + a 2 ∫ Qτ ∂(y(n) −y) ∂x (x,t) · ∂2v ∂t∂x (x,t)dxdt. Now, by applying the Cauchy Schwartz inequality, the following results can be obtained: A ( y(n) −y,v ) 6‖ vt ‖L2(Qτ ) ∥∥∥(y(n) −y)tt∥∥∥ L2(0,T,L2(Ω)) + a 2 ‖ vxt ‖L2(Qτ ) ∥∥∥(y(n) −y)x∥∥∥ L2(0,T,L2(Ω)) . Then, we can find A ( y(n) −y,v ) 6 C (∥∥∥(y(n) −y)tt∥∥∥ L2(0,T,L2(Ω)) + ∥∥∥(y(n) −y)x∥∥∥ L2(0,T,L2(Ω)) ) × ( ‖ vt ‖L2(Qτ ) + ‖ vxt ‖L2(Qτ ) ) , or C = max ( 1, a 2 ) . Now, as y(n) −→ y in L2 ( 0,T,H1 (0, l) ) u H1 (Q), we get: y(n) −→ y in L2 (Q) , y (n) t −→ yt in L 2 (Q) , y (n) x −→ yx in L2 (Q) . Consequently, we note as n −→ +∞, we find: lim n−→+∞ A ( y(n) −y,v ) = 0. Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi- cation of this paper. 18 Int. J. Anal. Appl. (2023), 21:34 References [1] G. Bahia, A. Ouannas, I.M. Batiha, Z. Odibat, The Optimal Homotopy Analysis Method Applied on Nonlinear Time-fractional Hyperbolic Partial Differential Equations, Numer. Methods Part. Differ. Equ. 37 (2020), 2008- 2022. https://doi.org/10.1002/num.22639. [2] B. Abdelfatah, O. Taki-Eddine, B.A. Leila, A Mixed Problem with an Integral Two-Space-Variables Condition for Parabolic Equation with The Bessel Operator, J. Math. 2013 (2013), 457631. https://doi.org/10.1155/2013/ 457631. [3] D. Sofiane, B. Abdelfatah, O. Taki-Eddine, Study of Solution for a Parabolic Integrodifferential Equation with the Second Kind Integral Condition, Int. J. Anal. Appl 16 (2018), 569-593. https://doi.org/10.28924/ 2291-8639-16-2018-569. [4] O. Taki-Eddine, B. Abdelfatah, A Priori Estimates for Weak Solution for a Time-Fractional Nonlinear Reaction- Diffusion Equations With an Integral Condition, Chaos Solitons Fractals. 103 (2017), 79-89. https://doi.org/ 10.1016/j.chaos.2017.05.035. [5] T.E. Oussaeif, A. Bouziani, Solvability of Nonlinear Goursat Type Problem for Hyperbolic Equation with Integral Condition, Khayyam J. Math. 4 (2018), 198-213. https://doi.org/10.22034/kjm.2018.65161. [6] T.E. Oussaeif, A. Bouziani, Existence and Uniqueness of Solutions to Parabolic Fractional Differential Equations With Integral Conditions, Electron. J. Differ. Equ. 2014 (2014), 179. [7] I.M. Batiha, Solvability of the Solution of Superlinear Hyperbolic Dirichlet Problem, Int. J. Anal. Appl. 20 (2022), 62. https://doi.org/10.28924/2291-8639-20-2022-62. [8] I.M. Batiha, Z. Chebana, T.E. Oussaeif, A. Ouannas, I.H. Jebril, On a Weak Solution of a Fractional-order Temporal Equation, Math. Stat. 10 (2022), 1116-1120. https://doi.org/10.13189/ms.2022.100522. [9] T.E. Oussaeif, B. Antara, A. Ouannas, I.M. Batiha, K.M. Saad, H. Jahanshahi, A.M. Aljuaid, A.A. Aly, Existence and Uniqueness of the Solution for an Inverse Problem of a Fractional Diffusion Equation with Integral Condition, J. Funct. Spaces. 2022 (2022), 7667370. https://doi.org/10.1155/2022/7667370. [10] N. Anakira, Z. Chebana, T.-E. Oussaeif, I.M. Batiha, A. Ouannas, A Study of a Weak Solution of a Diffusion Problem for a Temporal Fractional Differential Equation, Nonlinear Funct. Anal. Appl. 27 (2022), 679–689. https: //doi.org/10.22771/NFAA.2022.27.03.14. [11] I.M. Batiha, A. Ouannas, R. Albadarneh, A.A. Al-Nana, S. Momani, Existence and Uniqueness of Solutions for Generalized Sturm–liouville and Langevin Equations via Caputo–hadamard Fractional-Order Operator, Eng. Comput. 39 (2022), 2581-2603. https://doi.org/10.1108/ec-07-2021-0393. [12] Z. Chebana, T.E. Oussaeif, A. Ouannas, I. Batiha, Solvability of Dirichlet Problem for a Fractional Partial Differential Equation by Using Energy Inequality and Faedo-Galerkin Method, Innov. J. Math. 1 (2022), 34-44. https://doi. org/10.55059/ijm.2022.1.1/4. [13] A. Zraiqat, L.K. Al-Hwawcha, On Exact Solutions of Second Order Nonlinear Ordinary Differential Equations, Appl. Math. 06 (2015), 953-957. https://doi.org/10.4236/am.2015.66087. [14] R. Imad, O. Taki-Eddine, Solvability of a Solution and Controllability of Partial Fractional Differential Systems, J. Interdiscip. Math. 24 (2021), 1175-1200. https://doi.org/10.1080/09720502.2020.1838754. [15] R. Imad, O. Taki-Eddine, B abdelouahab, Solvability of a Solution and Controllability for Nonlinear Fractional Differential Equations, Bull. Inst. Math. 15 (2020), 237-249. [16] T.E. Oussaeif, A. Bouziani, Mixed Problem with an Integral Two-Space-Variables Condition for a Class of Hyperbolic Equations, Int. J. Anal. 2013 (2013), 957163. https://doi.org/10.1155/2013/957163. [17] O. Taki-Eddine, B. Abdelfatah, Mixed Problem With an Integral Two-Space-Variables Condition for a Parabolic Equation, Int. J. Evol. Equ. 9 (2014), 181-198. https://doi.org/10.1002/num.22639 https://doi.org/10.1155/2013/457631 https://doi.org/10.1155/2013/457631 https://doi.org/10.28924/2291-8639-16-2018-569 https://doi.org/10.28924/2291-8639-16-2018-569 https://doi.org/10.1016/j.chaos.2017.05.035 https://doi.org/10.1016/j.chaos.2017.05.035 https://doi.org/10.22034/kjm.2018.65161 https://doi.org/10.28924/2291-8639-20-2022-62 https://doi.org/10.13189/ms.2022.100522 https://doi.org/10.1155/2022/7667370 https://doi.org/10.22771/NFAA.2022.27.03.14 https://doi.org/10.22771/NFAA.2022.27.03.14 https://doi.org/10.1108/ec-07-2021-0393 https://doi.org/10.55059/ijm.2022.1.1/4 https://doi.org/10.55059/ijm.2022.1.1/4 https://doi.org/10.4236/am.2015.66087 https://doi.org/10.1080/09720502.2020.1838754 https://doi.org/10.1155/2013/957163 Int. J. Anal. Appl. (2023), 21:34 19 [18] O. Taki Eddine, B. Abdelfatah, Mixed Problem with an Integral Two-Space-Variables condition for a Third Order Parabolic Equation, Int. J. Anal. Appl. 12 (2016), 98-117. [19] T. E. Oussaeif, A. Bouziani, Solvability of Nonlinear Viscosity Equation With a Boundary Integral Condition, J. Nonlinear Evol. Equ. Appl. 2015 (2015), 31-45. 1. Introduction 2. The statement of the main problem 3. Position of problem (P1) 3.1. Variational formulation 3.2. Study of the existence of weak solution of problem (P2) 4. Weak solution of the nonlinear problem References