Int. J. Anal. Appl. (2023), 21:41 Received: Feb. 11, 2023. 2020 Mathematics Subject Classification. 62P05. Key words and phrases. neutrosophic statistics; classical statistics; simulation; robust type estimators; indeterminacy intervals. https://doi.org/10.28924/2291-8639-21-2023-41 Β© 2023 the author(s) ISSN: 2291-8639 1 Neutrosophic Generalized Exponential Robust Ratio Type Estimators Yashpal Singh Raghav* Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia *Corresponding author: yraghav@jazanu.edu.sa ABSTRACT. Estimators proposed under classical statistics fail if data are vague or indeterminate. Neutrosophic Statistics are the only alternative because its deal with indeterminacy. Extensive reserch has been conducted in this field because of its wide applicability. This study aimed to further develop the theory of neutosophic simple random sampling without replacement. In this study, a generalized neutrosophic exponential robust ratio-type estimator was proposed, and five of its member neutrosophic estimators were developed. Derivations of the bias and Mean Square Error were provided up to the first-order approximation. To demonstrate the high efficiency of the proposed neutrosophic estimators an empirical study on the stock price of Moderna and four simulation studies have been conducted, and the results show that the proposed neutrosophic estimators are more efficient than similar existing ratio type estimators discussed in this paper in neutrosophic as well as classical forms. 1. INTRODUCTION Classical statistics and its methods deal with randomness but there are cases where the data at hand is indeterminate or vague or ambiguous or imprecise rather than random. In such situations estimation using classical statistical methods does not yield promising results. Fuzzy logic [1, 2] is one solution to tackle such a problem but still, it ignores indeterminacy. In such cases, neutrosophic methods are much more reliable. They deal with both randomness and more importantly with indeterminacy. Neutrosophic statistics refers to a set of data such that the data or a part of it is indeterminate and methods to analyze such a data [3]. Neutrosophic statistics is an extension of classical statistics and when the indeterminacy is zero, neutrosophic statistics coincides with classical statistics [3]. Estimation through neutrosophic https://doi.org/10.28924/2291-8639-21-2023-41 2 Int. J. Anal. Appl. (2023), 21:41 methods is a new field and therefore it is unexplored unlike estimation problems in classical probability sampling designs where the data is determinate [4-8]. But, due to its wide applicability, it has gained much more importance than classical statistics and as a results it is being applied in various fileds for instance in decision making [9]. [10] developed a new sampling plan using neutrosophic process. [11] proposed neutrosophic analysis of variance. [12] used neutrosophic statistics in analyzing road traffic accidents. [13] proposed goodness of fit test in neutrosophic statistics. As a result filed of neutrosophic sampling has been developed and some neutrosophic ratio-type estimators has been proposed [14] and this paper is the second paper aimed at further developing the theory of neutrosophic SRSWOR or NSRSWOR sampling. It has been observed in some sample surveys that the data collected containes some vagueness due to many factors like methodolgy used (observing blood pressure multiple times within an interval in NFHS 4 [16]) , observing daily stock price [15, 19] or daily temperature of a city [14]. All these are examples where the data contains some indeterminacy and clssical statistical measures like mean, median or standard deviation might not give results which are useful for decision making. Thus the aim of this paper is to further develop neutrosophic probability sampling theory particulary NSRSWOR by developing various generalized neutrosophic exponential robust ratio type estimators. In Section 2, the paper presents the terminologies of neutrosophic statistics for new readers. In Section 3, existing related neutrosophic ratio-type estimators have been presented. In Section 4, the proposed generalized neutrosophic exponential robust ratio type estimator and the five developed estimators along with their derivations of biases and MSEs are presented. In order to demonstrate the high efficiecny of the developed neutrosophic generalized neutrosophic exponential robust ratio type estimators four simulation studies have been conducted in Section 5. The results are compared with their classical MSE values as well. Results and concluding remarks on this paper are provided in Section 6 along with some future fruitful areas of research. 2. TERMINOLOGY A simple random neutrosophic sample of size n from a classical or neutrosophic population is a sample of n individuals such that at least one of them has some indeterminacy [3, 14]. As presented in [14], a neutrosophic observation is of the form 𝑍𝑁 = 𝑍𝐿 + π‘π‘ˆ 𝐼𝑁, where 𝐼𝑁 ∈ [𝐼𝐿 , πΌπ‘ˆ ] and 𝑍𝑁 ∈ [𝑍𝑙 , 𝑍𝑒 ]. Now consider a simple random neutrosophic sample of size 𝑛𝑁 ∈ [𝑛𝐿 , π‘›π‘ˆ ] drawn from a finite population of size N and 𝑦𝑁 (𝑖) ∈ [𝑦𝐿 , π‘¦π‘ˆ ] and π‘₯𝑁 (𝑖) are 𝑖 π‘‘β„Ž ∈ [π‘₯𝐿 , π‘₯π‘ˆ ] neutrosophic sample 3 Int. J. Anal. Appl. (2023), 21:41 observation. Here the population mean of neutrosophic survey and auxiliary variable are �̅�𝑁 ∈ [π‘ŒπΏ , π‘Œπ‘ˆ ] and �̅�𝑁 ∈ [𝑋𝐿 , π‘‹π‘ˆ ] respectively. 𝐢𝑦𝑁 ∈ [𝐢𝑦𝑁𝐿 , πΆπ‘¦π‘π‘ˆ ] and 𝐢π‘₯𝑁 ∈ [𝐢π‘₯𝑁𝐿 , 𝐢π‘₯π‘π‘ˆ ] are population coefficient of variation of neutrosophic survey and auxiliary variables respectively. In addition, 𝜌π‘₯𝑦𝑁 ∈ [𝜌π‘₯𝑦𝑁𝐿 , 𝜌π‘₯π‘¦π‘π‘ˆ ], 𝛽1(π‘₯𝑁 ) ∈ [𝛽1(π‘₯𝑁𝐿 ), 𝛽1(π‘₯π‘π‘ˆ )] and 𝛽2(π‘₯𝑁 ) ∈ [𝛽2(π‘₯𝑁𝐿 ), 𝛽2(π‘₯π‘π‘ˆ )] are the correlation coefficient between the neutrosophic survey and auxiliary variables, coefficient of skewness and coefficient of kurtosis of the neutrosophic auxiliary variable respectively. The MSE of a neutrosophic estimator is of the form, 𝑀𝑆𝐸(�̅�𝑁 ) ∈ [𝑀𝑆𝐸𝐿 , π‘€π‘†πΈπ‘ˆ ]. The error terms in neutrosophic statistics are: �̅�𝑦𝑁 = �̅�𝑁 βˆ’ �̅�𝑁, οΏ½Μ…οΏ½π‘₯𝑁 = �̅�𝑁 βˆ’ �̅�𝑁, 𝐸(�̅�𝑦𝑁 ) = 𝐸(οΏ½Μ…οΏ½π‘₯𝑁) = 0, 𝐸(�̅�𝑦𝑁 2 ) = π‘βˆ’π‘› 𝑁𝑛 𝑆𝑦𝑁 2 �̅�𝑁 2 = ΞΎ20 𝐸(οΏ½Μ…οΏ½π‘₯𝑁 2 ) = π‘βˆ’π‘› 𝑁𝑛 𝑆π‘₯𝑁 2 �̅�𝑁 2 = πœ‰02 𝐸(οΏ½Μ…οΏ½π‘₯𝑁 �̅�𝑦𝑁) = π‘βˆ’π‘› 𝑁𝑛 𝑆𝑦𝑁𝑆π‘₯𝑁 �̅�𝑁�̅�𝑁 = πœ‰11, where �̅�𝑦𝑁 ∈ [�̅�𝑦𝑁𝐿 , οΏ½Μ…οΏ½π‘¦π‘π‘ˆ ], οΏ½Μ…οΏ½π‘₯𝑁 ∈ [οΏ½Μ…οΏ½π‘₯𝑁𝐿 , οΏ½Μ…οΏ½π‘₯π‘π‘ˆ ], �̅�𝑦𝑁 2 ∈ [�̅�𝑦𝑁𝐿 2 , οΏ½Μ…οΏ½π‘¦π‘π‘ˆ 2 ], οΏ½Μ…οΏ½π‘₯𝑁 2 ∈ [οΏ½Μ…οΏ½π‘₯𝑁𝐿 2 , οΏ½Μ…οΏ½π‘₯π‘π‘ˆ 2 ]. 3. SOME RELATED NEUTROSOPHIC ESTIMATORS Since neutrosophic probability sampling is a new area of research handful of ratio type estimators are proposed in this Neutrosophic Simple Random Sampling Without Replacement (NSRSWOR). Tahir et al. [14] proposed the following ratio-type estimators given by �̅�𝑅𝑁 = �̅�𝑁 �̅�𝑁 �̅�𝑁 , (3.1) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ = �̅�𝑁 �̅�𝑁 +𝐢π‘₯𝑁 �̅�𝑁+𝐢π‘₯𝑁 , (3.2) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ = �̅�𝑁 �̅�𝑁+𝛽2(π‘₯𝑁) �̅�𝑁+𝛽2(π‘₯𝑁) , (3.3) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ = �̅�𝑁 �̅�𝑁𝛽2(π‘₯𝑁)+𝐢π‘₯𝑁 �̅�𝑁𝛽2(π‘₯𝑁)+𝐢π‘₯𝑁 , (3.4) 4 Int. J. Anal. Appl. (2023), 21:41 where �̅�𝑁 ∈ [�̅�𝑁𝐿 , οΏ½Μ…οΏ½π‘π‘ˆ ] and 𝑦𝑅𝑁 ∈ [𝑦𝑅𝐿 , π‘¦π‘…π‘ˆ ], οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ ∈ [οΏ½Μ…οΏ½π‘†π·π‘ŸπΏ , οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ˆ ], οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ ∈ [οΏ½Μ…οΏ½π‘†πΎπ‘ŸπΏ , οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ˆ ], and οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ ∈ [οΏ½Μ…οΏ½π‘ˆπ‘†π‘ŸπΏ , οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ˆ ]. Their expressions of MSEs are: 𝑀𝑆𝐸(�̅�𝑅 ) = π‘βˆ’π‘› 𝑁𝑛 �̅�𝑁 2[𝐢𝑦𝑁 2 + 𝐢π‘₯𝑁 2 βˆ’ 2𝐢π‘₯𝑁 𝐢𝑦𝑁 𝜌π‘₯𝑦𝑁 ], (3.5) 𝑀𝑆𝐸(οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ ) = π‘βˆ’π‘› 𝑁𝑛 �̅�𝑁 2 [𝐢𝑦𝑁 2 + ( �̅�𝑁 �̅�𝑁 +𝐢π‘₯𝑁 ) 𝐢π‘₯𝑁 2 βˆ’ 2 ( �̅�𝑁 �̅�𝑁+𝐢π‘₯𝑁 ) 𝐢π‘₯𝑁𝐢𝑦𝑁 𝜌π‘₯𝑦𝑁 ], (3.6) 𝑀𝑆𝐸(οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ ) = π‘βˆ’π‘› 𝑁𝑛 �̅�𝑁 2 [𝐢𝑦𝑁 2 + ( �̅�𝑁 �̅�𝑁+𝛽2(π‘₯𝑁) ) 𝐢π‘₯𝑁 2 βˆ’ 2 ( �̅�𝑁 �̅�𝑁+𝛽2(π‘₯𝑁) ) 𝐢π‘₯𝑁 𝐢𝑦𝑁 𝜌π‘₯𝑦𝑁 ] (3.7) and 𝑀𝑆𝐸(οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿ ) = π‘βˆ’π‘› 𝑁𝑛 �̅�𝑁 2 [𝐢𝑦𝑁 2 + ( �̅�𝑁𝛽2(π‘₯𝑁) �̅�𝑁 𝛽2(π‘₯𝑁)+𝐢π‘₯𝑁 ) 𝐢π‘₯𝑁 2 βˆ’ 2 ( �̅�𝑁𝛽2(π‘₯𝑁) �̅�𝑁𝛽2(π‘₯𝑁)+𝐢π‘₯𝑁 ) 𝐢π‘₯𝑁 𝐢𝑦𝑁 𝜌π‘₯𝑦𝑁 ] (3.8) where 𝐢𝑦𝑁 2 ∈ [𝐢𝑦𝑁𝐿 2 , πΆπ‘¦π‘π‘ˆ 2 ], 𝐢π‘₯𝑁 2 ∈ [𝐢π‘₯𝑁𝐿 2 , 𝐢π‘₯π‘π‘ˆ 2 ] and 𝜌π‘₯𝑦𝑁 ∈ [𝜌π‘₯𝑦𝑁𝐿 , 𝜌π‘₯π‘¦π‘π‘ˆ ]. 4. PROPOSED NEUTROSOPHIC GENERALIZED ESTIMATORS The aim of this article is to propose a generalized neutrosophic exponential robust ratio type estimator of finite neutrosophic population mean. Motivated by [14], [17] and [18] we propose the following generalized neutrosophic exponential robust ratio type estimator 𝑑𝑝𝑁 G = (o1�̅�𝑁 + π‘œ2(XΜ…N βˆ’ xΜ…N))𝑒π‘₯𝑝( �̅�𝑁Ω +Ξ¨ 𝛼(�̅�𝑁Ω+Ξ¨)+(1βˆ’π›Ό)(�̅�𝑁 Ξ©+Ξ¨) βˆ’ 1), (4.1) where, π‘œ1 and π‘œ2 are scalars which minimizes the MSE of the proposed generalizedneutrosophic estimator 𝑑𝑝 𝐺 . Further, Ξ© and Ξ¨ are scalaras which would assume different known population parameter values of neutrosophic auxiliary variable precisely Hodges Lehmann, Tri-mea, Mid range and coefficient of variation. It should be noted that 𝑑𝑝𝑁 G ∈ [𝑑𝑝 G 𝑁 𝐿 , 𝑑𝑝 G 𝑁 π‘ˆ ], π‘œ1 ∈ [π‘œ1L , π‘œ1U ], π‘œ2 ∈ [π‘œ2L , π‘œ2U ], �̅�𝑁 ∈ [�̅�𝑁𝐿 , οΏ½Μ…οΏ½π‘π‘ˆ ]. In order to obtain the expression of bias and Mean squared error of the proposed generalized neutrosophic estimator 𝑑𝑝 𝐺 , we re-write it usingerror terms defined in Section 2 and using Taylor series obtain the expression as follows π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁 𝐺 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 ΞΈπ‘œ2πœ‰02 + π‘œ1(�̅�𝑁 + 3 2 �̅�𝑁 πœƒ 2πœ‰02 βˆ’ �̅�𝑁 πœƒπœ‰11), (4.2) 𝑀𝑆𝐸 (𝑑𝑝𝑁 𝐺 ) = βˆ’οΏ½Μ…οΏ½π‘ 2 + �̅�𝑁 π‘œ2(βˆ’2�̅�𝑁 πœƒ + �̅�𝑁 π‘œ2)πœ‰02 + �̅�𝑁 π‘œ1(βˆ’2�̅�𝑁 + πœƒ(βˆ’3�̅�𝑁 πœƒ + 4�̅�𝑁 π‘œ2)πœ‰02 + 2(�̅�𝑁 πœƒ + �̅�𝑁 π‘œ2)πœ‰11) + �̅�𝑁 2π‘œ1 2(1+4πœƒ2πœ‰2 02 βˆ’ 4πœƒπœ‰11 + ΞΎ20). (4.3) Partially differentiating 𝑀𝑆𝐸 (𝑑𝑝𝑁 𝐺 ) π‘€π‘–π‘‘β„Ž π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘ π‘‘π‘œ π‘œ1 and π‘œ2to find their optimum values we get π‘œ1π‘œπ‘π‘‘ = πœ‰02(2βˆ’πœƒ 2πœ‰02) 2(βˆ’πœ‰211+πœ‰02(1+πœ‰20)) (4.4) 5 Int. J. Anal. Appl. (2023), 21:41 π‘œ2π‘œπ‘π‘‘ = �̅�𝑁{2πœƒ 3πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒπœ‰11)βˆ’πœƒπœ‰02(2+πœƒπœ‰11βˆ’2πœ‰20)) 2�̅�𝑁(βˆ’πœ‰ 2 11+πœ‰02(1+πœ‰20)) (4.5) Using these optimum values we get 𝑀𝑆𝐸 (𝑑𝑝𝑁 π‘œπ‘π‘‘ 𝐺 ) = �̅�𝑁 2{4πœ‰211+πœ‰02{πœƒ 4πœ‰202βˆ’4πœƒ 2πœ‰211+4(βˆ’1+πœƒ 2πœ‰02)πœ‰20}} 4{πœ‰211βˆ’πœ‰02(1+πœ‰20)} , (4.6) where πœƒ = Ξ± �̅�𝑁 Ξ© �̅�𝑁Ω+Ξ¨ . From the proposed generalized neutrosophic exponential robust ratio type estimator 𝑑𝑝 𝐺 we have developed five generalized neutrosophic exponential robust ratio type estimators. (i) 𝑑𝑝𝑁 𝐺1 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝( �̅�𝑁HL +TM �̅�𝑁HL+TM βˆ’ 1) (4.7) The bias and π‘€π‘†πΈπ‘œπ‘π‘‘ are π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁 𝐺1 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ1π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 + 3 2 �̅�𝑁 πœƒ1 2πœ‰02 βˆ’ �̅�𝑁 πœƒ1πœ‰11), (4.8) 𝑀𝑆𝐸 (𝑑𝑝𝑁 π‘œπ‘π‘‘ 𝐺1 ) = �̅�𝑁 24πœ‰211+πœ‰02πœƒ1 4πœ‰202βˆ’4πœƒ1 2πœ‰211+4(βˆ’1+πœƒ1 2πœ‰02)πœ‰20 4πœ‰211βˆ’πœ‰02(1+πœ‰20) , (4.9) where π‘œ1π‘œπ‘π‘‘ = πœ‰02(2βˆ’πœƒ1 2πœ‰02) 2(βˆ’πœ‰211+πœ‰02(1+πœ‰20)) , (4.10) π‘œ2π‘œπ‘π‘‘ = �̅�𝑁{2πœƒ 3πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ1πœ‰11)βˆ’πœƒ1πœ‰02(2+πœƒ1πœ‰11βˆ’2πœ‰20)) 2�̅�𝑁(βˆ’πœ‰ 2 11+πœ‰02(1+πœ‰20)) , (4.11) and πœƒ1 = �̅�𝑁HL �̅�𝑁HL+TM , where, 𝑑𝑝𝑁 𝐺1 ∈ [𝑑𝑝 𝐺1 𝐿 , 𝑑𝑝 𝐺1 π‘ˆ ], πœƒ1 ∈ [πœƒ1𝐿 , πœƒ1π‘ˆ ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿 , π‘œ1π‘œπ‘π‘‘ π‘ˆ ] π‘Žπ‘›π‘‘ π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2π‘œπ‘π‘‘ 𝐿 , π‘œ2π‘œπ‘π‘‘ π‘ˆ ]. (ii) 𝑑𝑝𝑁 𝐺2 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝( �̅�𝑁 TM +MR �̅�𝑁TM+MR βˆ’ 1) (4.12) The bias and MSE_opt are π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁 𝐺2 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ2π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 + 3 2 �̅�𝑁 πœƒ2 2πœ‰02 βˆ’ �̅�𝑁 πœƒ2πœ‰11), (4.13) 𝑀𝑆𝐸 (𝑑𝑝𝑁 π‘œπ‘π‘‘ 𝐺2 ) = �̅�𝑁 24πœ‰211+πœ‰02πœƒ2 4πœ‰202βˆ’4πœƒ2 2πœ‰211+4(βˆ’1+πœƒ2 2πœ‰02)πœ‰20 4πœ‰211βˆ’πœ‰02(1+πœ‰20) , (4.14) where π‘œ1π‘œπ‘π‘‘ = πœ‰02(2βˆ’πœƒ2 2πœ‰02) 2(βˆ’πœ‰211+πœ‰02(1+πœ‰20)) , (4.15) π‘œ2π‘œπ‘π‘‘ = �̅�𝑁{2πœƒ 3 πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ2πœ‰11)βˆ’πœƒ1πœ‰02(2+πœƒ2πœ‰11βˆ’2πœ‰20)) 2�̅�𝑁(βˆ’πœ‰ 2 11+πœ‰02(1+πœ‰20)) , (4.16) and πœƒ2 = �̅�𝑁TM �̅�𝑁TM+MR where, 𝑑𝑝𝑁 𝐺2 ∈ [𝑑𝑝 𝐺2 𝐿 , 𝑑𝑝 𝐺2 π‘ˆ ], πœƒ2 ∈ [πœƒ2𝐿 , πœƒ2π‘ˆ ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿 , π‘œ1π‘œπ‘π‘‘ π‘ˆ ] and π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2π‘œπ‘π‘‘ 𝐿 , π‘œ2π‘œπ‘π‘‘ π‘ˆ ]. 6 Int. J. Anal. Appl. (2023), 21:41 (iii) 𝑑𝑝𝑁 𝐺3 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝( �̅�𝑁HL +MR �̅�𝑁HL+MR βˆ’ 1) (4.17) The bias and π‘€π‘†πΈπ‘œπ‘π‘‘ are π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁 𝐺3 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ3π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 + 3 2 �̅�𝑁 πœƒ3 2πœ‰02 βˆ’ �̅�𝑁 πœƒ3πœ‰11), (4.18) 𝑀𝑆𝐸 (𝑑𝑝𝑁 π‘œπ‘π‘‘ 𝐺3 ) = �̅�𝑁 24πœ‰211+πœ‰02πœƒ3 4πœ‰202βˆ’4πœƒ3 2πœ‰211+4(βˆ’1+πœƒ3 2πœ‰02)πœ‰20 4πœ‰211βˆ’πœ‰02(1+πœ‰20) , (4.19) where π‘œ1π‘œπ‘π‘‘ = πœ‰02(2βˆ’πœƒ3 2πœ‰02) 2(βˆ’πœ‰211+πœ‰02(1+πœ‰20)) , (4.20) π‘œ2π‘œπ‘π‘‘ = �̅�𝑁{2πœƒ 3 πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ3πœ‰11)βˆ’πœƒ3πœ‰02 (2+πœƒ3πœ‰11βˆ’2πœ‰20)) 2�̅�𝑁(βˆ’πœ‰ 2 11+πœ‰02(1+πœ‰20)) , (4.21) and πœƒ3 = �̅�𝑁 HL �̅�𝑁 HL+MR where, 𝑑𝑝𝑁 𝐺3 ∈ [𝑑𝑝 𝐺3 𝐿 , 𝑑𝑝 𝐺3 π‘ˆ ], πœƒ3 ∈ [πœƒ3𝐿 , πœƒ3π‘ˆ ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿 , π‘œ1π‘œπ‘π‘‘ π‘ˆ ] π‘Žπ‘›π‘‘ π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2 π‘œπ‘π‘‘ 𝐿 , π‘œ2π‘œπ‘π‘‘ π‘ˆ ]. (iv) 𝑑𝑝𝑁 𝐺4 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝( �̅�𝑁 CxN +𝐻𝐿 �̅�𝑁CxN +HL βˆ’ 1) (4.22) The bias and π‘€π‘†πΈπ‘œπ‘π‘‘ are π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁 𝐺4 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ4π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 + 3 2 �̅�𝑁 πœƒ4 2πœ‰02 βˆ’ �̅�𝑁 πœƒ4πœ‰11), (4.23) 𝑀𝑆𝐸 (𝑑𝑝𝑁 π‘œπ‘π‘‘ 𝐺4 ) = �̅�𝑁 24πœ‰211+πœ‰02πœƒ4 4πœ‰202βˆ’4πœƒ4 2πœ‰211+4(βˆ’1+πœƒ4 2πœ‰02)πœ‰20 4πœ‰211βˆ’πœ‰02(1+πœ‰20) (4.24) where, π‘œ1π‘œπ‘π‘‘ = πœ‰02(2βˆ’πœƒ4 2πœ‰02) 2(βˆ’πœ‰211+πœ‰02(1+πœ‰20)) , (4.25) π‘œ2π‘œπ‘π‘‘ = �̅�𝑁{2πœƒ 3 πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ4πœ‰11)βˆ’πœƒ4πœ‰02(2+πœƒ4πœ‰11βˆ’2πœ‰20)) 2�̅�𝑁(βˆ’πœ‰ 2 11+πœ‰02(1+πœ‰20)) , (4.26) and πœƒ4 = �̅�𝑁CxN �̅�𝑁CxN +HL where, 𝑑𝑝𝑁 𝐺4 ∈ [𝑑𝑝 𝐺4 𝐿 , 𝑑𝑝 𝐺4 π‘ˆ ], πœƒ4 ∈ [πœƒ4𝐿 , πœƒ4π‘ˆ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿 , π‘œ1π‘œπ‘π‘‘ π‘ˆ ] π‘Žπ‘›π‘‘ π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2 π‘œπ‘π‘‘ 𝐿 , π‘œ2π‘œπ‘π‘‘ π‘ˆ ]. (v) 𝑑𝑝𝑁 𝐺5 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝( �̅�𝑁CxN +𝑇𝑀 �̅�𝑁CxN +TM βˆ’ 1) (4.27) The bias and π‘€π‘†πΈπ‘œπ‘π‘‘ are π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁 𝐺5 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ5π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 + 3 2 �̅�𝑁 πœƒ5 2πœ‰02 βˆ’ �̅�𝑁 πœƒ5πœ‰11), (4.28) 𝑀𝑆𝐸 (𝑑𝑝𝑁 π‘œπ‘π‘‘ 𝐺5 ) = �̅�𝑁 24πœ‰211+πœ‰02πœƒ5 4πœ‰202βˆ’4πœƒ5 2πœ‰211+4(βˆ’1+πœƒ5 2πœ‰02)πœ‰20 4πœ‰211βˆ’πœ‰02(1+πœ‰20) (4.29) 7 Int. J. Anal. Appl. (2023), 21:41 π‘œ1π‘œπ‘π‘‘ = πœ‰02(2βˆ’πœƒ5 2πœ‰02) 2(βˆ’πœ‰211+πœ‰02(1+πœ‰20)) , (4.30) π‘œ2π‘œπ‘π‘‘ = �̅�𝑁{2πœƒ 3 πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ5πœ‰11)βˆ’πœƒ5πœ‰02(2+πœƒ5πœ‰11βˆ’2πœ‰20)) 2�̅�𝑁(βˆ’πœ‰ 2 11+πœ‰02(1+πœ‰20)) , (4.31) and πœƒ5 = �̅�𝑁CxN �̅�𝑁 CxN +TM where, 𝑑𝑝𝑁 𝐺5 ∈ [𝑑𝑝 𝐺5 𝐿 , 𝑑𝑝 𝐺5 π‘ˆ ], πœƒ5 ∈ [πœƒ5𝐿 , πœƒ5π‘ˆ ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿 , π‘œ1π‘œπ‘π‘‘ π‘ˆ ] π‘Žπ‘›π‘‘ π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2π‘œπ‘π‘‘ 𝐿 , π‘œ2π‘œπ‘π‘‘ π‘ˆ ]. 5. EMPIRICAL STUDY In this section we have conducted an empirical study to demonstrate the high efficiency of the developed estimators. This study, is conducted using daily stock price of Moderna. The rationale behind taking the stock price as a neutrosophic data is the fact that the daily stock price ranges between a high and a low values each day. Pin pointing the point estimate of the daily stock price will not give a reliable estimate. Thus, we have taken it as a neutrosophic dataset. In this empirical study, daily stock price of Moderna has been considered form 1-September-2020 to 1-September- 2021 [20] (N=253). The neutrosophic survey variable 𝑦𝑁 i.e., varying price of the stock on each day where 𝑦𝑁 ∈ [𝑦𝑙 , 𝑦𝑒 ] ( 𝑦𝑒 is the highest price of the stock on each day and 𝑦𝑙 is the lowest price of the stock each day). 6. SIMULATION STUDY In this section we have conducted four simulation studies to demonstrate the high efficiency of the proposed generalized neutrosophic robust type exponential ratio estimator over similar existing ratio estimators discussed in this article. The comparison has been made on the basis of neutrosophic MSEs and neutrosophic REs. 6.1 Simulation study-1 The following algorithm is used in R language to perform the simulation study: (i) Nutrosophic auxiliary variable π‘₯𝑁 has been generated from Neutrosophic normal distribution NN([0.7, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single indetermincay where population mean πœ‡π‘‹ is indeterminate. Thus π‘₯𝑁 ∈ [π‘₯𝑁 𝐿 , π‘₯𝑁 π‘ˆ ]. (ii) Neutrosophic survey variable is generated using the model 𝑦𝑁 = π‘₯𝑁 βˆ’ 7𝑒 such that 𝑦𝑁 ∈ [𝑦𝑁 𝐿 , 𝑦𝑁 π‘ˆ ] where 𝑒 ~𝑁(0, 1). 8 Int. J. Anal. Appl. (2023), 21:41 (iii) For sample sizes 𝑛1 ∈ [60, 60], 𝑛2 ∈ [65, 65], 𝑛3 ∈ [70, 70] and 𝑛4 ∈ [75, 75] various values of neutrosophic estimates are obtained with 20000 iterations. (iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained and presented in Tables. (v) Values of estimates have been calculated under classical statistics as well and their MSEs and REs are tabulated in Tables 1-4. Table 1: Data statistics for empirical study π‘†π‘¦π‘ˆ 2 = 9624, 𝑆𝑦𝐿 2 = 8111, πΆπ‘¦π‘ˆ 2 = 0.3124, 𝐢𝑦𝐿 2 = 0.3022, 𝑆π‘₯π‘ˆ 2 = 8743, 𝑆π‘₯𝐿 2 = 8965, 𝐢π‘₯π‘ˆ 2 = 0.3055, 𝐢π‘₯𝐿 2 = 0.3092, 𝑁 = 253, 𝑛 = 160, π‘‡π‘€π‘ˆ = 150, π»πΏπ‘ˆ = 153.44, π‘€π‘…π‘ˆ = 270.76, Ξ²2π‘₯π‘ˆ = 1.06, 𝑇𝑀𝐿 = 153, 𝐻𝐿𝐿 = 153.96, 𝑀𝑅𝐿 = 269.4, 𝛽2(π‘₯𝐿 ) = 1.01 Οπ‘¦π‘ˆπ‘₯π‘ˆ = 0.99, πœŒπ‘¦πΏπ‘₯𝐿 = 0.99. Table 2: Neutrosophic MSE of the estimators Estimators MSE 𝑴𝑺𝑬[οΏ½Μ…οΏ½βˆ—πΏ , οΏ½Μ…οΏ½βˆ—π‘ˆ ] Relative Eficiency 𝑹𝑬[οΏ½Μ…οΏ½βˆ—πΏ , οΏ½Μ…οΏ½βˆ—π‘ˆ ] �̅�𝑅 𝑁 0.1038 0.1209 1 1 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 0.1021 0.1223 1.01665 0.988553 οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 0.1009 0.124 1.028741 0.975 οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 0.1222 0.1021 0.849427 1.184133 𝑑𝑝𝑁 𝐺2 0.0835 0.116 1.243114 1.042241 𝑑𝑝𝑁 𝐺2 0.0836 0.116 1.241627 1.042241 𝑑𝑝𝑁 𝐺3 0.0836 0.1156 1.241627 1.045848 𝑑𝑝𝑁 𝐺4 0.0868 0.1193 1.195853 1.013412 𝑑𝑝𝑁 𝐺5 0.0869 0.119 1.194476 1.015966 *Denotes appropriate estimator 9 Int. J. Anal. Appl. (2023), 21:41 Table 3: Neutrosophic MSEs of all the neutrosophic estimators Sample Size �̅�𝑅 𝑁 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺1 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺2 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺3 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺4 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺5 𝑀𝑆𝐸(𝐿, π‘ˆ) [60, 60] 0.79376 0.71468 0.68268 0.69029 0.92986 0.75644 0.67749 0.71476 0.36048 0.49557 0.37457 0.49494 0.49492 0.49492 0.38379 0.49608 0.38321 0.49603 [65, 65] 0.70738 0.64959 0.62434 0.63017 0.82481 0.68538 0.62051 0.65438 0.33174 0.46315 0.34235 0.46272 0.46271 0.46271 0.34892 0.46352 0.34851 0.46349 [70, 70] 0.6408 0.58546 0.56655 0.57157 1.02672 0.61103 0.56208 0.59378 0.30331 0.43304 0.31307 0.43287 0.43287 0.43287 0.31948 0.43323 0.31906 0.43321 [75, 75] 0.58023 0.53854 0.52302 0.52725 0.64351 0.55999 0.52060 0.54858 0.28057 0.40533 0.28759 0.40525 0.40525 0.40525 0.29178 0.40546 0.29152 0.40545 Table 4: Neutrosophic REs of all the neutrosophic estimators Sample Size �̅�𝑅 𝑁 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺1 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺2 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺3 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺4 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺5 𝑅𝐸(𝐿, π‘ˆ) [60, 60] 1 1 1.162712 1.035319 0.085363 0.944794 1.171619 0.999888 2.201953 1.442137 2.119123 1.443973 2.121842 1.444031 2.068214 1.440655 2.071345 1.440800 [65, 65] 1 1 1.133004 1.030817 0.857628 0.947781 1.139998 0.99268 2.132333 1.402548 2.066248 1.403851 2.068363 1.403881 2.027342 1.401428 2.029727 1.401519 [70, 70] 1 1 1.131056 1.024301 0.624123 0.958153 1.140051 0.985988 2.11269 1.351977 2.046827 1.352508 2.048921 1.352508 2.005759 1.351384 2.0084 1.351446 [75, 75] 1 1 1.109384 1.021413 0.901664 0.961696 1.114541 0.981698 2.06804 1.328646 2.01756 1.328908 2.019104 1.328908 1.988587 1.32822 1.990361 1.328253 10 Int. J. Anal. Appl. (2023), 21:41 Table 5: Classical MSEs of all the neutrosophic estimators Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑑𝑝𝑁 𝐺1 𝑑𝑝𝑁 𝐺2 𝑑𝑝𝑁 𝐺3 𝑑𝑝𝑁 𝐺4 𝑑𝑝𝑁 𝐺5 60 0.70002 0.67756 0.68675 0.67328 0.39037 0.38957 0.38955 0.39044 0.39042 65 0.63624 0.61897 0.62596 0.61597 0.34903 0.34853 0.34853 0.34907 0.34906 70 0.57653 0.56183 0.56783 0.55915 0.32683 0.32636 0.32635 0.32688 0.57341 75 0.53054 0.51869 0.52345 0.5168 0.31015 0.30982 0.30982 0.31018 0.31017 Table 6: Classical REs of all the neutrosophic estimators Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑑𝑝𝑁 𝐺1 𝑑𝑝𝑁 𝐺2 𝑑𝑝𝑁 𝐺3 𝑑𝑝𝑁 𝐺4 𝑑𝑝𝑁 𝐺5 60 1 1.03314 1.01932 1.03971 1.79322 1.79690 1.79699 1.79290 1.79299 65 1 1.02790 1.01642 1.03290 1.82288 1.82549 1.82549 1.82267 1.82272 70 1 1.02616 1.01532 1.03108 1.76400 1.76654 1.76660 1.76373 1.00544 75 1 1.02284 1.01354 1.02658 1.71059 1.71241 1.71241 1.71043 1.71048 6.2 Simulation study-2 The following algorithm is used in R language to perform the simulation study: (i) Nutrosophic auxiliary variable π‘₯𝑁 has been generated from Neutrosophic normal distribution NN([0.7, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single indetermincay where population mean πœ‡π‘‹ is indeterminate. Thus π‘₯𝑁 ∈ [π‘₯𝑁 𝐿 , π‘₯𝑁 π‘ˆ ]. (ii) Neutrosophic survey variable is generated using the model 𝑦𝑁 = π‘₯𝑁 βˆ’ 6𝑒 such that 𝑦𝑁 ∈ [𝑦𝑁 𝐿 , 𝑦𝑁 π‘ˆ ] where 𝑒 ~𝑁(0, 1). (iii) For sample sizes 𝑛1 ∈ [60, 60], 𝑛2 ∈ [65, 65], 𝑛3 ∈ [70, 70] and 𝑛4 ∈ [75, 75] various values of neutrosophic estimates are obtained with 20000 iterations. (iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained and presented in Tables. (v) Values of estimates have been calculated under classical statistics as well and their MSEs and REs are tabulated in Tables 5-8. 11 Int. J. Anal. Appl. (2023), 21:41 Table 7: Neutrosophic MSEs of all the neutrosophic estimators Sample Size �̅�𝑅 𝑁 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺1 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺2 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺3 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺4 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺5 𝑀𝑆𝐸(𝐿, π‘ˆ) [60, 60] 0.58317 0.52507 0.50408 0.50940 7.06050 0.55537 0.50234 0.53718 0.28861 0.42083 0.29898 0.42056 0.29863 0.42056 0.30594 0.42109 0.30549 0.42107 [65, 65] 0.51971 0.47725 0.4612 0.46516 0.60191 0.50290 0.46063 0.49209 0.26721 0.39468 0.27514 0.39456 0.27487 0.39455 0.28036 0.39484 0.28003 0.39483 [70, 70] 0.47079 0.43013 0.41825 0.42180 0.74261 0.44856 0.41663 0.44617 0.24573 0.37008 0.25288 0.37014 0.25264 0.37014 0.25790 0.70110 0.25756 0.37011 [75, 75] 0.42629 0.39566 0.38630 0.38914 0.47267 0.41108 0.38624 0.41245 0.22828 0.34735 0.23318 0.34747 0.23302 0.34748 0.23623 0.34735 0.23604 0.34734 Table 8: Neutrosophic REs of all the neutrosophic estimators Sample Size �̅�𝑅 𝑁 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺1 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺2 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺3 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺4 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺5 𝑅𝐸(𝐿, π‘ˆ) [60, 60] 1 1 1.156900 1.030760 0.082596 0.945442 1.160907 0.977456 2.020616 1.247701 1.950532 1.248502 1.952818 1.248502 1.906158 1.246931 1.908966 1.24699 [65, 65] 1 1 1.126865 1.025991 0.863435 0.948996 1.128259 0.969843 1.94495 1.209207 1.888893 1.209575 1.890748 1.209606 1.853724 1.208717 1.855908 1.208748 [70, 70] 1 1 1.125619 1.019749 0.633967 0.958913 1.129995 0.964050 1.915883 1.162262 1.861713 1.162074 1.863482 1.16E-05 1.825475 0.613507 1.827885 1.162168 [75, 75] 1 1 1.103521 1.016755 0.901877 0.962489 1.103692 0.959292 1.867400 1.139082 1.828159 1.138688 1.829414 1.138655 1.804555 1.139082 1.806007 1.139114 12 Int. J. Anal. Appl. (2023), 21:41 Table 9: Classical MSEs of all the neutrosophic estimators Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑑𝑝𝑁 𝐺1 𝑑𝑝𝑁 𝐺2 𝑑𝑝𝑁 𝐺3 𝑑𝑝𝑁 𝐺4 𝑑𝑝𝑁 𝐺5 60 0.51430 0.49854 0.50479 0.49612 0.33024 0.32978 0.32978 0.33028 0.33027 65 0.46744 0.45557 0.46018 0.45409 0.30102 0.30078 0.30077 0.30104 0.30103 70 0.42357 0.41335 0.41736 0.41196 0.2837 0.28345 0.28345 0.28373 0.28372 75 0.38978 0.38173 0.3848 0.38095 0.26904 0.26891 0.26891 0.26905 0.26905 Table 10: Classical REs of all the neutrosophic estimators Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑑𝑝𝑁 𝐺1 𝑑𝑝𝑁 𝐺2 𝑑𝑝𝑁 𝐺3 𝑑𝑝𝑁 𝐺4 𝑑𝑝𝑁 𝐺5 60 1 1.031612 1.01884 1.036644 1.557352 1.559525 1.559525 1.557164 1.557211 65 1 1.026055 1.015776 1.029399 1.552854 1.554093 1.554144 1.55275 1.552802 70 1 1.024725 1.014879 1.028182 1.493021 1.494338 1.494338 1.492863 1.492916 75 1 1.021088 1.012942 1.023179 1.448781 1.449481 1.449481 1.448727 1.448727 6.3 Simulation study-3 The following algorithm is used in R language to perform the simulation study: (i) Nutrosophic auxiliary variable π‘₯𝑁 has been generated from Neutrosophic normal distribution NN([0.75, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single indetermincay where population mean πœ‡π‘‹ is indeterminate. Thus π‘₯𝑁 ∈ [π‘₯𝑁 𝐿 , π‘₯𝑁 π‘ˆ ]. (ii) Neutrosophic survey variable is generated using the model 𝑦𝑁 = π‘₯𝑁 βˆ’ 7𝑒 such that 𝑦𝑁 ∈ [𝑦𝑁 𝐿 , 𝑦𝑁 π‘ˆ ] where 𝑒 ~𝑁(0, 1). (iii) For sample sizes 𝑛1 ∈ [60, 60], 𝑛2 ∈ [65, 65], 𝑛3 ∈ [70, 70] and 𝑛4 ∈ [75, 75] various values of neutrosophic estimates are obtained with 20000 iterations. (iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained and presented in Tables . (v) Values of estimates have been calculated under classical statistics as well and their MSEs and REs are tabulated in Tables 9-1. 13 Int. J. Anal. Appl. (2023), 21:41 Table 11: Neutrosophic MSEs of all the neutrosophic estimators Sample Size �̅�𝑅 𝑁 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺1 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺2 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺3 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺4 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺5 𝑀𝑆𝐸(𝐿, π‘ˆ) [60, 60] 0.56715 0.52507 0.50377 0.5094 0.64524 0.55537 0.50262 0.53718 0.30052 0.42083 0.30811 0.42056 0.30785 0.42056 0.31202 0.42109 0.31173 0.42107 [65, 65] 0.50815 0.47725 0.46082 0.46516 0.55396 0.5029 0.46063 0.49209 0.2788 0.39468 0.28427 0.39456 0.28405 0.39455 0.28699 0.39484 0.28679 0.39483 [70, 70] 0.46026 0.43013 0.41799 0.4218 5.3525 0.44856 0.41683 0.44617 0.25763 0.37008 0.26279 0.37014 0.26262 37014 0.26538 0.37011 0.26519 0.37011 [75, 75] 0.41836 0.39566 0.38598 0.38914 0.5705 0.41108 0.38646 0.41245 0.23982 0.34735 0.24343 0.34747 0.24331 0.34748 0.24543 0.34735 0.2451 0.34734 Table 12: Neutrosophic REs of all the neutrosophic estimators Sample Size �̅�𝑅 𝑁 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺1 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺2 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺3 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺4 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺5 𝑅𝐸(𝐿, π‘ˆ) [60, 60] 1 1 1.125811 1.030762 0.878975 0.945442 1.128387 0.977456 1.887229 1.247701 1.840739 1.248502 1.842293 1.248502 1.817672 1.246931 1.819363 1.24699 [65, 65] 1 1 1.102708 1.025991 0.917304 0.948996 1.103163 0.969843 1.822633 1.209207 1.787561 1.209575 1.788946 1.209606 1.770619 1.208717 1.771854 1.208748 [70, 70] 1 1 1.101127 1.019749 0.08599 0.958913 1.104191 0.96405 1.786516 1.162262 1.751437 1.162074 1.75257 1.16E-05 1.734343 1.162168 1.735586 1.162168 [75, 75] 1 1 1.08389 1.016755 0.733322 0.962489 1.082544 0.959292 1.744475 1.139082 1.718605 1.138688 1.719453 1.138655 1.7046 1.139082 1.706895 1.139114 14 Int. J. Anal. Appl. (2023), 21:41 Table 13: Classical MSEs of all the neutrosophic estimators Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑑𝑝𝑁 𝐺1 𝑑𝑝𝑁 𝐺2 𝑑𝑝𝑁 𝐺3 𝑑𝑝𝑁 𝐺4 𝑑𝑝𝑁 𝐺5 60 0.51298 0.4984 0.50418 49604 0.33895 0.33853 0.33852 0.33888 0.33887 65 0.46636 0.45541 0.45966 0.454 0.30994 0.30979 0.30972 0.3099 0.30989 70 0.4227 0.41324 0.41695 0.41189 0.2924 0.29217 0.29216 0.29236 0.29235 75 0.38903 0.38161 0.38443 0.38087 0.27718 0.27707 0.27707 0.27716 0.27716 Table 14: Classical REs of all the neutrosophic estimators Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑑𝑝𝑁 𝐺1 𝑑𝑝𝑁 𝐺2 𝑑𝑝𝑁 𝐺3 𝑑𝑝𝑁 𝐺4 𝑑𝑝𝑁 𝐺5 60 1 1.029254 1.017454 1.03E-05 1.513439 1.515316 1.515361 1.513751 1.513796 65 1 1.024044 1.014576 1.027225 1.504678 1.505407 1.505747 1.504873 1.504921 70 1 1.022892 1.013791 1.026245 1.445622 1.44676 1.44681 1.44582 1.44587 75 1 1.019444 1.011966 1.021425 1.403528 1.404086 1.404086 1.40363 1.40363 6.4 Simulation study-4 The following algorithm is used in R language to perform the simulation study: (i) Nutrosophic auxiliary variable π‘₯𝑁 has been generated from Neutrosophic normal distribution NN([0.65, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single indetermincay where population mean πœ‡π‘‹ is indeterminate. Thus π‘₯𝑁 ∈ [π‘₯𝑁 𝐿 , π‘₯𝑁 π‘ˆ ]. (ii) Neutrosophic survey variable is generated using the model 𝑦𝑁 = π‘₯𝑁 βˆ’ 6𝑒 such that 𝑦𝑁 ∈ [𝑦𝑁 𝐿 , 𝑦𝑁 π‘ˆ ] where 𝑒 ~𝑁(0, 1). (iii) For sample sizes 𝑛1 ∈ [60, 60], 𝑛2 ∈ [65, 65], 𝑛3 ∈ [70, 70] and 𝑛4 ∈ [75, 75] various values of neutrosophic estimates are obtained with 20000 iterations. (iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained and presented in Tables. (v) Values of estimates have been calculated under classical statistics as well and their MSEs and REs are tabulated in Tables 13-16 15 Int. J. Anal. Appl. (2023), 21:41 Table 15: Neutrosophic MSEs of all the neutrosophic estimators Sample Size �̅�𝑅 𝑁 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺1 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺2 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺3 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺4 𝑀𝑆𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺5 𝑀𝑆𝐸(𝐿, π‘ˆ) [60, 60] 0.60649 0.52507 0.50434 0.50940 160621 0.55537 0.50209 0.53718 0.28066 0.42083 0.29939 0.42056 0.29870 0.42056 0.31687 0.42109 0.31575 0.42107 [65, 65] 0.53563 0.47725 0.46151 0.46516 0.95151 0.50290 0.46012 0.49209 0.26131 0.39468 0.28742 0.39456 0.28619 0.39455 0.32693 0.39484 0.32387 0.39483 [70, 70] 0.48835 0.43013 0.41848 0.42180 0.58047 0.44856 0.41644 0.44617 0.23605 0.37008 0.25087 0.37014 0.25018 0.37014 0.27917 0.37011 0.27641 0.37011 [75, 75] 0.43770 0.39566 0.38660 0.38914 3.32296 0.41108 0.38605 0.41245 0.21814 0.34735 0.22565 0.34747 0.22539 0.34748 0.23187 0.34735 0.23148 0.34734 Table 16: Neutrosophic REs of all the neutrosophic estimators Sample Size �̅�𝑅 𝑁 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺1 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺2 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺3 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺4 𝑅𝐸(𝐿, π‘ˆ) 𝑑𝑝𝑁 𝐺5 𝑅𝐸(𝐿, π‘ˆ) [60, 60] 1 1 1.202542 1.030762 3.78E-06 0.945442 1.207931 0.977456 2.160942 1.247701 2.025752 1.248502 2.030432 1.248502 1.914003 1.246931 1.920792 1.24699 [65, 65] 1 1 1.160603 1.025991 0.562926 0.948996 1.164109 0.969843 2.049788 1.209207 1.863579 1.209575 1.871589 1.209606 1.638363 1.208717 1.653843 1.208748 [70, 70] 1 1 1.166961 1.019749 0.841301 0.958913 1.172678 0.96405 2.068841 1.162262 1.946626 1.162074 1.951995 1.162074 1.749293 1.162168 1.76676 1.162168 [75, 75] 1 1 1.132178 1.016755 0.13172 0.962489 1.133791 0.959292 2.00651 1.139082 1.93973 1.138688 1.941967 1.138655 1.887696 1.139082 1.890876 1.139114 16 Int. J. Anal. Appl. (2023), 21:41 Table 17: Classical MSEs of all the neutrosophic estimators Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑑𝑝𝑁 𝐺1 𝑑𝑝𝑁 𝐺2 𝑑𝑝𝑁 𝐺3 𝑑𝑝𝑁 𝐺4 𝑑𝑝𝑁 𝐺5 60 0.51574 0.49868 0.50544 0.4962 0.3217 0.32121 0.3212 0.32189 0.32188 65 0.46836 0.45572 0.46072 0.45418 0.29226 0.292 0.29199 0.29238 0.29237 70 0.42453 0.41346 0.4187 0.41203 0.27515 0.27487 0.27486 0.27526 0.27525 75 0.3906 0.38186 0.3852 0.38103 0.26101 0.26086 0.26085 0.26108 0.26107 Table 18: Classical REs of all the neutrosophic estimators Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 𝑑𝑝𝑁 𝐺1 𝑑𝑝𝑁 𝐺2 𝑑𝑝𝑁 𝐺3 𝑑𝑝𝑁 𝐺4 𝑑𝑝𝑁 𝐺5 60 1 1.03421 1.020378 1.039379 1.603171 1.605616 1.605666 1.602224 1.602274 65 1 1.027736 1.016583 1.031221 1.602546 1.603973 1.604028 1.601888 1.601943 70 1 1.026774 1.013924 1.030338 1.542904 1.544476 1.544532 1.542287 1.542343 75 1 1.022888 1.014019 1.025116 1.496494 1.497355 1.497412 1.496093 1.49615 7. DISCUSSION AND CONCLUSION Vagueness or indetermincacy is usually observed in the collected data. Instead of using Fuzzy logic to deal with such a data set it would be more easier and cost resource efficient to use neutrosophic statistical tools. Due to its need and wide applicability research in neutrosophic statistics has been regorously carried out. This paper aims at further developing the existing theory of Neutrosophic Simple Random Sampling Without Replacement (NSRSWOR). In this paper, a generalized neutrosophic exponential robust ratio type estimator 𝑑𝑝𝑁 G has been presented using some known population parameters of neutrosophic auxiliary variables. From the proposed generalized neutrosophic exponential robust ratio type estimator, five generalized neutrosophic exponential robust ratio type estimators 𝑑𝑝𝑁 𝐺1 -𝑑𝑝𝑁 𝐺5 have been developed using known population parameter values of auxiliary variables viz., Hodges Lehmann, Tri mean, Mid range and coefficient of variation. The high efficiency of the developed neutrosophic estimators have been demonstrated using an empirical and four simulation studies the results of which are presented in Tables 1-18. 17 Int. J. Anal. Appl. (2023), 21:41 In the empirical study on daily stock price, we can see that the proposed estimators provide a lower MSE indicating high efficiency that the similar existing neutrosophic estimators. In simulation studies, it is clear from the results that the developed neutrosophic estimators 𝑑𝑝𝑁 𝐺1 -𝑑𝑝𝑁 𝐺5 π‘“π‘Ÿπ‘œπ‘š the proposed generalized neutrosphic estimator 𝑑𝑝𝑁 G provide a much lower MSE as compared to the similar existing neutrosophic ratio type estimators discussed in this paper (Table [3-4], Table [7-8], Table [11-12] and Table [15-16]). The results of the neutrosophic estimators estimators have also been compared with their classical values (Table [5-6], Table [9-10], Table [13-14] and Table [17-18]). It can be seen that the classical values of MSE falls in the indetermancy neutrosophic MSE intervals implying that when the data contains some indetermincay, neutrosophic estimators should be used. Further, it can be seen that, proposed neutrosophic estimators 𝑑𝑝𝑁 𝐺1 -𝑑𝑝𝑁 𝐺5 provide lowest MSE in neutrosophic as well as classical form and thus it is advised to use the proposed neutrosophic estimators 𝑑𝑝𝑁 𝐺1 -𝑑𝑝𝑁 𝐺5 when the data at hand is neutrosophic. Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper. References [1] N. Jan, L. Zedam, T. Mahmood, K. Ullah, Z. Ali, Multiple Attribute Decision Making Method Under Linguistic Cubic Information, J. Intell. Fuzzy Syst. 36 (2019), 253–269. https://doi.org/10.3233/jifs- 181253. [2] D.F. Li, T. Mahmood, Z. Ali, Y. Dong, Decision Making Based on Interval-Valued Complex Single-Valued Neutrosophic Hesitant Fuzzy Generalized Hybrid Weighted Averaging Operators, J. Intell. Fuzzy Syst. 38 (2020), 4359–4401. https://doi.org/10.3233/jifs-191005. [3] F. Smarandache, Introduction to Neutrosophic Statistics, arXiv. (2014). https://doi.org/10.48550/ARXIV.1406.2000. [4] R. Varshney, A. Pal, Mradula, I. Ali, Optimum Allocation in the Multivariate Cluster Sampling Design Under Gamma Cost Function, J. Stat. Comput. Simul. 93 (2022), 312–323. https://doi.org/10.1080/00949655.2022.2104845. [5] N. Gupta, I. Ali, Shafiullah, A. Bari, A Fuzzy Goal Programming Approach in Stochastic Multivariate Stratified Sample Surveys, South Pac. J. Nat. App. Sci. 31 (2013), 80-88. https://doi.org/10.1071/sp13009. https://doi.org/10.3233/jifs-181253 https://doi.org/10.3233/jifs-181253 https://doi.org/10.3233/jifs-191005 https://doi.org/10.48550/ARXIV.1406.2000 https://doi.org/10.1080/00949655.2022.2104845 https://doi.org/10.1071/sp13009 18 Int. J. Anal. Appl. (2023), 21:41 [6] N. Kumar Adichwal, A. Ali H. Ahmadini, Y. Singh Raghav, R. Singh, I. Ali, Estimation of General Parameters Using Auxiliary Information in Simple Random Sampling Without Replacement, J. King Saud Univ. – Sci. 34 (2022), 101754. https://doi.org/10.1016/j.jksus.2021.101754. [7] R. Singh, R. Mishra, Ratio-cum-product Type Estimators for Rare and Hidden Clustered Population, Sankhya B. (2022). https://doi.org/10.1007/s13571-022-00298-x. [8] A. Haq, J. Shabbir, Improved Family of Ratio Estimators in Simple and Stratified Random Sampling, Commun. Stat. – Theory Methods. 42 (2013), 782–799. https://doi.org/10.1080/03610926.2011.579377. [9] Z. Ali, T. Mahmood, Complex Neutrosophic Generalised Dice Similarity Measures and Their Application to Decision Making, CAAI Trans. Intell. Technol. 5 (2020), 78–87. https://doi.org/10.1049/trit.2019.0084. [10] M. Aslam, A New Sampling Plan Using Neutrosophic Process Loss Consideration, Symmetry. 10 (2018), 132. https://doi.org/10.3390/sym10050132. [11] M. Aslam, Neutrosophic Analysis of Variance: Application to University Students, Complex Intell. Syst. 5 (2019), 403–407. https://doi.org/10.1007/s40747-019-0107-2. [12] M. Aslam, Monitoring the Road Traffic Crashes Using NEWMA Chart and Repetitive Sampling, Int. J. Injury Control Safe. Promotion. 28 (2020), 39–45. https://doi.org/10.1080/17457300.2020.1835990. [13] M. Aslam, A new goodness of fit test in the presence of uncertain parameters, Complex Intell. Syst. 7 (2020), 359–365. https://doi.org/10.1007/s40747-020-00214-8. [14] Z. Tahir, H. Khan, M. Aslam, J. Shabbir, Y. Mahmood, F. Smarandache, Neutrosophic Ratio-Type Estimators for Estimating the Population Mean, Complex Intell. Syst. 7 (2021), 2991–3001. https://doi.org/10.1007/s40747-021-00439-1. [15] Yahoo Finance: TESLA. https://finance.yahoo.com/quote/TSLA/history/. Accessed 2021-09-13. [16] National Family Health Survey (NFHS-4), (2015-2016). http://rchiips.org/nfhs/factsheet_nfhs-4.shtml. [17] R. Singh, R. Mishra, Improved Exponential Ratio Estimators in Adaptive Cluster Sampling, J. Stat. Appl. Probab. Lett. 9 (2022), 19–29. https://doi.org/10.18576/jsapl/090103. [18] Z. Yan, B. Tian, Ratio Method to the Mean Estimation Using Coefficient of Skewness of Auxiliary Variable, in: R. Zhu, Y. Zhang, B. Liu, C. Liu (Eds.), Information Computing and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 103–110. https://doi.org/10.1007/978-3-642-16339- 5_14. [19] R. Mishra, B. Ram, Portfolio Selection Using R, Yugoslav J. Oper. Res. 30 (2020), 137–146. https://doi.org/10.2298/yjor181115002m. [20] Yahoo Finance: MRNA. https://finance.yahoo.com/quote/MRNA/history/. Accessed 2021-09-13. https://doi.org/10.1016/j.jksus.2021.101754 https://doi.org/10.1007/s13571-022-00298-x https://doi.org/10.1080/03610926.2011.579377 https://doi.org/10.1049/trit.2019.0084 https://doi.org/10.3390/sym10050132 https://doi.org/10.1007/s40747-019-0107-2 https://doi.org/10.1080/17457300.2020.1835990 https://doi.org/10.1007/s40747-020-00214-8 https://doi.org/10.1007/s40747-021-00439-1 https://finance.yahoo.com/quote/TSLA/history/ http://rchiips.org/nfhs/factsheet_nfhs-4.shtml https://doi.org/10.18576/jsapl/090103 https://doi.org/10.1007/978-3-642-16339-5_14 https://doi.org/10.1007/978-3-642-16339-5_14 https://doi.org/10.2298/yjor181115002m https://finance.yahoo.com/quote/MRNA/history/