Int. J. Anal. Appl. (2023), 21:41 

 

 

Received: Feb. 11, 2023. 

2020 Mathematics Subject Classification. 62P05. 

Key words and phrases. neutrosophic statistics; classical statistics; simulation; robust type estimators; indeterminacy 

intervals. 

 

https://doi.org/10.28924/2291-8639-21-2023-41 Β© 2023 the author(s) 

ISSN: 2291-8639  

1 

 

Neutrosophic Generalized Exponential Robust Ratio Type Estimators 

Yashpal Singh Raghav* 

Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia 

*Corresponding author: yraghav@jazanu.edu.sa 

ABSTRACT. Estimators proposed under classical statistics fail if data are vague or indeterminate. Neutrosophic Statistics 

are the only alternative because its deal with indeterminacy. Extensive reserch has been conducted in this field because of 

its wide applicability. This study aimed to further develop the theory of neutosophic simple random sampling without 

replacement. In this study, a generalized neutrosophic exponential robust ratio-type estimator was proposed, and five of its 

member neutrosophic estimators were developed. Derivations of  the bias and Mean Square Error were provided up to the 

first-order approximation. To demonstrate the high efficiency of the proposed neutrosophic estimators an empirical study 

on the stock price of Moderna and four simulation studies have been conducted, and the results show that the proposed 

neutrosophic estimators are more efficient than similar existing ratio type estimators discussed in this paper in neutrosophic 

as well as classical forms. 

 

1. INTRODUCTION 

Classical statistics and its methods deal with randomness but there are cases where the data at hand 

is indeterminate or vague or ambiguous or imprecise rather than random. In such situations estimation 

using classical statistical methods does not yield promising results. Fuzzy logic [1, 2] is one solution 

to tackle such a problem but still, it ignores indeterminacy. In such cases, neutrosophic methods are 

much more reliable. They deal with both randomness and more importantly with indeterminacy. 

Neutrosophic statistics refers to a set of data such that the data or a part of it is indeterminate and 

methods to analyze such a data [3]. 

Neutrosophic statistics is an extension of classical statistics and when the indeterminacy is zero, 

neutrosophic statistics coincides with classical statistics [3]. Estimation through neutrosophic 

https://doi.org/10.28924/2291-8639-21-2023-41


2 Int. J. Anal. Appl. (2023), 21:41 

 

methods is a new field and therefore it is unexplored unlike estimation problems in classical probability 

sampling designs where the data is determinate [4-8]. But, due to its wide applicability, it has gained 

much more importance than classical statistics and as a results it is being applied in various fileds for 

instance in decision making [9]. [10] developed a new sampling plan using neutrosophic process. [11] 

proposed neutrosophic analysis of variance. [12] used neutrosophic statistics in analyzing road traffic 

accidents. [13] proposed goodness of fit test in neutrosophic statistics. As a result filed of 

neutrosophic sampling has been developed and some neutrosophic ratio-type estimators has been 

proposed [14] and this paper is the second paper aimed at further developing the theory of 

neutrosophic SRSWOR or NSRSWOR sampling.  

It has been observed in some sample surveys that the data collected containes some vagueness due 

to many factors like methodolgy used (observing blood pressure multiple times within an interval in 

NFHS 4 [16]) , observing daily stock price [15, 19] or daily temperature of a city [14]. All these are 

examples where the data contains some indeterminacy and clssical statistical measures like mean, 

median or standard deviation might not give results which are useful for decision making. 

Thus the aim of this paper is to further develop neutrosophic probability sampling theory particulary 

NSRSWOR by developing various generalized neutrosophic exponential robust ratio type estimators. 

In Section 2, the paper presents the terminologies of neutrosophic statistics for new readers. In 

Section 3, existing related neutrosophic ratio-type estimators have been presented.  

In Section 4, the proposed generalized neutrosophic exponential robust ratio type estimator and the 

five developed estimators along with their derivations of biases and MSEs are presented. In order to 

demonstrate the high efficiecny of the developed neutrosophic generalized neutrosophic exponential 

robust ratio type estimators four simulation studies have been conducted in Section 5. The results 

are compared with their classical MSE values as well. Results and concluding remarks on this paper 

are provided in Section 6 along with some future fruitful areas of research. 

 

2. TERMINOLOGY 

A simple random neutrosophic sample of size n from a classical or neutrosophic population is a 

sample of n individuals such that at least one of them has some indeterminacy [3, 14]. 

As presented in [14], a neutrosophic observation is of the form  

𝑍𝑁 = 𝑍𝐿 + π‘π‘ˆ 𝐼𝑁, where 𝐼𝑁 ∈ [𝐼𝐿 , πΌπ‘ˆ ] and 𝑍𝑁 ∈ [𝑍𝑙 , 𝑍𝑒 ]. 

Now consider a simple random neutrosophic sample of size 𝑛𝑁 ∈ [𝑛𝐿 , π‘›π‘ˆ ] drawn from a finite 

population of size N and 𝑦𝑁 (𝑖) ∈ [𝑦𝐿 , π‘¦π‘ˆ ] and π‘₯𝑁 (𝑖) are 𝑖
π‘‘β„Ž ∈ [π‘₯𝐿 , π‘₯π‘ˆ ] neutrosophic sample 



3 Int. J. Anal. Appl. (2023), 21:41 

 

observation. Here the population mean of neutrosophic survey and auxiliary variable are �̅�𝑁 ∈ [π‘ŒπΏ , π‘Œπ‘ˆ ] 

and �̅�𝑁 ∈ [𝑋𝐿 , π‘‹π‘ˆ ] respectively. 

𝐢𝑦𝑁 ∈ [𝐢𝑦𝑁𝐿 , πΆπ‘¦π‘π‘ˆ ] and 𝐢π‘₯𝑁 ∈ [𝐢π‘₯𝑁𝐿 , 𝐢π‘₯π‘π‘ˆ ] are population coefficient of variation of neutrosophic 

survey and auxiliary variables respectively. In addition, 𝜌π‘₯𝑦𝑁 ∈ [𝜌π‘₯𝑦𝑁𝐿 , 𝜌π‘₯π‘¦π‘π‘ˆ ], 𝛽1(π‘₯𝑁 ) ∈

[𝛽1(π‘₯𝑁𝐿 ), 𝛽1(π‘₯π‘π‘ˆ )] and 𝛽2(π‘₯𝑁 ) ∈ [𝛽2(π‘₯𝑁𝐿 ), 𝛽2(π‘₯π‘π‘ˆ )] are the correlation coefficient between the 

neutrosophic survey and auxiliary variables, coefficient of skewness and coefficient of kurtosis of the 

neutrosophic auxiliary variable respectively. 

The MSE of a neutrosophic estimator is of the form, 𝑀𝑆𝐸(�̅�𝑁 ) ∈ [𝑀𝑆𝐸𝐿 , π‘€π‘†πΈπ‘ˆ ]. 

The error terms in neutrosophic statistics are: 

�̅�𝑦𝑁 = �̅�𝑁 βˆ’ �̅�𝑁, 

οΏ½Μ…οΏ½π‘₯𝑁 = �̅�𝑁 βˆ’ �̅�𝑁, 

𝐸(�̅�𝑦𝑁 ) = 𝐸(οΏ½Μ…οΏ½π‘₯𝑁) = 0,  𝐸(�̅�𝑦𝑁
2 ) =

π‘βˆ’π‘›

𝑁𝑛

𝑆𝑦𝑁
2

�̅�𝑁
2 = ΞΎ20 

  𝐸(οΏ½Μ…οΏ½π‘₯𝑁
2 ) =

π‘βˆ’π‘›

𝑁𝑛

𝑆π‘₯𝑁
2

�̅�𝑁
2 = πœ‰02 

𝐸(οΏ½Μ…οΏ½π‘₯𝑁 �̅�𝑦𝑁) =
π‘βˆ’π‘›

𝑁𝑛

𝑆𝑦𝑁𝑆π‘₯𝑁

�̅�𝑁�̅�𝑁
= πœ‰11, 

where �̅�𝑦𝑁 ∈ [�̅�𝑦𝑁𝐿 , οΏ½Μ…οΏ½π‘¦π‘π‘ˆ ], 

  οΏ½Μ…οΏ½π‘₯𝑁 ∈ [οΏ½Μ…οΏ½π‘₯𝑁𝐿 , οΏ½Μ…οΏ½π‘₯π‘π‘ˆ ], 

  �̅�𝑦𝑁
2 ∈ [�̅�𝑦𝑁𝐿

2 , οΏ½Μ…οΏ½π‘¦π‘π‘ˆ
2 ], 

  οΏ½Μ…οΏ½π‘₯𝑁
2 ∈ [οΏ½Μ…οΏ½π‘₯𝑁𝐿

2 , οΏ½Μ…οΏ½π‘₯π‘π‘ˆ
2 ]. 

 

3. SOME RELATED NEUTROSOPHIC ESTIMATORS 

Since neutrosophic probability sampling is a new area of research handful of ratio type estimators 

are proposed in this Neutrosophic Simple Random Sampling Without Replacement (NSRSWOR). 

Tahir et al. [14] proposed the following ratio-type estimators given by 

  �̅�𝑅𝑁 =
�̅�𝑁

�̅�𝑁
�̅�𝑁 ,                                                                              (3.1) 

  οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ = �̅�𝑁
�̅�𝑁 +𝐢π‘₯𝑁

�̅�𝑁+𝐢π‘₯𝑁
,                                                                        (3.2) 

  οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ = �̅�𝑁
�̅�𝑁+𝛽2(π‘₯𝑁)

�̅�𝑁+𝛽2(π‘₯𝑁)
,                                                                     (3.3) 

 οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ = �̅�𝑁
�̅�𝑁𝛽2(π‘₯𝑁)+𝐢π‘₯𝑁

�̅�𝑁𝛽2(π‘₯𝑁)+𝐢π‘₯𝑁
,                                                                 (3.4) 



4 Int. J. Anal. Appl. (2023), 21:41 

 

where �̅�𝑁 ∈ [�̅�𝑁𝐿 , οΏ½Μ…οΏ½π‘π‘ˆ ] and 𝑦𝑅𝑁 ∈ [𝑦𝑅𝐿 , π‘¦π‘…π‘ˆ ], οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ ∈ [οΏ½Μ…οΏ½π‘†π·π‘ŸπΏ , οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ˆ ], οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ ∈ [οΏ½Μ…οΏ½π‘†πΎπ‘ŸπΏ , οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ˆ ], and 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ ∈ [οΏ½Μ…οΏ½π‘ˆπ‘†π‘ŸπΏ , οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ˆ ]. 

Their expressions of MSEs are:  

𝑀𝑆𝐸(�̅�𝑅 ) =
π‘βˆ’π‘›

𝑁𝑛
�̅�𝑁

2[𝐢𝑦𝑁
2 + 𝐢π‘₯𝑁

2 βˆ’ 2𝐢π‘₯𝑁 𝐢𝑦𝑁 𝜌π‘₯𝑦𝑁 ],                                              (3.5) 

  𝑀𝑆𝐸(οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ ) =
π‘βˆ’π‘›

𝑁𝑛
�̅�𝑁

2 [𝐢𝑦𝑁
2 + (

�̅�𝑁

�̅�𝑁 +𝐢π‘₯𝑁
) 𝐢π‘₯𝑁

2 βˆ’ 2 (
�̅�𝑁

�̅�𝑁+𝐢π‘₯𝑁
) 𝐢π‘₯𝑁𝐢𝑦𝑁 𝜌π‘₯𝑦𝑁 ],                    (3.6) 

  𝑀𝑆𝐸(οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ ) =
π‘βˆ’π‘›

𝑁𝑛
�̅�𝑁

2 [𝐢𝑦𝑁
2 + (

�̅�𝑁

�̅�𝑁+𝛽2(π‘₯𝑁)
) 𝐢π‘₯𝑁

2 βˆ’ 2 (
�̅�𝑁

�̅�𝑁+𝛽2(π‘₯𝑁)
) 𝐢π‘₯𝑁 𝐢𝑦𝑁 𝜌π‘₯𝑦𝑁 ]              (3.7) 

and 

  𝑀𝑆𝐸(οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿ ) =
π‘βˆ’π‘›

𝑁𝑛
�̅�𝑁

2 [𝐢𝑦𝑁
2 + (

�̅�𝑁𝛽2(π‘₯𝑁)

�̅�𝑁 𝛽2(π‘₯𝑁)+𝐢π‘₯𝑁
) 𝐢π‘₯𝑁

2 βˆ’ 2 (
�̅�𝑁𝛽2(π‘₯𝑁)

�̅�𝑁𝛽2(π‘₯𝑁)+𝐢π‘₯𝑁
) 𝐢π‘₯𝑁 𝐢𝑦𝑁 𝜌π‘₯𝑦𝑁 ]      (3.8) 

where 𝐢𝑦𝑁
2 ∈ [𝐢𝑦𝑁𝐿

2 , πΆπ‘¦π‘π‘ˆ
2 ], 𝐢π‘₯𝑁

2 ∈ [𝐢π‘₯𝑁𝐿
2 , 𝐢π‘₯π‘π‘ˆ

2 ] and 𝜌π‘₯𝑦𝑁 ∈ [𝜌π‘₯𝑦𝑁𝐿 , 𝜌π‘₯π‘¦π‘π‘ˆ ]. 

 

4. PROPOSED NEUTROSOPHIC GENERALIZED ESTIMATORS 

The aim of this article is to propose a generalized neutrosophic exponential robust ratio type 

estimator of finite neutrosophic population mean.  

Motivated by [14], [17] and [18] we propose the following generalized neutrosophic exponential robust 

ratio type estimator 

                 𝑑𝑝𝑁
G = (o1�̅�𝑁 + π‘œ2(XΜ…N βˆ’ xΜ…N))𝑒π‘₯𝑝(

�̅�𝑁Ω +Ξ¨

𝛼(�̅�𝑁Ω+Ξ¨)+(1βˆ’π›Ό)(�̅�𝑁 Ξ©+Ξ¨)
βˆ’ 1),                     (4.1) 

where, π‘œ1 and π‘œ2 are scalars which minimizes the MSE of the proposed generalizedneutrosophic 

estimator 𝑑𝑝
𝐺 . Further, Ω and Ψ are scalaras which would assume different known population 

parameter values of neutrosophic auxiliary variable precisely Hodges Lehmann, Tri-mea, Mid range 

and coefficient of variation. It should be noted that 𝑑𝑝𝑁
G ∈ [𝑑𝑝

G
𝑁 𝐿

, 𝑑𝑝
G

𝑁 π‘ˆ
], π‘œ1 ∈ [π‘œ1L , π‘œ1U ], π‘œ2 ∈

[π‘œ2L , π‘œ2U ], �̅�𝑁 ∈ [�̅�𝑁𝐿 , οΏ½Μ…οΏ½π‘π‘ˆ ].  In order to obtain the expression of bias and Mean squared error of the 

proposed generalized neutrosophic estimator 𝑑𝑝
𝐺 , we re-write it usingerror terms defined in Section 2 

and using Taylor series obtain the expression as follows 

π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁
𝐺 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 ΞΈπ‘œ2πœ‰02 + π‘œ1(�̅�𝑁 +

3

2
�̅�𝑁 πœƒ

2πœ‰02 βˆ’ �̅�𝑁 πœƒπœ‰11),                                 (4.2) 

𝑀𝑆𝐸 (𝑑𝑝𝑁  
𝐺 ) = βˆ’οΏ½Μ…οΏ½π‘

2 + �̅�𝑁 π‘œ2(βˆ’2�̅�𝑁 πœƒ + �̅�𝑁 π‘œ2)πœ‰02 + �̅�𝑁 π‘œ1(βˆ’2�̅�𝑁 + πœƒ(βˆ’3�̅�𝑁 πœƒ + 4�̅�𝑁 π‘œ2)πœ‰02 + 2(�̅�𝑁 πœƒ +

 �̅�𝑁 π‘œ2)πœ‰11) + �̅�𝑁
2π‘œ1

2(1+4πœƒ2πœ‰2
02

βˆ’ 4πœƒπœ‰11 + ΞΎ20).   (4.3) 

Partially differentiating 𝑀𝑆𝐸 (𝑑𝑝𝑁  
𝐺 )  π‘€π‘–π‘‘β„Ž π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘ π‘‘π‘œ π‘œ1 and π‘œ2to find their optimum values we get 

  π‘œ1π‘œπ‘π‘‘ =
πœ‰02(2βˆ’πœƒ

2πœ‰02)

2(βˆ’πœ‰211+πœ‰02(1+πœ‰20))
                                                             (4.4) 



5 Int. J. Anal. Appl. (2023), 21:41 

 

                   π‘œ2π‘œπ‘π‘‘ =
�̅�𝑁{2πœƒ

3πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒπœ‰11)βˆ’πœƒπœ‰02(2+πœƒπœ‰11βˆ’2πœ‰20))

2�̅�𝑁(βˆ’πœ‰
2

11+πœ‰02(1+πœ‰20))
                               (4.5) 

Using these optimum values we get 

                    𝑀𝑆𝐸 (𝑑𝑝𝑁    π‘œπ‘π‘‘
𝐺 ) =

�̅�𝑁
2{4πœ‰211+πœ‰02{πœƒ

4πœ‰202βˆ’4πœƒ
2πœ‰211+4(βˆ’1+πœƒ

2πœ‰02)πœ‰20}}

4{πœ‰211βˆ’πœ‰02(1+πœ‰20)}
,                     (4.6) 

where πœƒ = Ξ±
�̅�𝑁 Ξ©

�̅�𝑁Ω+Ξ¨
. 

From the proposed generalized neutrosophic exponential robust ratio type estimator 𝑑𝑝
𝐺  we have 

developed five generalized neutrosophic exponential robust ratio type estimators. 

(i) 𝑑𝑝𝑁
𝐺1 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝(

�̅�𝑁HL +TM

�̅�𝑁HL+TM
βˆ’ 1)                                             (4.7) 

The bias and π‘€π‘†πΈπ‘œπ‘π‘‘ are 

                    π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁
𝐺1 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ1π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 +

3

2
�̅�𝑁 πœƒ1

2πœ‰02 βˆ’ �̅�𝑁 πœƒ1πœ‰11),              (4.8) 

                    𝑀𝑆𝐸 (𝑑𝑝𝑁    π‘œπ‘π‘‘
𝐺1 ) =

�̅�𝑁
24πœ‰211+πœ‰02πœƒ1

4πœ‰202βˆ’4πœƒ1
2πœ‰211+4(βˆ’1+πœƒ1

2πœ‰02)πœ‰20

4πœ‰211βˆ’πœ‰02(1+πœ‰20)
,                                (4.9) 

where 

                    π‘œ1π‘œπ‘π‘‘ =
πœ‰02(2βˆ’πœƒ1

2πœ‰02)

2(βˆ’πœ‰211+πœ‰02(1+πœ‰20))
,                                                                                 (4.10) 

                    π‘œ2π‘œπ‘π‘‘ =
�̅�𝑁{2πœƒ

3πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ1πœ‰11)βˆ’πœƒ1πœ‰02(2+πœƒ1πœ‰11βˆ’2πœ‰20))

2�̅�𝑁(βˆ’πœ‰
2

11+πœ‰02(1+πœ‰20))
,                                           (4.11) 

 and  πœƒ1 =
�̅�𝑁HL

�̅�𝑁HL+TM
,   

where,   𝑑𝑝𝑁
𝐺1 ∈ [𝑑𝑝

𝐺1

𝐿
, 𝑑𝑝

𝐺1

π‘ˆ
], πœƒ1 ∈ [πœƒ1𝐿 , πœƒ1π‘ˆ ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿

, π‘œ1π‘œπ‘π‘‘ π‘ˆ
] π‘Žπ‘›π‘‘ π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2π‘œπ‘π‘‘ 𝐿

, π‘œ2π‘œπ‘π‘‘ π‘ˆ
]. 

(ii)  𝑑𝑝𝑁
𝐺2 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝(

�̅�𝑁 TM +MR

�̅�𝑁TM+MR
βˆ’ 1)                                          (4.12) 

The bias and MSE_opt are  

                     π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁
𝐺2 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ2π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 +

3

2
�̅�𝑁 πœƒ2

2πœ‰02 βˆ’ �̅�𝑁 πœƒ2πœ‰11),           (4.13) 

                  𝑀𝑆𝐸 (𝑑𝑝𝑁    π‘œπ‘π‘‘
𝐺2 ) =

�̅�𝑁
24πœ‰211+πœ‰02πœƒ2

4πœ‰202βˆ’4πœƒ2
2πœ‰211+4(βˆ’1+πœƒ2

2πœ‰02)πœ‰20

4πœ‰211βˆ’πœ‰02(1+πœ‰20)
,                               (4.14) 

where 

                   π‘œ1π‘œπ‘π‘‘ =
πœ‰02(2βˆ’πœƒ2

2πœ‰02)

2(βˆ’πœ‰211+πœ‰02(1+πœ‰20))
,                                                            (4.15) 

                  π‘œ2π‘œπ‘π‘‘ =
�̅�𝑁{2πœƒ

3 πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ2πœ‰11)βˆ’πœƒ1πœ‰02(2+πœƒ2πœ‰11βˆ’2πœ‰20))

2�̅�𝑁(βˆ’πœ‰
2

11+πœ‰02(1+πœ‰20))
,                                (4.16) 

and  πœƒ2 =
�̅�𝑁TM

�̅�𝑁TM+MR
  

where,  𝑑𝑝𝑁
𝐺2 ∈ [𝑑𝑝

𝐺2

𝐿
, 𝑑𝑝

𝐺2

π‘ˆ
], πœƒ2 ∈ [πœƒ2𝐿 , πœƒ2π‘ˆ ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿

, π‘œ1π‘œπ‘π‘‘ π‘ˆ
] and  π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2π‘œπ‘π‘‘ 𝐿

, π‘œ2π‘œπ‘π‘‘ π‘ˆ
]. 



6 Int. J. Anal. Appl. (2023), 21:41 

 

(iii) 𝑑𝑝𝑁
𝐺3 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝(

�̅�𝑁HL +MR

�̅�𝑁HL+MR
βˆ’ 1)                                             (4.17) 

The bias and π‘€π‘†πΈπ‘œπ‘π‘‘ are  

                    π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁
𝐺3 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ3π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 +

3

2
�̅�𝑁 πœƒ3

2πœ‰02 βˆ’ �̅�𝑁 πœƒ3πœ‰11),               (4.18) 

                    𝑀𝑆𝐸 (𝑑𝑝𝑁    π‘œπ‘π‘‘
𝐺3 ) =

�̅�𝑁
24πœ‰211+πœ‰02πœƒ3

4πœ‰202βˆ’4πœƒ3
2πœ‰211+4(βˆ’1+πœƒ3

2πœ‰02)πœ‰20

4πœ‰211βˆ’πœ‰02(1+πœ‰20)
,                                  (4.19) 

where 

                    π‘œ1π‘œπ‘π‘‘ =
πœ‰02(2βˆ’πœƒ3

2πœ‰02)

2(βˆ’πœ‰211+πœ‰02(1+πœ‰20))
,                                                                             (4.20) 

                    π‘œ2π‘œπ‘π‘‘ =
�̅�𝑁{2πœƒ

3 πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ3πœ‰11)βˆ’πœƒ3πœ‰02 (2+πœƒ3πœ‰11βˆ’2πœ‰20))

2�̅�𝑁(βˆ’πœ‰
2

11+πœ‰02(1+πœ‰20))
,                                    (4.21) 

and πœƒ3 =
�̅�𝑁 HL

�̅�𝑁 HL+MR
  

where, 𝑑𝑝𝑁
𝐺3 ∈ [𝑑𝑝

𝐺3

𝐿
, 𝑑𝑝

𝐺3

π‘ˆ
], πœƒ3 ∈ [πœƒ3𝐿 , πœƒ3π‘ˆ ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿

, π‘œ1π‘œπ‘π‘‘ π‘ˆ
] π‘Žπ‘›π‘‘ π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2 π‘œπ‘π‘‘ 𝐿

, π‘œ2π‘œπ‘π‘‘ π‘ˆ
]. 

(iv)  𝑑𝑝𝑁
𝐺4 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝(

�̅�𝑁 CxN +𝐻𝐿

�̅�𝑁CxN +HL
βˆ’ 1)                                            (4.22) 

The bias and π‘€π‘†πΈπ‘œπ‘π‘‘ are  

                    π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁
𝐺4 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ4π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 +

3

2
�̅�𝑁 πœƒ4

2πœ‰02 βˆ’ �̅�𝑁 πœƒ4πœ‰11),            (4.23) 

                    𝑀𝑆𝐸 (𝑑𝑝𝑁    π‘œπ‘π‘‘
𝐺4 ) =

�̅�𝑁
24πœ‰211+πœ‰02πœƒ4

4πœ‰202βˆ’4πœƒ4
2πœ‰211+4(βˆ’1+πœƒ4

2πœ‰02)πœ‰20

4πœ‰211βˆ’πœ‰02(1+πœ‰20)
                                     (4.24) 

where, 

                   π‘œ1π‘œπ‘π‘‘ =
πœ‰02(2βˆ’πœƒ4

2πœ‰02)

2(βˆ’πœ‰211+πœ‰02(1+πœ‰20))
,                                                                                       (4.25) 

                   π‘œ2π‘œπ‘π‘‘ =
�̅�𝑁{2πœƒ

3 πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ4πœ‰11)βˆ’πœƒ4πœ‰02(2+πœƒ4πœ‰11βˆ’2πœ‰20))

2�̅�𝑁(βˆ’πœ‰
2

11+πœ‰02(1+πœ‰20))
,                                         (4.26) 

and  πœƒ4 =
�̅�𝑁CxN

�̅�𝑁CxN +HL
  

where,  𝑑𝑝𝑁
𝐺4 ∈ [𝑑𝑝

𝐺4

𝐿
, 𝑑𝑝

𝐺4

π‘ˆ
], πœƒ4 ∈ [πœƒ4𝐿 , πœƒ4π‘ˆ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿

, π‘œ1π‘œπ‘π‘‘ π‘ˆ
] π‘Žπ‘›π‘‘ π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2 π‘œπ‘π‘‘ 𝐿

, π‘œ2π‘œπ‘π‘‘ π‘ˆ
]. 

(v) 𝑑𝑝𝑁
𝐺5 = (π‘œ1�̅�𝑁 + π‘œ2(�̅�𝑁 βˆ’ �̅�𝑁 ))𝑒π‘₯𝑝(

�̅�𝑁CxN
+𝑇𝑀

�̅�𝑁CxN +TM
βˆ’ 1)                                        (4.27) 

 

The bias and π‘€π‘†πΈπ‘œπ‘π‘‘ are 

                    π΅π‘–π‘Žπ‘ (𝑑𝑝𝑁
𝐺5 ) = βˆ’οΏ½Μ…οΏ½π‘ + �̅�𝑁 πœƒ5π‘œ2π‘œπ‘π‘‘ πœ‰02 + π‘œ1π‘œπ‘π‘‘ (�̅�𝑁 +

3

2
�̅�𝑁 πœƒ5

2πœ‰02 βˆ’ �̅�𝑁 πœƒ5πœ‰11),             (4.28) 

                    𝑀𝑆𝐸 (𝑑𝑝𝑁    π‘œπ‘π‘‘
𝐺5 ) =

�̅�𝑁
24πœ‰211+πœ‰02πœƒ5

4πœ‰202βˆ’4πœƒ5
2πœ‰211+4(βˆ’1+πœƒ5

2πœ‰02)πœ‰20

4πœ‰211βˆ’πœ‰02(1+πœ‰20)
                                    (4.29) 



7 Int. J. Anal. Appl. (2023), 21:41 

 

                  π‘œ1π‘œπ‘π‘‘ =
πœ‰02(2βˆ’πœƒ5

2πœ‰02)

2(βˆ’πœ‰211+πœ‰02(1+πœ‰20))
,                                                                                 (4.30) 

                  π‘œ2π‘œπ‘π‘‘ =
�̅�𝑁{2πœƒ

3 πœ‰202βˆ’2πœ‰11(βˆ’1+πœƒ5πœ‰11)βˆ’πœƒ5πœ‰02(2+πœƒ5πœ‰11βˆ’2πœ‰20))

2�̅�𝑁(βˆ’πœ‰
2

11+πœ‰02(1+πœ‰20))
,                                      (4.31) 

and πœƒ5 =
�̅�𝑁CxN

�̅�𝑁 CxN +TM
  

where,  𝑑𝑝𝑁
𝐺5 ∈ [𝑑𝑝

𝐺5

𝐿
, 𝑑𝑝

𝐺5

π‘ˆ
], πœƒ5 ∈ [πœƒ5𝐿 , πœƒ5π‘ˆ ], π‘œ1π‘œπ‘π‘‘ ∈ [π‘œ1π‘œπ‘π‘‘ 𝐿

, π‘œ1π‘œπ‘π‘‘ π‘ˆ
] π‘Žπ‘›π‘‘ π‘œ2π‘œπ‘π‘‘ ∈ [π‘œ2π‘œπ‘π‘‘ 𝐿

, π‘œ2π‘œπ‘π‘‘ π‘ˆ
]. 

 

5. EMPIRICAL STUDY 

In this section we have conducted an empirical study to demonstrate the high efficiency of the 

developed estimators. This study, is conducted using daily stock price of Moderna. The rationale 

behind taking the stock price as a neutrosophic data is the fact that the daily stock price ranges 

between a high and a low values each day. Pin pointing the point estimate of the daily stock price 

will not give a reliable estimate. Thus, we have taken it as a  neutrosophic dataset. In this empirical 

study, daily stock price of Moderna has been considered form 1-September-2020 to 1-September-

2021 [20] (N=253). The neutrosophic survey variable 𝑦𝑁 i.e., varying price of the stock on each day 

where 𝑦𝑁 ∈ [𝑦𝑙 , 𝑦𝑒 ]  ( 𝑦𝑒 is the highest price of the stock on each day and  𝑦𝑙 is the lowest price of 

the stock each day). 

 

6. SIMULATION STUDY 

In this section we have conducted four simulation studies to demonstrate the high efficiency of the 

proposed generalized neutrosophic robust type exponential ratio estimator over similar existing ratio 

estimators discussed in this article. The comparison has been made on the basis of neutrosophic 

MSEs and neutrosophic REs.  

 

6.1 Simulation study-1 

The following algorithm is used in R language to perform the simulation study: 

(i) Nutrosophic auxiliary variable π‘₯𝑁 has been generated from Neutrosophic normal 

distribution NN([0.7, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single 

indetermincay where population mean πœ‡π‘‹ is indeterminate. Thus π‘₯𝑁  ∈ [π‘₯𝑁 𝐿 , π‘₯𝑁 π‘ˆ ]. 

(ii) Neutrosophic survey variable is generated using the model 𝑦𝑁 = π‘₯𝑁 βˆ’ 7𝑒 

                    such that 𝑦𝑁  ∈ [𝑦𝑁 𝐿 , 𝑦𝑁 π‘ˆ ] where 𝑒 ~𝑁(0, 1). 



8 Int. J. Anal. Appl. (2023), 21:41 

 

(iii) For sample sizes 𝑛1 ∈ [60, 60], 𝑛2 ∈ [65, 65], 𝑛3 ∈ [70, 70] and 𝑛4 ∈ [75, 75] various 

values of neutrosophic estimates are obtained with 20000 iterations. 

(iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained 

and presented in Tables. 

(v) Values of estimates have been calculated under classical statistics as well and their MSEs 

and REs are tabulated in Tables 1-4. 

 

Table 1: Data statistics for empirical study 

 

 π‘†π‘¦π‘ˆ
2 = 9624, 𝑆𝑦𝐿

2 = 8111, πΆπ‘¦π‘ˆ
2 = 0.3124, 𝐢𝑦𝐿

2 = 0.3022, 𝑆π‘₯π‘ˆ
2 = 8743, 𝑆π‘₯𝐿

2 = 8965,  

 𝐢π‘₯π‘ˆ
2 = 0.3055, 𝐢π‘₯𝐿

2 = 0.3092, 𝑁 = 253, 𝑛 = 160, π‘‡π‘€π‘ˆ = 150, π»πΏπ‘ˆ = 153.44,  

 π‘€π‘…π‘ˆ = 270.76, Ξ²2π‘₯π‘ˆ = 1.06, 𝑇𝑀𝐿 = 153, 𝐻𝐿𝐿 = 153.96, 𝑀𝑅𝐿 = 269.4, 𝛽2(π‘₯𝐿 ) = 1.01 

 Οπ‘¦π‘ˆπ‘₯π‘ˆ = 0.99, πœŒπ‘¦πΏπ‘₯𝐿 = 0.99. 

 

Table 2: Neutrosophic MSE of the estimators 

Estimators MSE 

𝑴𝑺𝑬[οΏ½Μ…οΏ½βˆ—πΏ , οΏ½Μ…οΏ½βˆ—π‘ˆ ] 

Relative Eficiency 

𝑹𝑬[οΏ½Μ…οΏ½βˆ—πΏ , οΏ½Μ…οΏ½βˆ—π‘ˆ ] 

�̅�𝑅 𝑁 0.1038 0.1209 1 1 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘  0.1021 0.1223 1.01665 0.988553 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘  0.1009 0.124 1.028741 0.975 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘  0.1222 0.1021 0.849427 1.184133 

𝑑𝑝𝑁
𝐺2  0.0835 0.116 1.243114 1.042241 

𝑑𝑝𝑁
𝐺2  0.0836 0.116 1.241627 1.042241 

𝑑𝑝𝑁
𝐺3  0.0836 0.1156 1.241627 1.045848 

𝑑𝑝𝑁
𝐺4  0.0868 0.1193 1.195853 1.013412 

𝑑𝑝𝑁
𝐺5  0.0869 0.119 1.194476 1.015966 

 

*Denotes appropriate estimator 

 

  



9 Int. J. Anal. Appl. (2023), 21:41 

 

Table 3: Neutrosophic MSEs of all the neutrosophic estimators 

Sample 

Size 

�̅�𝑅 𝑁 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺1  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺2  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺3  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺4  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺5  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

[60, 60] 0.79376 0.71468 0.68268 0.69029 0.92986 0.75644 0.67749 0.71476 0.36048 0.49557 0.37457 0.49494 0.49492 0.49492 0.38379 0.49608 0.38321 0.49603 

[65, 65] 0.70738 0.64959 0.62434 0.63017 0.82481 0.68538 0.62051 0.65438 0.33174 0.46315 0.34235 0.46272 0.46271 0.46271 0.34892 0.46352 0.34851 0.46349 

[70, 70] 0.6408 0.58546 0.56655 0.57157 1.02672 0.61103 0.56208 0.59378 0.30331 0.43304 0.31307 0.43287 0.43287 0.43287 0.31948 0.43323 0.31906 0.43321 

[75, 75] 0.58023 0.53854 0.52302 0.52725 0.64351 0.55999 0.52060 0.54858 0.28057 0.40533 0.28759 0.40525 0.40525 0.40525 0.29178 0.40546 0.29152 0.40545 

 

 

Table 4: Neutrosophic REs of all the neutrosophic estimators 

Sample Size �̅�𝑅 𝑁 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘  

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘  

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺1  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺2  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺3  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺4  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺5  

𝑅𝐸(𝐿, π‘ˆ) 

[60, 60] 1 1 1.162712 1.035319 0.085363 0.944794 1.171619 0.999888 2.201953 1.442137 2.119123 1.443973 2.121842 1.444031 2.068214 1.440655 2.071345 1.440800 

[65, 65] 1 1 1.133004 1.030817 0.857628 0.947781 1.139998 0.99268 2.132333 1.402548 2.066248 1.403851 2.068363 1.403881 2.027342 1.401428 2.029727 1.401519 

[70, 70] 1 1 1.131056 1.024301 0.624123 0.958153 1.140051 0.985988 2.11269 1.351977 2.046827 1.352508 2.048921 1.352508 2.005759 1.351384 2.0084 1.351446 

[75, 75] 1 1 1.109384 1.021413 0.901664 0.961696 1.114541 0.981698 2.06804 1.328646 2.01756 1.328908 2.019104 1.328908 1.988587 1.32822 1.990361 1.328253 

  

 



10 Int. J. Anal. Appl. (2023), 21:41 

 

Table 5: Classical MSEs of all the neutrosophic estimators 

Sample 

size 

�̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

 

𝑑𝑝𝑁
𝐺1  

 

𝑑𝑝𝑁
𝐺2  

 

𝑑𝑝𝑁
𝐺3  

 

𝑑𝑝𝑁
𝐺4  

 

𝑑𝑝𝑁
𝐺5  

 

60 0.70002 0.67756 0.68675 0.67328 0.39037 0.38957 0.38955 0.39044 0.39042 

65 0.63624 0.61897 0.62596 0.61597 0.34903 0.34853 0.34853 0.34907 0.34906 

70 0.57653 0.56183 0.56783 0.55915 0.32683 0.32636 0.32635 0.32688 0.57341 

75 0.53054 0.51869 0.52345 0.5168 0.31015 0.30982 0.30982 0.31018 0.31017 

 

Table 6: Classical REs of all the neutrosophic estimators 

Sample size �̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

 

𝑑𝑝𝑁
𝐺1  

 

𝑑𝑝𝑁
𝐺2  

 

𝑑𝑝𝑁
𝐺3  

 

𝑑𝑝𝑁
𝐺4  

 

𝑑𝑝𝑁
𝐺5  

 

60 1 1.03314 1.01932 1.03971 1.79322 1.79690 1.79699 1.79290 1.79299 

65 1 1.02790 1.01642 1.03290 1.82288 1.82549 1.82549 1.82267 1.82272 

70 1 1.02616 1.01532 1.03108 1.76400 1.76654 1.76660 1.76373 1.00544 

75 1 1.02284 1.01354 1.02658 1.71059 1.71241 1.71241 1.71043 1.71048 

 

6.2 Simulation study-2 

The following algorithm is used in R language to perform the simulation study: 

 

(i) Nutrosophic auxiliary variable π‘₯𝑁 has been generated from Neutrosophic normal 

distribution NN([0.7, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single 

indetermincay where population mean πœ‡π‘‹ is indeterminate. Thus π‘₯𝑁  ∈ [π‘₯𝑁 𝐿 , π‘₯𝑁 π‘ˆ ]. 

(ii) Neutrosophic survey variable is generated using the model 𝑦𝑁 = π‘₯𝑁 βˆ’ 6𝑒 

                    such that 𝑦𝑁  ∈ [𝑦𝑁 𝐿 , 𝑦𝑁 π‘ˆ ] where 𝑒 ~𝑁(0, 1). 

(iii) For sample sizes 𝑛1 ∈ [60, 60], 𝑛2 ∈ [65, 65], 𝑛3 ∈ [70, 70] and 𝑛4 ∈ [75, 75] various 

values of neutrosophic estimates are obtained with 20000 iterations. 

(iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained 

and presented in Tables. 

(v) Values of estimates have been calculated under classical statistics as well and their MSEs 

and REs are tabulated in Tables 5-8. 

  



11 Int. J. Anal. Appl. (2023), 21:41 

 

Table 7: Neutrosophic MSEs of all the neutrosophic estimators 

Sample 

Size 

�̅�𝑅 𝑁 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺1  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺2  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺3  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺4  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺5  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

[60, 60] 0.58317 0.52507 0.50408 0.50940 7.06050 0.55537 0.50234 0.53718 0.28861 0.42083 0.29898 0.42056 0.29863 0.42056 0.30594 0.42109 0.30549 0.42107 

[65, 65] 0.51971 0.47725 0.4612 0.46516 0.60191 0.50290 0.46063 0.49209 0.26721 0.39468 0.27514 0.39456 0.27487 0.39455 0.28036 0.39484 0.28003 0.39483 

[70, 70] 0.47079 0.43013 0.41825 0.42180 0.74261 0.44856 0.41663 0.44617 0.24573 0.37008 0.25288 0.37014 0.25264 0.37014 0.25790 0.70110 0.25756 0.37011 

[75, 75] 0.42629 0.39566 0.38630 0.38914 0.47267 0.41108 0.38624 0.41245 0.22828 0.34735 0.23318 0.34747 0.23302 0.34748 0.23623 0.34735 0.23604 0.34734 

 

Table 8: Neutrosophic REs of all the neutrosophic estimators 

Sample 

Size 

�̅�𝑅 𝑁 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺1  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺2  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺3  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺4  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺5  

𝑅𝐸(𝐿, π‘ˆ) 

[60, 60] 1 1 1.156900 1.030760 0.082596 0.945442 1.160907 0.977456 2.020616 1.247701 1.950532 1.248502 1.952818 1.248502 1.906158 1.246931 1.908966 1.24699 

[65, 65] 1 1 1.126865 1.025991 0.863435 0.948996 1.128259 0.969843 1.94495 1.209207 1.888893 1.209575 1.890748 1.209606 1.853724 1.208717 1.855908 1.208748 

[70, 70] 1 1 1.125619 1.019749 0.633967 0.958913 1.129995 0.964050 1.915883 1.162262 1.861713 1.162074 1.863482 1.16E-05 1.825475 0.613507 1.827885 1.162168 

[75, 75] 1 1 1.103521 1.016755 0.901877 0.962489 1.103692 0.959292 1.867400 1.139082 1.828159 1.138688 1.829414 1.138655 1.804555 1.139082 1.806007 1.139114 

 

  



12 Int. J. Anal. Appl. (2023), 21:41 

 

Table 9: Classical MSEs of all the neutrosophic estimators 

Sample 

size 

�̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

 

𝑑𝑝𝑁
𝐺1  

 

𝑑𝑝𝑁
𝐺2  

 

𝑑𝑝𝑁
𝐺3  

 

𝑑𝑝𝑁
𝐺4  

 

𝑑𝑝𝑁
𝐺5  

 

60 0.51430 0.49854 0.50479 0.49612 0.33024 0.32978 0.32978 0.33028 0.33027 

65 0.46744 0.45557 0.46018 0.45409 0.30102 0.30078 0.30077 0.30104 0.30103 

70 0.42357 0.41335 0.41736 0.41196 0.2837 0.28345 0.28345 0.28373 0.28372 

75 0.38978 0.38173 0.3848 0.38095 0.26904 0.26891 0.26891 0.26905 0.26905 

Table 10: Classical REs of all the neutrosophic estimators 

Sample 

size 

�̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

 

𝑑𝑝𝑁
𝐺1  

 

𝑑𝑝𝑁
𝐺2  

 

𝑑𝑝𝑁
𝐺3  

 

𝑑𝑝𝑁
𝐺4  

 

𝑑𝑝𝑁
𝐺5  

 

60 1 1.031612 1.01884 1.036644 1.557352 1.559525 1.559525 1.557164 1.557211 

65 1 1.026055 1.015776 1.029399 1.552854 1.554093 1.554144 1.55275 1.552802 

70 1 1.024725 1.014879 1.028182 1.493021 1.494338 1.494338 1.492863 1.492916 

75 1 1.021088 1.012942 1.023179 1.448781 1.449481 1.449481 1.448727 1.448727 

 

6.3 Simulation study-3 

The following algorithm is used in R language to perform the simulation study: 

 

(i) Nutrosophic auxiliary variable π‘₯𝑁 has been generated from Neutrosophic normal 

distribution NN([0.75, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single 

indetermincay where population mean πœ‡π‘‹ is indeterminate. Thus π‘₯𝑁  ∈ [π‘₯𝑁 𝐿 , π‘₯𝑁 π‘ˆ ]. 

(ii) Neutrosophic survey variable is generated using the model 𝑦𝑁 = π‘₯𝑁 βˆ’ 7𝑒 

                  such that 𝑦𝑁  ∈ [𝑦𝑁 𝐿 , 𝑦𝑁 π‘ˆ ] where 𝑒 ~𝑁(0, 1). 

(iii) For sample sizes 𝑛1 ∈ [60, 60], 𝑛2 ∈ [65, 65], 𝑛3 ∈ [70, 70] and 𝑛4 ∈ [75, 75] various 

values of neutrosophic estimates are obtained with 20000 iterations. 

(iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained 

and presented in Tables . 

(v) Values of estimates have been calculated under classical statistics as well and their MSEs 

and REs are tabulated in Tables 9-1.



13 Int. J. Anal. Appl. (2023), 21:41 

 

Table 11: Neutrosophic MSEs of all the neutrosophic estimators 

Sample 

Size 

�̅�𝑅 𝑁 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺1  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺2  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺3  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺4  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺5  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

[60, 60] 0.56715 0.52507 0.50377 0.5094 0.64524 0.55537 0.50262 0.53718 0.30052 0.42083 0.30811 0.42056 0.30785 0.42056 0.31202 0.42109 0.31173 0.42107 

[65, 65] 0.50815 0.47725 0.46082 0.46516 0.55396 0.5029 0.46063 0.49209 0.2788 0.39468 0.28427 0.39456 0.28405 0.39455 0.28699 0.39484 0.28679 0.39483 

[70, 70] 0.46026 0.43013 0.41799 0.4218 5.3525 0.44856 0.41683 0.44617 0.25763 0.37008 0.26279 0.37014 0.26262 37014 0.26538 0.37011 0.26519 0.37011 

[75, 75] 0.41836 0.39566 0.38598 0.38914 0.5705 0.41108 0.38646 0.41245 0.23982 0.34735 0.24343 0.34747 0.24331 0.34748 0.24543 0.34735 0.2451 0.34734 

 

Table 12: Neutrosophic REs of all the neutrosophic estimators 

Sample 

Size 

�̅�𝑅 𝑁 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺1  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺2  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺3  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺4  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺5  

𝑅𝐸(𝐿, π‘ˆ) 

[60, 60]  1 1 1.125811 1.030762 0.878975 0.945442 1.128387 0.977456 1.887229 1.247701 1.840739 1.248502 1.842293 1.248502 1.817672 1.246931 1.819363 1.24699 

[65, 65] 1 1 1.102708 1.025991 0.917304 0.948996 1.103163 0.969843 1.822633 1.209207 1.787561 1.209575 1.788946 1.209606 1.770619 1.208717 1.771854 1.208748 

[70, 70] 1 1 1.101127 1.019749 0.08599 0.958913 1.104191 0.96405 1.786516 1.162262 1.751437 1.162074 1.75257 1.16E-05 1.734343 1.162168 1.735586 1.162168 

[75, 75] 1 1 1.08389 1.016755 0.733322 0.962489 1.082544 0.959292 1.744475 1.139082 1.718605 1.138688 1.719453 1.138655 1.7046 1.139082 1.706895 1.139114 

 



14 Int. J. Anal. Appl. (2023), 21:41 

 

Table 13: Classical MSEs of all the neutrosophic estimators 

Sample 

size 

�̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

 

𝑑𝑝𝑁
𝐺1  

 

𝑑𝑝𝑁
𝐺2  

 

𝑑𝑝𝑁
𝐺3  

 

𝑑𝑝𝑁
𝐺4  

 

𝑑𝑝𝑁
𝐺5  

 

60 0.51298 0.4984 0.50418 49604 0.33895 0.33853 0.33852 0.33888 0.33887 

65 0.46636 0.45541 0.45966 0.454 0.30994 0.30979 0.30972 0.3099 0.30989 

70 0.4227 0.41324 0.41695 0.41189 0.2924 0.29217 0.29216 0.29236 0.29235 

75 0.38903 0.38161 0.38443 0.38087 0.27718 0.27707 0.27707 0.27716 0.27716 

 

Table 14: Classical REs of all the neutrosophic estimators 

Sample 

size 

�̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

 

𝑑𝑝𝑁
𝐺1  

 

𝑑𝑝𝑁
𝐺2  

 

𝑑𝑝𝑁
𝐺3  

 

𝑑𝑝𝑁
𝐺4  

 

𝑑𝑝𝑁
𝐺5  

 

60 1 1.029254 1.017454 1.03E-05 1.513439 1.515316 1.515361 1.513751 1.513796 

65 1 1.024044 1.014576 1.027225 1.504678 1.505407 1.505747 1.504873 1.504921 

70 1 1.022892 1.013791 1.026245 1.445622 1.44676 1.44681 1.44582 1.44587 

75 1 1.019444 1.011966 1.021425 1.403528 1.404086 1.404086 1.40363 1.40363 

 

6.4 Simulation study-4 

The following algorithm is used in R language to perform the simulation study: 

(i) Nutrosophic auxiliary variable π‘₯𝑁 has been generated from Neutrosophic normal 

distribution NN([0.65, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single 

indetermincay where population mean πœ‡π‘‹ is indeterminate. Thus π‘₯𝑁  ∈ [π‘₯𝑁 𝐿 , π‘₯𝑁 π‘ˆ ]. 

(ii) Neutrosophic survey variable is generated using the model 𝑦𝑁 = π‘₯𝑁 βˆ’ 6𝑒 

                  such that 𝑦𝑁  ∈ [𝑦𝑁 𝐿 , 𝑦𝑁 π‘ˆ ] where 𝑒 ~𝑁(0, 1). 

(iii) For sample sizes 𝑛1 ∈ [60, 60], 𝑛2 ∈ [65, 65], 𝑛3 ∈ [70, 70] and 𝑛4 ∈ [75, 75] various 

values of neutrosophic estimates are obtained with 20000 iterations. 

(iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained 

and presented in Tables. 

(v) Values of estimates have been calculated under classical statistics as well and their MSEs 

and REs are tabulated in Tables 13-16



15 Int. J. Anal. Appl. (2023), 21:41 

 

Table 15: Neutrosophic MSEs of all the neutrosophic estimators 

Sample 

Size 

�̅�𝑅 𝑁 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺1  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺2  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺3  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺4  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺5  

𝑀𝑆𝐸(𝐿, π‘ˆ) 

[60, 60] 0.60649 0.52507 0.50434 0.50940 160621 0.55537 0.50209 0.53718 0.28066 0.42083 0.29939 0.42056 0.29870 0.42056 0.31687 0.42109 0.31575 0.42107 

[65, 65] 0.53563 0.47725 0.46151 0.46516 0.95151 0.50290 0.46012 0.49209 0.26131 0.39468 0.28742 0.39456 0.28619 0.39455 0.32693 0.39484 0.32387 0.39483 

[70, 70] 0.48835 0.43013 0.41848 0.42180 0.58047 0.44856 0.41644 0.44617 0.23605 0.37008 0.25087 0.37014 0.25018 0.37014 0.27917 0.37011 0.27641 0.37011 

[75, 75] 0.43770 0.39566 0.38660 0.38914 3.32296 0.41108 0.38605 0.41245 0.21814 0.34735 0.22565 0.34747 0.22539 0.34748 0.23187 0.34735 0.23148 0.34734 

 

Table 16: Neutrosophic REs of all the neutrosophic estimators 

Sample 

Size 

�̅�𝑅 𝑁 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺1  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺2  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺3  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺4  

𝑅𝐸(𝐿, π‘ˆ) 

𝑑𝑝𝑁
𝐺5  

𝑅𝐸(𝐿, π‘ˆ) 

[60, 60] 1 1 1.202542 1.030762 3.78E-06 0.945442 1.207931 0.977456 2.160942 1.247701 2.025752 1.248502 2.030432 1.248502 1.914003 1.246931 1.920792 1.24699 

[65, 65] 1 1 1.160603 1.025991 0.562926 0.948996 1.164109 0.969843 2.049788 1.209207 1.863579 1.209575 1.871589 1.209606 1.638363 1.208717 1.653843 1.208748 

[70, 70] 1 1 1.166961 1.019749 0.841301 0.958913 1.172678 0.96405 2.068841 1.162262 1.946626 1.162074 1.951995 1.162074 1.749293 1.162168 1.76676 1.162168 

[75, 75] 1 1 1.132178 1.016755 0.13172 0.962489 1.133791 0.959292 2.00651 1.139082 1.93973 1.138688 1.941967 1.138655 1.887696 1.139082 1.890876 1.139114 

 



16 Int. J. Anal. Appl. (2023), 21:41 

 

Table 17: Classical MSEs of all the neutrosophic estimators 

Sample 

size 

�̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘  

 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

 

𝑑𝑝𝑁
𝐺1  

 

𝑑𝑝𝑁
𝐺2  

 

𝑑𝑝𝑁
𝐺3  

 

𝑑𝑝𝑁
𝐺4  

 

𝑑𝑝𝑁
𝐺5  

 

60 0.51574 0.49868 0.50544 0.4962 0.3217 0.32121 0.3212 0.32189 0.32188 

65 0.46836 0.45572 0.46072 0.45418 0.29226 0.292 0.29199 0.29238 0.29237 

70 0.42453 0.41346 0.4187 0.41203 0.27515 0.27487 0.27486 0.27526 0.27525 

75 0.3906 0.38186 0.3852 0.38103 0.26101 0.26086 0.26085 0.26108 0.26107 

 

Table 18: Classical REs of all the neutrosophic estimators 

Sample 

size 

�̅�𝑅 𝑁 οΏ½Μ…οΏ½π‘†π·π‘Ÿπ‘ 

 

οΏ½Μ…οΏ½π‘†πΎπ‘Ÿπ‘ 

 

οΏ½Μ…οΏ½π‘ˆπ‘†π‘Ÿπ‘ 

 

𝑑𝑝𝑁
𝐺1  

 

𝑑𝑝𝑁
𝐺2  

 

𝑑𝑝𝑁
𝐺3  

 

𝑑𝑝𝑁
𝐺4  

 

𝑑𝑝𝑁
𝐺5  

 

60 1 1.03421 1.020378 1.039379 1.603171 1.605616 1.605666 1.602224 1.602274 

65 1 1.027736 1.016583 1.031221 1.602546 1.603973 1.604028 1.601888 1.601943 

70 1 1.026774 1.013924 1.030338 1.542904 1.544476 1.544532 1.542287 1.542343 

75 1 1.022888 1.014019 1.025116 1.496494 1.497355 1.497412 1.496093 1.49615 

 

7. DISCUSSION AND CONCLUSION 

Vagueness or indetermincacy is usually observed in the collected data. Instead of using Fuzzy logic 

to deal with such a data set it would be more easier and cost resource efficient to use neutrosophic 

statistical tools. Due to its need and wide applicability research in neutrosophic statistics has been 

regorously carried out. This paper aims at further developing the existing theory of Neutrosophic 

Simple Random Sampling Without Replacement (NSRSWOR). In this paper, a generalized 

neutrosophic exponential robust ratio type estimator 𝑑𝑝𝑁
G  has been presented using some known 

population parameters of neutrosophic auxiliary variables.  

From the proposed generalized neutrosophic exponential robust ratio type estimator, five generalized 

neutrosophic exponential robust ratio type estimators 𝑑𝑝𝑁
𝐺1 -𝑑𝑝𝑁

𝐺5   have been developed using known 

population parameter values of auxiliary variables viz., Hodges Lehmann, Tri mean, Mid range and 

coefficient of variation. The high efficiency of the developed neutrosophic estimators have been 

demonstrated using an empirical and four simulation studies the results of which are presented in 

Tables 1-18. 

 



17 Int. J. Anal. Appl. (2023), 21:41 

 

In the empirical study on daily stock price, we can see that the proposed estimators provide a lower 

MSE indicating high efficiency that the similar existing neutrosophic estimators. In simulation studies, 

it is clear from the results that the developed neutrosophic estimators 𝑑𝑝𝑁
𝐺1 -𝑑𝑝𝑁

𝐺5  π‘“π‘Ÿπ‘œπ‘š the proposed 

generalized neutrosphic estimator 𝑑𝑝𝑁
G  provide a much lower MSE as compared to the similar existing 

neutrosophic ratio type estimators discussed in this paper (Table [3-4], Table [7-8], Table [11-12] 

and Table [15-16]). The results of the neutrosophic estimators estimators have also been compared 

with their classical values (Table [5-6], Table [9-10], Table [13-14] and Table [17-18]). It can be 

seen that  the classical values of MSE falls in the indetermancy  neutrosophic MSE intervals implying 

that when the data contains some indetermincay, neutrosophic estimators should be used. Further, 

it can be seen that, proposed neutrosophic estimators 𝑑𝑝𝑁
𝐺1 -𝑑𝑝𝑁

𝐺5  provide lowest MSE in neutrosophic 

as well as classical form and thus it is advised to use the proposed neutrosophic estimators 𝑑𝑝𝑁
𝐺1 -𝑑𝑝𝑁

𝐺5  

when the data at hand is neutrosophic.  

 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the 

publication of this paper. 

 

References 

[1] N. Jan, L. Zedam, T. Mahmood, K. Ullah, Z. Ali, Multiple Attribute Decision Making Method Under 

Linguistic Cubic Information, J. Intell. Fuzzy Syst. 36 (2019), 253–269. https://doi.org/10.3233/jifs-

181253. 

[2] D.F. Li, T. Mahmood, Z. Ali, Y. Dong, Decision Making Based on Interval-Valued Complex Single-Valued 

Neutrosophic Hesitant Fuzzy Generalized Hybrid Weighted Averaging Operators, J. Intell. Fuzzy Syst. 38 

(2020), 4359–4401. https://doi.org/10.3233/jifs-191005. 

[3] F. Smarandache, Introduction to Neutrosophic Statistics, arXiv. (2014).  

https://doi.org/10.48550/ARXIV.1406.2000. 

[4] R. Varshney, A. Pal, Mradula, I. Ali, Optimum Allocation in the Multivariate Cluster Sampling Design Under 

Gamma Cost Function, J. Stat. Comput. Simul. 93 (2022), 312–323. 

https://doi.org/10.1080/00949655.2022.2104845. 

[5] N. Gupta, I. Ali, Shafiullah, A. Bari, A Fuzzy Goal Programming Approach in Stochastic Multivariate 

Stratified Sample Surveys, South Pac. J. Nat. App. Sci. 31 (2013), 80-88. 

https://doi.org/10.1071/sp13009. 

https://doi.org/10.3233/jifs-181253
https://doi.org/10.3233/jifs-181253
https://doi.org/10.3233/jifs-191005
https://doi.org/10.48550/ARXIV.1406.2000
https://doi.org/10.1080/00949655.2022.2104845
https://doi.org/10.1071/sp13009


18 Int. J. Anal. Appl. (2023), 21:41 

 

[6] N. Kumar Adichwal, A. Ali H. Ahmadini, Y. Singh Raghav, R. Singh, I. Ali, Estimation of General 

Parameters Using Auxiliary Information in Simple Random Sampling Without Replacement, J. King Saud 

Univ. – Sci. 34 (2022), 101754. https://doi.org/10.1016/j.jksus.2021.101754. 

[7] R. Singh, R. Mishra, Ratio-cum-product Type Estimators for Rare and Hidden Clustered Population, 

Sankhya B. (2022). https://doi.org/10.1007/s13571-022-00298-x. 

[8] A. Haq, J. Shabbir, Improved Family of Ratio Estimators in Simple and Stratified Random Sampling, 

Commun. Stat. – Theory Methods. 42 (2013), 782–799. https://doi.org/10.1080/03610926.2011.579377. 

[9] Z. Ali, T. Mahmood, Complex Neutrosophic Generalised Dice Similarity Measures and Their Application to 

Decision Making, CAAI Trans. Intell. Technol. 5 (2020), 78–87. https://doi.org/10.1049/trit.2019.0084. 

[10] M. Aslam, A New Sampling Plan Using Neutrosophic Process Loss Consideration, Symmetry. 10 (2018), 

132. https://doi.org/10.3390/sym10050132. 

[11] M. Aslam, Neutrosophic Analysis of Variance: Application to University Students, Complex Intell. Syst. 5 

(2019), 403–407. https://doi.org/10.1007/s40747-019-0107-2. 

[12] M. Aslam, Monitoring the Road Traffic Crashes Using NEWMA Chart and Repetitive Sampling, Int. J. 

Injury Control Safe. Promotion. 28 (2020), 39–45. https://doi.org/10.1080/17457300.2020.1835990. 

[13] M. Aslam, A new goodness of fit test in the presence of uncertain parameters, Complex Intell. Syst. 7 

(2020), 359–365. https://doi.org/10.1007/s40747-020-00214-8. 

[14] Z. Tahir, H. Khan, M. Aslam, J. Shabbir, Y. Mahmood, F. Smarandache, Neutrosophic Ratio-Type 

Estimators for Estimating the Population Mean, Complex Intell. Syst. 7 (2021), 2991–3001. 

https://doi.org/10.1007/s40747-021-00439-1. 

[15] Yahoo Finance: TESLA. https://finance.yahoo.com/quote/TSLA/history/. Accessed 2021-09-13. 

[16] National Family Health Survey (NFHS-4), (2015-2016). http://rchiips.org/nfhs/factsheet_nfhs-4.shtml. 

[17] R. Singh, R. Mishra, Improved Exponential Ratio Estimators in Adaptive Cluster Sampling, J. Stat. Appl. 

Probab. Lett. 9 (2022), 19–29. https://doi.org/10.18576/jsapl/090103. 

[18] Z. Yan, B. Tian, Ratio Method to the Mean Estimation Using Coefficient of Skewness of Auxiliary 

Variable, in: R. Zhu, Y. Zhang, B. Liu, C. Liu (Eds.), Information Computing and Applications, Springer 

Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 103–110. https://doi.org/10.1007/978-3-642-16339-

5_14. 

[19] R. Mishra, B. Ram, Portfolio Selection Using R, Yugoslav J. Oper. Res. 30 (2020), 137–146. 

https://doi.org/10.2298/yjor181115002m. 

[20] Yahoo Finance: MRNA. https://finance.yahoo.com/quote/MRNA/history/. Accessed 2021-09-13. 

 

https://doi.org/10.1016/j.jksus.2021.101754
https://doi.org/10.1007/s13571-022-00298-x
https://doi.org/10.1080/03610926.2011.579377
https://doi.org/10.1049/trit.2019.0084
https://doi.org/10.3390/sym10050132
https://doi.org/10.1007/s40747-019-0107-2
https://doi.org/10.1080/17457300.2020.1835990
https://doi.org/10.1007/s40747-020-00214-8
https://doi.org/10.1007/s40747-021-00439-1
https://finance.yahoo.com/quote/TSLA/history/
http://rchiips.org/nfhs/factsheet_nfhs-4.shtml
https://doi.org/10.18576/jsapl/090103
https://doi.org/10.1007/978-3-642-16339-5_14
https://doi.org/10.1007/978-3-642-16339-5_14
https://doi.org/10.2298/yjor181115002m
https://finance.yahoo.com/quote/MRNA/history/