Int. J. Anal. Appl. (2023), 21:41 Received: Feb. 11, 2023. 2020 Mathematics Subject Classification. 62P05. Key words and phrases. neutrosophic statistics; classical statistics; simulation; robust type estimators; indeterminacy intervals. https://doi.org/10.28924/2291-8639-21-2023-41 Β© 2023 the author(s) ISSN: 2291-8639 1 Neutrosophic Generalized Exponential Robust Ratio Type Estimators Yashpal Singh Raghav* Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia *Corresponding author: yraghav@jazanu.edu.sa ABSTRACT. Estimators proposed under classical statistics fail if data are vague or indeterminate. Neutrosophic Statistics are the only alternative because its deal with indeterminacy. Extensive reserch has been conducted in this field because of its wide applicability. This study aimed to further develop the theory of neutosophic simple random sampling without replacement. In this study, a generalized neutrosophic exponential robust ratio-type estimator was proposed, and five of its member neutrosophic estimators were developed. Derivations of the bias and Mean Square Error were provided up to the first-order approximation. To demonstrate the high efficiency of the proposed neutrosophic estimators an empirical study on the stock price of Moderna and four simulation studies have been conducted, and the results show that the proposed neutrosophic estimators are more efficient than similar existing ratio type estimators discussed in this paper in neutrosophic as well as classical forms. 1. INTRODUCTION Classical statistics and its methods deal with randomness but there are cases where the data at hand is indeterminate or vague or ambiguous or imprecise rather than random. In such situations estimation using classical statistical methods does not yield promising results. Fuzzy logic [1, 2] is one solution to tackle such a problem but still, it ignores indeterminacy. In such cases, neutrosophic methods are much more reliable. They deal with both randomness and more importantly with indeterminacy. Neutrosophic statistics refers to a set of data such that the data or a part of it is indeterminate and methods to analyze such a data [3]. Neutrosophic statistics is an extension of classical statistics and when the indeterminacy is zero, neutrosophic statistics coincides with classical statistics [3]. Estimation through neutrosophic https://doi.org/10.28924/2291-8639-21-2023-41 2 Int. J. Anal. Appl. (2023), 21:41 methods is a new field and therefore it is unexplored unlike estimation problems in classical probability sampling designs where the data is determinate [4-8]. But, due to its wide applicability, it has gained much more importance than classical statistics and as a results it is being applied in various fileds for instance in decision making [9]. [10] developed a new sampling plan using neutrosophic process. [11] proposed neutrosophic analysis of variance. [12] used neutrosophic statistics in analyzing road traffic accidents. [13] proposed goodness of fit test in neutrosophic statistics. As a result filed of neutrosophic sampling has been developed and some neutrosophic ratio-type estimators has been proposed [14] and this paper is the second paper aimed at further developing the theory of neutrosophic SRSWOR or NSRSWOR sampling. It has been observed in some sample surveys that the data collected containes some vagueness due to many factors like methodolgy used (observing blood pressure multiple times within an interval in NFHS 4 [16]) , observing daily stock price [15, 19] or daily temperature of a city [14]. All these are examples where the data contains some indeterminacy and clssical statistical measures like mean, median or standard deviation might not give results which are useful for decision making. Thus the aim of this paper is to further develop neutrosophic probability sampling theory particulary NSRSWOR by developing various generalized neutrosophic exponential robust ratio type estimators. In Section 2, the paper presents the terminologies of neutrosophic statistics for new readers. In Section 3, existing related neutrosophic ratio-type estimators have been presented. In Section 4, the proposed generalized neutrosophic exponential robust ratio type estimator and the five developed estimators along with their derivations of biases and MSEs are presented. In order to demonstrate the high efficiecny of the developed neutrosophic generalized neutrosophic exponential robust ratio type estimators four simulation studies have been conducted in Section 5. The results are compared with their classical MSE values as well. Results and concluding remarks on this paper are provided in Section 6 along with some future fruitful areas of research. 2. TERMINOLOGY A simple random neutrosophic sample of size n from a classical or neutrosophic population is a sample of n individuals such that at least one of them has some indeterminacy [3, 14]. As presented in [14], a neutrosophic observation is of the form ππ = ππΏ + ππ πΌπ, where πΌπ β [πΌπΏ , πΌπ ] and ππ β [ππ , ππ’ ]. Now consider a simple random neutrosophic sample of size ππ β [ππΏ , ππ ] drawn from a finite population of size N and π¦π (π) β [π¦πΏ , π¦π ] and π₯π (π) are π π‘β β [π₯πΏ , π₯π ] neutrosophic sample 3 Int. J. Anal. Appl. (2023), 21:41 observation. Here the population mean of neutrosophic survey and auxiliary variable are οΏ½Μ οΏ½π β [ππΏ , ππ ] and οΏ½Μ οΏ½π β [ππΏ , ππ ] respectively. πΆπ¦π β [πΆπ¦ππΏ , πΆπ¦ππ ] and πΆπ₯π β [πΆπ₯ππΏ , πΆπ₯ππ ] are population coefficient of variation of neutrosophic survey and auxiliary variables respectively. In addition, ππ₯π¦π β [ππ₯π¦ππΏ , ππ₯π¦ππ ], π½1(π₯π ) β [π½1(π₯ππΏ ), π½1(π₯ππ )] and π½2(π₯π ) β [π½2(π₯ππΏ ), π½2(π₯ππ )] are the correlation coefficient between the neutrosophic survey and auxiliary variables, coefficient of skewness and coefficient of kurtosis of the neutrosophic auxiliary variable respectively. The MSE of a neutrosophic estimator is of the form, πππΈ(οΏ½Μ οΏ½π ) β [πππΈπΏ , πππΈπ ]. The error terms in neutrosophic statistics are: οΏ½Μ οΏ½π¦π = οΏ½Μ οΏ½π β οΏ½Μ οΏ½π, οΏ½Μ οΏ½π₯π = οΏ½Μ οΏ½π β οΏ½Μ οΏ½π, πΈ(οΏ½Μ οΏ½π¦π ) = πΈ(οΏ½Μ οΏ½π₯π) = 0, πΈ(οΏ½Μ οΏ½π¦π 2 ) = πβπ ππ ππ¦π 2 οΏ½Μ οΏ½π 2 = ΞΎ20 πΈ(οΏ½Μ οΏ½π₯π 2 ) = πβπ ππ ππ₯π 2 οΏ½Μ οΏ½π 2 = π02 πΈ(οΏ½Μ οΏ½π₯π οΏ½Μ οΏ½π¦π) = πβπ ππ ππ¦πππ₯π οΏ½Μ οΏ½ποΏ½Μ οΏ½π = π11, where οΏ½Μ οΏ½π¦π β [οΏ½Μ οΏ½π¦ππΏ , οΏ½Μ οΏ½π¦ππ ], οΏ½Μ οΏ½π₯π β [οΏ½Μ οΏ½π₯ππΏ , οΏ½Μ οΏ½π₯ππ ], οΏ½Μ οΏ½π¦π 2 β [οΏ½Μ οΏ½π¦ππΏ 2 , οΏ½Μ οΏ½π¦ππ 2 ], οΏ½Μ οΏ½π₯π 2 β [οΏ½Μ οΏ½π₯ππΏ 2 , οΏ½Μ οΏ½π₯ππ 2 ]. 3. SOME RELATED NEUTROSOPHIC ESTIMATORS Since neutrosophic probability sampling is a new area of research handful of ratio type estimators are proposed in this Neutrosophic Simple Random Sampling Without Replacement (NSRSWOR). Tahir et al. [14] proposed the following ratio-type estimators given by οΏ½Μ οΏ½π π = οΏ½Μ οΏ½π οΏ½Μ οΏ½π οΏ½Μ οΏ½π , (3.1) οΏ½Μ οΏ½ππ·ππ = οΏ½Μ οΏ½π οΏ½Μ οΏ½π +πΆπ₯π οΏ½Μ οΏ½π+πΆπ₯π , (3.2) οΏ½Μ οΏ½ππΎππ = οΏ½Μ οΏ½π οΏ½Μ οΏ½π+π½2(π₯π) οΏ½Μ οΏ½π+π½2(π₯π) , (3.3) οΏ½Μ οΏ½ππππ = οΏ½Μ οΏ½π οΏ½Μ οΏ½ππ½2(π₯π)+πΆπ₯π οΏ½Μ οΏ½ππ½2(π₯π)+πΆπ₯π , (3.4) 4 Int. J. Anal. Appl. (2023), 21:41 where οΏ½Μ οΏ½π β [οΏ½Μ οΏ½ππΏ , οΏ½Μ οΏ½ππ ] and π¦π π β [π¦π πΏ , π¦π π ], οΏ½Μ οΏ½ππππ β [οΏ½Μ οΏ½ππ·ππΏ , οΏ½Μ οΏ½ππ·ππ ], οΏ½Μ οΏ½ππΎππ β [οΏ½Μ οΏ½ππΎππΏ , οΏ½Μ οΏ½ππΎππ ], and οΏ½Μ οΏ½ππππ β [οΏ½Μ οΏ½ππππΏ , οΏ½Μ οΏ½ππππ ]. Their expressions of MSEs are: πππΈ(οΏ½Μ οΏ½π ) = πβπ ππ οΏ½Μ οΏ½π 2[πΆπ¦π 2 + πΆπ₯π 2 β 2πΆπ₯π πΆπ¦π ππ₯π¦π ], (3.5) πππΈ(οΏ½Μ οΏ½ππ·ππ ) = πβπ ππ οΏ½Μ οΏ½π 2 [πΆπ¦π 2 + ( οΏ½Μ οΏ½π οΏ½Μ οΏ½π +πΆπ₯π ) πΆπ₯π 2 β 2 ( οΏ½Μ οΏ½π οΏ½Μ οΏ½π+πΆπ₯π ) πΆπ₯ππΆπ¦π ππ₯π¦π ], (3.6) πππΈ(οΏ½Μ οΏ½ππΎππ ) = πβπ ππ οΏ½Μ οΏ½π 2 [πΆπ¦π 2 + ( οΏ½Μ οΏ½π οΏ½Μ οΏ½π+π½2(π₯π) ) πΆπ₯π 2 β 2 ( οΏ½Μ οΏ½π οΏ½Μ οΏ½π+π½2(π₯π) ) πΆπ₯π πΆπ¦π ππ₯π¦π ] (3.7) and πππΈ(οΏ½Μ οΏ½πππ ) = πβπ ππ οΏ½Μ οΏ½π 2 [πΆπ¦π 2 + ( οΏ½Μ οΏ½ππ½2(π₯π) οΏ½Μ οΏ½π π½2(π₯π)+πΆπ₯π ) πΆπ₯π 2 β 2 ( οΏ½Μ οΏ½ππ½2(π₯π) οΏ½Μ οΏ½ππ½2(π₯π)+πΆπ₯π ) πΆπ₯π πΆπ¦π ππ₯π¦π ] (3.8) where πΆπ¦π 2 β [πΆπ¦ππΏ 2 , πΆπ¦ππ 2 ], πΆπ₯π 2 β [πΆπ₯ππΏ 2 , πΆπ₯ππ 2 ] and ππ₯π¦π β [ππ₯π¦ππΏ , ππ₯π¦ππ ]. 4. PROPOSED NEUTROSOPHIC GENERALIZED ESTIMATORS The aim of this article is to propose a generalized neutrosophic exponential robust ratio type estimator of finite neutrosophic population mean. Motivated by [14], [17] and [18] we propose the following generalized neutrosophic exponential robust ratio type estimator π‘ππ G = (o1οΏ½Μ οΏ½π + π2(XΜ N β xΜ N))ππ₯π( οΏ½Μ οΏ½πΞ© +Ξ¨ πΌ(οΏ½Μ οΏ½πΞ©+Ξ¨)+(1βπΌ)(οΏ½Μ οΏ½π Ξ©+Ξ¨) β 1), (4.1) where, π1 and π2 are scalars which minimizes the MSE of the proposed generalizedneutrosophic estimator π‘π πΊ . Further, Ξ© and Ξ¨ are scalaras which would assume different known population parameter values of neutrosophic auxiliary variable precisely Hodges Lehmann, Tri-mea, Mid range and coefficient of variation. It should be noted that π‘ππ G β [π‘π G π πΏ , π‘π G π π ], π1 β [π1L , π1U ], π2 β [π2L , π2U ], οΏ½Μ οΏ½π β [οΏ½Μ οΏ½ππΏ , οΏ½Μ οΏ½ππ ]. In order to obtain the expression of bias and Mean squared error of the proposed generalized neutrosophic estimator π‘π πΊ , we re-write it usingerror terms defined in Section 2 and using Taylor series obtain the expression as follows π΅πππ (π‘ππ πΊ ) = βοΏ½Μ οΏ½π + οΏ½Μ οΏ½π ΞΈπ2π02 + π1(οΏ½Μ οΏ½π + 3 2 οΏ½Μ οΏ½π π 2π02 β οΏ½Μ οΏ½π ππ11), (4.2) πππΈ (π‘ππ πΊ ) = βοΏ½Μ οΏ½π 2 + οΏ½Μ οΏ½π π2(β2οΏ½Μ οΏ½π π + οΏ½Μ οΏ½π π2)π02 + οΏ½Μ οΏ½π π1(β2οΏ½Μ οΏ½π + π(β3οΏ½Μ οΏ½π π + 4οΏ½Μ οΏ½π π2)π02 + 2(οΏ½Μ οΏ½π π + οΏ½Μ οΏ½π π2)π11) + οΏ½Μ οΏ½π 2π1 2(1+4π2π2 02 β 4ππ11 + ΞΎ20). (4.3) Partially differentiating πππΈ (π‘ππ πΊ ) π€ππ‘β πππ ππππ‘ π‘π π1 and π2to find their optimum values we get π1πππ‘ = π02(2βπ 2π02) 2(βπ211+π02(1+π20)) (4.4) 5 Int. J. Anal. Appl. (2023), 21:41 π2πππ‘ = οΏ½Μ οΏ½π{2π 3π202β2π11(β1+ππ11)βππ02(2+ππ11β2π20)) 2οΏ½Μ οΏ½π(βπ 2 11+π02(1+π20)) (4.5) Using these optimum values we get πππΈ (π‘ππ πππ‘ πΊ ) = οΏ½Μ οΏ½π 2{4π211+π02{π 4π202β4π 2π211+4(β1+π 2π02)π20}} 4{π211βπ02(1+π20)} , (4.6) where π = Ξ± οΏ½Μ οΏ½π Ξ© οΏ½Μ οΏ½πΞ©+Ξ¨ . From the proposed generalized neutrosophic exponential robust ratio type estimator π‘π πΊ we have developed five generalized neutrosophic exponential robust ratio type estimators. (i) π‘ππ πΊ1 = (π1οΏ½Μ οΏ½π + π2(οΏ½Μ οΏ½π β οΏ½Μ οΏ½π ))ππ₯π( οΏ½Μ οΏ½πHL +TM οΏ½Μ οΏ½πHL+TM β 1) (4.7) The bias and πππΈπππ‘ are π΅πππ (π‘ππ πΊ1 ) = βοΏ½Μ οΏ½π + οΏ½Μ οΏ½π π1π2πππ‘ π02 + π1πππ‘ (οΏ½Μ οΏ½π + 3 2 οΏ½Μ οΏ½π π1 2π02 β οΏ½Μ οΏ½π π1π11), (4.8) πππΈ (π‘ππ πππ‘ πΊ1 ) = οΏ½Μ οΏ½π 24π211+π02π1 4π202β4π1 2π211+4(β1+π1 2π02)π20 4π211βπ02(1+π20) , (4.9) where π1πππ‘ = π02(2βπ1 2π02) 2(βπ211+π02(1+π20)) , (4.10) π2πππ‘ = οΏ½Μ οΏ½π{2π 3π202β2π11(β1+π1π11)βπ1π02(2+π1π11β2π20)) 2οΏ½Μ οΏ½π(βπ 2 11+π02(1+π20)) , (4.11) and π1 = οΏ½Μ οΏ½πHL οΏ½Μ οΏ½πHL+TM , where, π‘ππ πΊ1 β [π‘π πΊ1 πΏ , π‘π πΊ1 π ], π1 β [π1πΏ , π1π ], π1πππ‘ β [π1πππ‘ πΏ , π1πππ‘ π ] πππ π2πππ‘ β [π2πππ‘ πΏ , π2πππ‘ π ]. (ii) π‘ππ πΊ2 = (π1οΏ½Μ οΏ½π + π2(οΏ½Μ οΏ½π β οΏ½Μ οΏ½π ))ππ₯π( οΏ½Μ οΏ½π TM +MR οΏ½Μ οΏ½πTM+MR β 1) (4.12) The bias and MSE_opt are π΅πππ (π‘ππ πΊ2 ) = βοΏ½Μ οΏ½π + οΏ½Μ οΏ½π π2π2πππ‘ π02 + π1πππ‘ (οΏ½Μ οΏ½π + 3 2 οΏ½Μ οΏ½π π2 2π02 β οΏ½Μ οΏ½π π2π11), (4.13) πππΈ (π‘ππ πππ‘ πΊ2 ) = οΏ½Μ οΏ½π 24π211+π02π2 4π202β4π2 2π211+4(β1+π2 2π02)π20 4π211βπ02(1+π20) , (4.14) where π1πππ‘ = π02(2βπ2 2π02) 2(βπ211+π02(1+π20)) , (4.15) π2πππ‘ = οΏ½Μ οΏ½π{2π 3 π202β2π11(β1+π2π11)βπ1π02(2+π2π11β2π20)) 2οΏ½Μ οΏ½π(βπ 2 11+π02(1+π20)) , (4.16) and π2 = οΏ½Μ οΏ½πTM οΏ½Μ οΏ½πTM+MR where, π‘ππ πΊ2 β [π‘π πΊ2 πΏ , π‘π πΊ2 π ], π2 β [π2πΏ , π2π ], π1πππ‘ β [π1πππ‘ πΏ , π1πππ‘ π ] and π2πππ‘ β [π2πππ‘ πΏ , π2πππ‘ π ]. 6 Int. J. Anal. Appl. (2023), 21:41 (iii) π‘ππ πΊ3 = (π1οΏ½Μ οΏ½π + π2(οΏ½Μ οΏ½π β οΏ½Μ οΏ½π ))ππ₯π( οΏ½Μ οΏ½πHL +MR οΏ½Μ οΏ½πHL+MR β 1) (4.17) The bias and πππΈπππ‘ are π΅πππ (π‘ππ πΊ3 ) = βοΏ½Μ οΏ½π + οΏ½Μ οΏ½π π3π2πππ‘ π02 + π1πππ‘ (οΏ½Μ οΏ½π + 3 2 οΏ½Μ οΏ½π π3 2π02 β οΏ½Μ οΏ½π π3π11), (4.18) πππΈ (π‘ππ πππ‘ πΊ3 ) = οΏ½Μ οΏ½π 24π211+π02π3 4π202β4π3 2π211+4(β1+π3 2π02)π20 4π211βπ02(1+π20) , (4.19) where π1πππ‘ = π02(2βπ3 2π02) 2(βπ211+π02(1+π20)) , (4.20) π2πππ‘ = οΏ½Μ οΏ½π{2π 3 π202β2π11(β1+π3π11)βπ3π02 (2+π3π11β2π20)) 2οΏ½Μ οΏ½π(βπ 2 11+π02(1+π20)) , (4.21) and π3 = οΏ½Μ οΏ½π HL οΏ½Μ οΏ½π HL+MR where, π‘ππ πΊ3 β [π‘π πΊ3 πΏ , π‘π πΊ3 π ], π3 β [π3πΏ , π3π ], π1πππ‘ β [π1πππ‘ πΏ , π1πππ‘ π ] πππ π2πππ‘ β [π2 πππ‘ πΏ , π2πππ‘ π ]. (iv) π‘ππ πΊ4 = (π1οΏ½Μ οΏ½π + π2(οΏ½Μ οΏ½π β οΏ½Μ οΏ½π ))ππ₯π( οΏ½Μ οΏ½π CxN +π»πΏ οΏ½Μ οΏ½πCxN +HL β 1) (4.22) The bias and πππΈπππ‘ are π΅πππ (π‘ππ πΊ4 ) = βοΏ½Μ οΏ½π + οΏ½Μ οΏ½π π4π2πππ‘ π02 + π1πππ‘ (οΏ½Μ οΏ½π + 3 2 οΏ½Μ οΏ½π π4 2π02 β οΏ½Μ οΏ½π π4π11), (4.23) πππΈ (π‘ππ πππ‘ πΊ4 ) = οΏ½Μ οΏ½π 24π211+π02π4 4π202β4π4 2π211+4(β1+π4 2π02)π20 4π211βπ02(1+π20) (4.24) where, π1πππ‘ = π02(2βπ4 2π02) 2(βπ211+π02(1+π20)) , (4.25) π2πππ‘ = οΏ½Μ οΏ½π{2π 3 π202β2π11(β1+π4π11)βπ4π02(2+π4π11β2π20)) 2οΏ½Μ οΏ½π(βπ 2 11+π02(1+π20)) , (4.26) and π4 = οΏ½Μ οΏ½πCxN οΏ½Μ οΏ½πCxN +HL where, π‘ππ πΊ4 β [π‘π πΊ4 πΏ , π‘π πΊ4 π ], π4 β [π4πΏ , π4π], π1πππ‘ β [π1πππ‘ πΏ , π1πππ‘ π ] πππ π2πππ‘ β [π2 πππ‘ πΏ , π2πππ‘ π ]. (v) π‘ππ πΊ5 = (π1οΏ½Μ οΏ½π + π2(οΏ½Μ οΏ½π β οΏ½Μ οΏ½π ))ππ₯π( οΏ½Μ οΏ½πCxN +ππ οΏ½Μ οΏ½πCxN +TM β 1) (4.27) The bias and πππΈπππ‘ are π΅πππ (π‘ππ πΊ5 ) = βοΏ½Μ οΏ½π + οΏ½Μ οΏ½π π5π2πππ‘ π02 + π1πππ‘ (οΏ½Μ οΏ½π + 3 2 οΏ½Μ οΏ½π π5 2π02 β οΏ½Μ οΏ½π π5π11), (4.28) πππΈ (π‘ππ πππ‘ πΊ5 ) = οΏ½Μ οΏ½π 24π211+π02π5 4π202β4π5 2π211+4(β1+π5 2π02)π20 4π211βπ02(1+π20) (4.29) 7 Int. J. Anal. Appl. (2023), 21:41 π1πππ‘ = π02(2βπ5 2π02) 2(βπ211+π02(1+π20)) , (4.30) π2πππ‘ = οΏ½Μ οΏ½π{2π 3 π202β2π11(β1+π5π11)βπ5π02(2+π5π11β2π20)) 2οΏ½Μ οΏ½π(βπ 2 11+π02(1+π20)) , (4.31) and π5 = οΏ½Μ οΏ½πCxN οΏ½Μ οΏ½π CxN +TM where, π‘ππ πΊ5 β [π‘π πΊ5 πΏ , π‘π πΊ5 π ], π5 β [π5πΏ , π5π ], π1πππ‘ β [π1πππ‘ πΏ , π1πππ‘ π ] πππ π2πππ‘ β [π2πππ‘ πΏ , π2πππ‘ π ]. 5. EMPIRICAL STUDY In this section we have conducted an empirical study to demonstrate the high efficiency of the developed estimators. This study, is conducted using daily stock price of Moderna. The rationale behind taking the stock price as a neutrosophic data is the fact that the daily stock price ranges between a high and a low values each day. Pin pointing the point estimate of the daily stock price will not give a reliable estimate. Thus, we have taken it as a neutrosophic dataset. In this empirical study, daily stock price of Moderna has been considered form 1-September-2020 to 1-September- 2021 [20] (N=253). The neutrosophic survey variable π¦π i.e., varying price of the stock on each day where π¦π β [π¦π , π¦π’ ] ( π¦π’ is the highest price of the stock on each day and π¦π is the lowest price of the stock each day). 6. SIMULATION STUDY In this section we have conducted four simulation studies to demonstrate the high efficiency of the proposed generalized neutrosophic robust type exponential ratio estimator over similar existing ratio estimators discussed in this article. The comparison has been made on the basis of neutrosophic MSEs and neutrosophic REs. 6.1 Simulation study-1 The following algorithm is used in R language to perform the simulation study: (i) Nutrosophic auxiliary variable π₯π has been generated from Neutrosophic normal distribution NN([0.7, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single indetermincay where population mean ππ is indeterminate. Thus π₯π β [π₯π πΏ , π₯π π ]. (ii) Neutrosophic survey variable is generated using the model π¦π = π₯π β 7π such that π¦π β [π¦π πΏ , π¦π π ] where π ~π(0, 1). 8 Int. J. Anal. Appl. (2023), 21:41 (iii) For sample sizes π1 β [60, 60], π2 β [65, 65], π3 β [70, 70] and π4 β [75, 75] various values of neutrosophic estimates are obtained with 20000 iterations. (iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained and presented in Tables. (v) Values of estimates have been calculated under classical statistics as well and their MSEs and REs are tabulated in Tables 1-4. Table 1: Data statistics for empirical study ππ¦π 2 = 9624, ππ¦πΏ 2 = 8111, πΆπ¦π 2 = 0.3124, πΆπ¦πΏ 2 = 0.3022, ππ₯π 2 = 8743, ππ₯πΏ 2 = 8965, πΆπ₯π 2 = 0.3055, πΆπ₯πΏ 2 = 0.3092, π = 253, π = 160, πππ = 150, π»πΏπ = 153.44, ππ π = 270.76, Ξ²2π₯π = 1.06, πππΏ = 153, π»πΏπΏ = 153.96, ππ πΏ = 269.4, π½2(π₯πΏ ) = 1.01 Οπ¦ππ₯π = 0.99, ππ¦πΏπ₯πΏ = 0.99. Table 2: Neutrosophic MSE of the estimators Estimators MSE π΄πΊπ¬[οΏ½Μ οΏ½βπΏ , οΏ½Μ οΏ½βπ ] Relative Eficiency πΉπ¬[οΏ½Μ οΏ½βπΏ , οΏ½Μ οΏ½βπ ] οΏ½Μ οΏ½π π 0.1038 0.1209 1 1 οΏ½Μ οΏ½ππ·ππ 0.1021 0.1223 1.01665 0.988553 οΏ½Μ οΏ½ππΎππ 0.1009 0.124 1.028741 0.975 οΏ½Μ οΏ½ππππ 0.1222 0.1021 0.849427 1.184133 π‘ππ πΊ2 0.0835 0.116 1.243114 1.042241 π‘ππ πΊ2 0.0836 0.116 1.241627 1.042241 π‘ππ πΊ3 0.0836 0.1156 1.241627 1.045848 π‘ππ πΊ4 0.0868 0.1193 1.195853 1.013412 π‘ππ πΊ5 0.0869 0.119 1.194476 1.015966 *Denotes appropriate estimator 9 Int. J. Anal. Appl. (2023), 21:41 Table 3: Neutrosophic MSEs of all the neutrosophic estimators Sample Size οΏ½Μ οΏ½π π πππΈ(πΏ, π) οΏ½Μ οΏ½ππ·ππ πππΈ(πΏ, π) οΏ½Μ οΏ½ππΎππ πππΈ(πΏ, π) οΏ½Μ οΏ½ππππ πππΈ(πΏ, π) π‘ππ πΊ1 πππΈ(πΏ, π) π‘ππ πΊ2 πππΈ(πΏ, π) π‘ππ πΊ3 πππΈ(πΏ, π) π‘ππ πΊ4 πππΈ(πΏ, π) π‘ππ πΊ5 πππΈ(πΏ, π) [60, 60] 0.79376 0.71468 0.68268 0.69029 0.92986 0.75644 0.67749 0.71476 0.36048 0.49557 0.37457 0.49494 0.49492 0.49492 0.38379 0.49608 0.38321 0.49603 [65, 65] 0.70738 0.64959 0.62434 0.63017 0.82481 0.68538 0.62051 0.65438 0.33174 0.46315 0.34235 0.46272 0.46271 0.46271 0.34892 0.46352 0.34851 0.46349 [70, 70] 0.6408 0.58546 0.56655 0.57157 1.02672 0.61103 0.56208 0.59378 0.30331 0.43304 0.31307 0.43287 0.43287 0.43287 0.31948 0.43323 0.31906 0.43321 [75, 75] 0.58023 0.53854 0.52302 0.52725 0.64351 0.55999 0.52060 0.54858 0.28057 0.40533 0.28759 0.40525 0.40525 0.40525 0.29178 0.40546 0.29152 0.40545 Table 4: Neutrosophic REs of all the neutrosophic estimators Sample Size οΏ½Μ οΏ½π π π πΈ(πΏ, π) οΏ½Μ οΏ½ππ·ππ π πΈ(πΏ, π) οΏ½Μ οΏ½ππΎππ π πΈ(πΏ, π) οΏ½Μ οΏ½ππππ π πΈ(πΏ, π) π‘ππ πΊ1 π πΈ(πΏ, π) π‘ππ πΊ2 π πΈ(πΏ, π) π‘ππ πΊ3 π πΈ(πΏ, π) π‘ππ πΊ4 π πΈ(πΏ, π) π‘ππ πΊ5 π πΈ(πΏ, π) [60, 60] 1 1 1.162712 1.035319 0.085363 0.944794 1.171619 0.999888 2.201953 1.442137 2.119123 1.443973 2.121842 1.444031 2.068214 1.440655 2.071345 1.440800 [65, 65] 1 1 1.133004 1.030817 0.857628 0.947781 1.139998 0.99268 2.132333 1.402548 2.066248 1.403851 2.068363 1.403881 2.027342 1.401428 2.029727 1.401519 [70, 70] 1 1 1.131056 1.024301 0.624123 0.958153 1.140051 0.985988 2.11269 1.351977 2.046827 1.352508 2.048921 1.352508 2.005759 1.351384 2.0084 1.351446 [75, 75] 1 1 1.109384 1.021413 0.901664 0.961696 1.114541 0.981698 2.06804 1.328646 2.01756 1.328908 2.019104 1.328908 1.988587 1.32822 1.990361 1.328253 10 Int. J. Anal. Appl. (2023), 21:41 Table 5: Classical MSEs of all the neutrosophic estimators Sample size οΏ½Μ οΏ½π π οΏ½Μ οΏ½ππ·ππ οΏ½Μ οΏ½ππΎππ οΏ½Μ οΏ½ππππ π‘ππ πΊ1 π‘ππ πΊ2 π‘ππ πΊ3 π‘ππ πΊ4 π‘ππ πΊ5 60 0.70002 0.67756 0.68675 0.67328 0.39037 0.38957 0.38955 0.39044 0.39042 65 0.63624 0.61897 0.62596 0.61597 0.34903 0.34853 0.34853 0.34907 0.34906 70 0.57653 0.56183 0.56783 0.55915 0.32683 0.32636 0.32635 0.32688 0.57341 75 0.53054 0.51869 0.52345 0.5168 0.31015 0.30982 0.30982 0.31018 0.31017 Table 6: Classical REs of all the neutrosophic estimators Sample size οΏ½Μ οΏ½π π οΏ½Μ οΏ½ππ·ππ οΏ½Μ οΏ½ππΎππ οΏ½Μ οΏ½ππππ π‘ππ πΊ1 π‘ππ πΊ2 π‘ππ πΊ3 π‘ππ πΊ4 π‘ππ πΊ5 60 1 1.03314 1.01932 1.03971 1.79322 1.79690 1.79699 1.79290 1.79299 65 1 1.02790 1.01642 1.03290 1.82288 1.82549 1.82549 1.82267 1.82272 70 1 1.02616 1.01532 1.03108 1.76400 1.76654 1.76660 1.76373 1.00544 75 1 1.02284 1.01354 1.02658 1.71059 1.71241 1.71241 1.71043 1.71048 6.2 Simulation study-2 The following algorithm is used in R language to perform the simulation study: (i) Nutrosophic auxiliary variable π₯π has been generated from Neutrosophic normal distribution NN([0.7, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single indetermincay where population mean ππ is indeterminate. Thus π₯π β [π₯π πΏ , π₯π π ]. (ii) Neutrosophic survey variable is generated using the model π¦π = π₯π β 6π such that π¦π β [π¦π πΏ , π¦π π ] where π ~π(0, 1). (iii) For sample sizes π1 β [60, 60], π2 β [65, 65], π3 β [70, 70] and π4 β [75, 75] various values of neutrosophic estimates are obtained with 20000 iterations. (iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained and presented in Tables. (v) Values of estimates have been calculated under classical statistics as well and their MSEs and REs are tabulated in Tables 5-8. 11 Int. J. Anal. Appl. (2023), 21:41 Table 7: Neutrosophic MSEs of all the neutrosophic estimators Sample Size οΏ½Μ οΏ½π π πππΈ(πΏ, π) οΏ½Μ οΏ½ππ·ππ πππΈ(πΏ, π) οΏ½Μ οΏ½ππΎππ πππΈ(πΏ, π) οΏ½Μ οΏ½ππππ πππΈ(πΏ, π) π‘ππ πΊ1 πππΈ(πΏ, π) π‘ππ πΊ2 πππΈ(πΏ, π) π‘ππ πΊ3 πππΈ(πΏ, π) π‘ππ πΊ4 πππΈ(πΏ, π) π‘ππ πΊ5 πππΈ(πΏ, π) [60, 60] 0.58317 0.52507 0.50408 0.50940 7.06050 0.55537 0.50234 0.53718 0.28861 0.42083 0.29898 0.42056 0.29863 0.42056 0.30594 0.42109 0.30549 0.42107 [65, 65] 0.51971 0.47725 0.4612 0.46516 0.60191 0.50290 0.46063 0.49209 0.26721 0.39468 0.27514 0.39456 0.27487 0.39455 0.28036 0.39484 0.28003 0.39483 [70, 70] 0.47079 0.43013 0.41825 0.42180 0.74261 0.44856 0.41663 0.44617 0.24573 0.37008 0.25288 0.37014 0.25264 0.37014 0.25790 0.70110 0.25756 0.37011 [75, 75] 0.42629 0.39566 0.38630 0.38914 0.47267 0.41108 0.38624 0.41245 0.22828 0.34735 0.23318 0.34747 0.23302 0.34748 0.23623 0.34735 0.23604 0.34734 Table 8: Neutrosophic REs of all the neutrosophic estimators Sample Size οΏ½Μ οΏ½π π π πΈ(πΏ, π) οΏ½Μ οΏ½ππ·ππ π πΈ(πΏ, π) οΏ½Μ οΏ½ππΎππ π πΈ(πΏ, π) οΏ½Μ οΏ½ππππ π πΈ(πΏ, π) π‘ππ πΊ1 π πΈ(πΏ, π) π‘ππ πΊ2 π πΈ(πΏ, π) π‘ππ πΊ3 π πΈ(πΏ, π) π‘ππ πΊ4 π πΈ(πΏ, π) π‘ππ πΊ5 π πΈ(πΏ, π) [60, 60] 1 1 1.156900 1.030760 0.082596 0.945442 1.160907 0.977456 2.020616 1.247701 1.950532 1.248502 1.952818 1.248502 1.906158 1.246931 1.908966 1.24699 [65, 65] 1 1 1.126865 1.025991 0.863435 0.948996 1.128259 0.969843 1.94495 1.209207 1.888893 1.209575 1.890748 1.209606 1.853724 1.208717 1.855908 1.208748 [70, 70] 1 1 1.125619 1.019749 0.633967 0.958913 1.129995 0.964050 1.915883 1.162262 1.861713 1.162074 1.863482 1.16E-05 1.825475 0.613507 1.827885 1.162168 [75, 75] 1 1 1.103521 1.016755 0.901877 0.962489 1.103692 0.959292 1.867400 1.139082 1.828159 1.138688 1.829414 1.138655 1.804555 1.139082 1.806007 1.139114 12 Int. J. Anal. Appl. (2023), 21:41 Table 9: Classical MSEs of all the neutrosophic estimators Sample size οΏ½Μ οΏ½π π οΏ½Μ οΏ½ππ·ππ οΏ½Μ οΏ½ππΎππ οΏ½Μ οΏ½ππππ π‘ππ πΊ1 π‘ππ πΊ2 π‘ππ πΊ3 π‘ππ πΊ4 π‘ππ πΊ5 60 0.51430 0.49854 0.50479 0.49612 0.33024 0.32978 0.32978 0.33028 0.33027 65 0.46744 0.45557 0.46018 0.45409 0.30102 0.30078 0.30077 0.30104 0.30103 70 0.42357 0.41335 0.41736 0.41196 0.2837 0.28345 0.28345 0.28373 0.28372 75 0.38978 0.38173 0.3848 0.38095 0.26904 0.26891 0.26891 0.26905 0.26905 Table 10: Classical REs of all the neutrosophic estimators Sample size οΏ½Μ οΏ½π π οΏ½Μ οΏ½ππ·ππ οΏ½Μ οΏ½ππΎππ οΏ½Μ οΏ½ππππ π‘ππ πΊ1 π‘ππ πΊ2 π‘ππ πΊ3 π‘ππ πΊ4 π‘ππ πΊ5 60 1 1.031612 1.01884 1.036644 1.557352 1.559525 1.559525 1.557164 1.557211 65 1 1.026055 1.015776 1.029399 1.552854 1.554093 1.554144 1.55275 1.552802 70 1 1.024725 1.014879 1.028182 1.493021 1.494338 1.494338 1.492863 1.492916 75 1 1.021088 1.012942 1.023179 1.448781 1.449481 1.449481 1.448727 1.448727 6.3 Simulation study-3 The following algorithm is used in R language to perform the simulation study: (i) Nutrosophic auxiliary variable π₯π has been generated from Neutrosophic normal distribution NN([0.75, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single indetermincay where population mean ππ is indeterminate. Thus π₯π β [π₯π πΏ , π₯π π ]. (ii) Neutrosophic survey variable is generated using the model π¦π = π₯π β 7π such that π¦π β [π¦π πΏ , π¦π π ] where π ~π(0, 1). (iii) For sample sizes π1 β [60, 60], π2 β [65, 65], π3 β [70, 70] and π4 β [75, 75] various values of neutrosophic estimates are obtained with 20000 iterations. (iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained and presented in Tables . (v) Values of estimates have been calculated under classical statistics as well and their MSEs and REs are tabulated in Tables 9-1. 13 Int. J. Anal. Appl. (2023), 21:41 Table 11: Neutrosophic MSEs of all the neutrosophic estimators Sample Size οΏ½Μ οΏ½π π πππΈ(πΏ, π) οΏ½Μ οΏ½ππ·ππ πππΈ(πΏ, π) οΏ½Μ οΏ½ππΎππ πππΈ(πΏ, π) οΏ½Μ οΏ½ππππ πππΈ(πΏ, π) π‘ππ πΊ1 πππΈ(πΏ, π) π‘ππ πΊ2 πππΈ(πΏ, π) π‘ππ πΊ3 πππΈ(πΏ, π) π‘ππ πΊ4 πππΈ(πΏ, π) π‘ππ πΊ5 πππΈ(πΏ, π) [60, 60] 0.56715 0.52507 0.50377 0.5094 0.64524 0.55537 0.50262 0.53718 0.30052 0.42083 0.30811 0.42056 0.30785 0.42056 0.31202 0.42109 0.31173 0.42107 [65, 65] 0.50815 0.47725 0.46082 0.46516 0.55396 0.5029 0.46063 0.49209 0.2788 0.39468 0.28427 0.39456 0.28405 0.39455 0.28699 0.39484 0.28679 0.39483 [70, 70] 0.46026 0.43013 0.41799 0.4218 5.3525 0.44856 0.41683 0.44617 0.25763 0.37008 0.26279 0.37014 0.26262 37014 0.26538 0.37011 0.26519 0.37011 [75, 75] 0.41836 0.39566 0.38598 0.38914 0.5705 0.41108 0.38646 0.41245 0.23982 0.34735 0.24343 0.34747 0.24331 0.34748 0.24543 0.34735 0.2451 0.34734 Table 12: Neutrosophic REs of all the neutrosophic estimators Sample Size οΏ½Μ οΏ½π π π πΈ(πΏ, π) οΏ½Μ οΏ½ππ·ππ π πΈ(πΏ, π) οΏ½Μ οΏ½ππΎππ π πΈ(πΏ, π) οΏ½Μ οΏ½ππππ π πΈ(πΏ, π) π‘ππ πΊ1 π πΈ(πΏ, π) π‘ππ πΊ2 π πΈ(πΏ, π) π‘ππ πΊ3 π πΈ(πΏ, π) π‘ππ πΊ4 π πΈ(πΏ, π) π‘ππ πΊ5 π πΈ(πΏ, π) [60, 60] 1 1 1.125811 1.030762 0.878975 0.945442 1.128387 0.977456 1.887229 1.247701 1.840739 1.248502 1.842293 1.248502 1.817672 1.246931 1.819363 1.24699 [65, 65] 1 1 1.102708 1.025991 0.917304 0.948996 1.103163 0.969843 1.822633 1.209207 1.787561 1.209575 1.788946 1.209606 1.770619 1.208717 1.771854 1.208748 [70, 70] 1 1 1.101127 1.019749 0.08599 0.958913 1.104191 0.96405 1.786516 1.162262 1.751437 1.162074 1.75257 1.16E-05 1.734343 1.162168 1.735586 1.162168 [75, 75] 1 1 1.08389 1.016755 0.733322 0.962489 1.082544 0.959292 1.744475 1.139082 1.718605 1.138688 1.719453 1.138655 1.7046 1.139082 1.706895 1.139114 14 Int. J. Anal. Appl. (2023), 21:41 Table 13: Classical MSEs of all the neutrosophic estimators Sample size οΏ½Μ οΏ½π π οΏ½Μ οΏ½ππ·ππ οΏ½Μ οΏ½ππΎππ οΏ½Μ οΏ½ππππ π‘ππ πΊ1 π‘ππ πΊ2 π‘ππ πΊ3 π‘ππ πΊ4 π‘ππ πΊ5 60 0.51298 0.4984 0.50418 49604 0.33895 0.33853 0.33852 0.33888 0.33887 65 0.46636 0.45541 0.45966 0.454 0.30994 0.30979 0.30972 0.3099 0.30989 70 0.4227 0.41324 0.41695 0.41189 0.2924 0.29217 0.29216 0.29236 0.29235 75 0.38903 0.38161 0.38443 0.38087 0.27718 0.27707 0.27707 0.27716 0.27716 Table 14: Classical REs of all the neutrosophic estimators Sample size οΏ½Μ οΏ½π π οΏ½Μ οΏ½ππ·ππ οΏ½Μ οΏ½ππΎππ οΏ½Μ οΏ½ππππ π‘ππ πΊ1 π‘ππ πΊ2 π‘ππ πΊ3 π‘ππ πΊ4 π‘ππ πΊ5 60 1 1.029254 1.017454 1.03E-05 1.513439 1.515316 1.515361 1.513751 1.513796 65 1 1.024044 1.014576 1.027225 1.504678 1.505407 1.505747 1.504873 1.504921 70 1 1.022892 1.013791 1.026245 1.445622 1.44676 1.44681 1.44582 1.44587 75 1 1.019444 1.011966 1.021425 1.403528 1.404086 1.404086 1.40363 1.40363 6.4 Simulation study-4 The following algorithm is used in R language to perform the simulation study: (i) Nutrosophic auxiliary variable π₯π has been generated from Neutrosophic normal distribution NN([0.65, 1.1], 1.2) i.e., the neutrosophic auxiliary variable x has single indetermincay where population mean ππ is indeterminate. Thus π₯π β [π₯π πΏ , π₯π π ]. (ii) Neutrosophic survey variable is generated using the model π¦π = π₯π β 6π such that π¦π β [π¦π πΏ , π¦π π ] where π ~π(0, 1). (iii) For sample sizes π1 β [60, 60], π2 β [65, 65], π3 β [70, 70] and π4 β [75, 75] various values of neutrosophic estimates are obtained with 20000 iterations. (iv) For each neutrosophic sample size used, neutrosophic MSEs and RES have been obtained and presented in Tables. (v) Values of estimates have been calculated under classical statistics as well and their MSEs and REs are tabulated in Tables 13-16 15 Int. J. Anal. Appl. (2023), 21:41 Table 15: Neutrosophic MSEs of all the neutrosophic estimators Sample Size οΏ½Μ οΏ½π π πππΈ(πΏ, π) οΏ½Μ οΏ½ππ·ππ πππΈ(πΏ, π) οΏ½Μ οΏ½ππΎππ πππΈ(πΏ, π) οΏ½Μ οΏ½ππππ πππΈ(πΏ, π) π‘ππ πΊ1 πππΈ(πΏ, π) π‘ππ πΊ2 πππΈ(πΏ, π) π‘ππ πΊ3 πππΈ(πΏ, π) π‘ππ πΊ4 πππΈ(πΏ, π) π‘ππ πΊ5 πππΈ(πΏ, π) [60, 60] 0.60649 0.52507 0.50434 0.50940 160621 0.55537 0.50209 0.53718 0.28066 0.42083 0.29939 0.42056 0.29870 0.42056 0.31687 0.42109 0.31575 0.42107 [65, 65] 0.53563 0.47725 0.46151 0.46516 0.95151 0.50290 0.46012 0.49209 0.26131 0.39468 0.28742 0.39456 0.28619 0.39455 0.32693 0.39484 0.32387 0.39483 [70, 70] 0.48835 0.43013 0.41848 0.42180 0.58047 0.44856 0.41644 0.44617 0.23605 0.37008 0.25087 0.37014 0.25018 0.37014 0.27917 0.37011 0.27641 0.37011 [75, 75] 0.43770 0.39566 0.38660 0.38914 3.32296 0.41108 0.38605 0.41245 0.21814 0.34735 0.22565 0.34747 0.22539 0.34748 0.23187 0.34735 0.23148 0.34734 Table 16: Neutrosophic REs of all the neutrosophic estimators Sample Size οΏ½Μ οΏ½π π π πΈ(πΏ, π) οΏ½Μ οΏ½ππ·ππ π πΈ(πΏ, π) οΏ½Μ οΏ½ππΎππ π πΈ(πΏ, π) οΏ½Μ οΏ½ππππ π πΈ(πΏ, π) π‘ππ πΊ1 π πΈ(πΏ, π) π‘ππ πΊ2 π πΈ(πΏ, π) π‘ππ πΊ3 π πΈ(πΏ, π) π‘ππ πΊ4 π πΈ(πΏ, π) π‘ππ πΊ5 π πΈ(πΏ, π) [60, 60] 1 1 1.202542 1.030762 3.78E-06 0.945442 1.207931 0.977456 2.160942 1.247701 2.025752 1.248502 2.030432 1.248502 1.914003 1.246931 1.920792 1.24699 [65, 65] 1 1 1.160603 1.025991 0.562926 0.948996 1.164109 0.969843 2.049788 1.209207 1.863579 1.209575 1.871589 1.209606 1.638363 1.208717 1.653843 1.208748 [70, 70] 1 1 1.166961 1.019749 0.841301 0.958913 1.172678 0.96405 2.068841 1.162262 1.946626 1.162074 1.951995 1.162074 1.749293 1.162168 1.76676 1.162168 [75, 75] 1 1 1.132178 1.016755 0.13172 0.962489 1.133791 0.959292 2.00651 1.139082 1.93973 1.138688 1.941967 1.138655 1.887696 1.139082 1.890876 1.139114 16 Int. J. Anal. Appl. (2023), 21:41 Table 17: Classical MSEs of all the neutrosophic estimators Sample size οΏ½Μ οΏ½π π οΏ½Μ οΏ½ππ·ππ οΏ½Μ οΏ½ππΎππ οΏ½Μ οΏ½ππππ π‘ππ πΊ1 π‘ππ πΊ2 π‘ππ πΊ3 π‘ππ πΊ4 π‘ππ πΊ5 60 0.51574 0.49868 0.50544 0.4962 0.3217 0.32121 0.3212 0.32189 0.32188 65 0.46836 0.45572 0.46072 0.45418 0.29226 0.292 0.29199 0.29238 0.29237 70 0.42453 0.41346 0.4187 0.41203 0.27515 0.27487 0.27486 0.27526 0.27525 75 0.3906 0.38186 0.3852 0.38103 0.26101 0.26086 0.26085 0.26108 0.26107 Table 18: Classical REs of all the neutrosophic estimators Sample size οΏ½Μ οΏ½π π οΏ½Μ οΏ½ππ·ππ οΏ½Μ οΏ½ππΎππ οΏ½Μ οΏ½ππππ π‘ππ πΊ1 π‘ππ πΊ2 π‘ππ πΊ3 π‘ππ πΊ4 π‘ππ πΊ5 60 1 1.03421 1.020378 1.039379 1.603171 1.605616 1.605666 1.602224 1.602274 65 1 1.027736 1.016583 1.031221 1.602546 1.603973 1.604028 1.601888 1.601943 70 1 1.026774 1.013924 1.030338 1.542904 1.544476 1.544532 1.542287 1.542343 75 1 1.022888 1.014019 1.025116 1.496494 1.497355 1.497412 1.496093 1.49615 7. DISCUSSION AND CONCLUSION Vagueness or indetermincacy is usually observed in the collected data. Instead of using Fuzzy logic to deal with such a data set it would be more easier and cost resource efficient to use neutrosophic statistical tools. Due to its need and wide applicability research in neutrosophic statistics has been regorously carried out. This paper aims at further developing the existing theory of Neutrosophic Simple Random Sampling Without Replacement (NSRSWOR). In this paper, a generalized neutrosophic exponential robust ratio type estimator π‘ππ G has been presented using some known population parameters of neutrosophic auxiliary variables. From the proposed generalized neutrosophic exponential robust ratio type estimator, five generalized neutrosophic exponential robust ratio type estimators π‘ππ πΊ1 -π‘ππ πΊ5 have been developed using known population parameter values of auxiliary variables viz., Hodges Lehmann, Tri mean, Mid range and coefficient of variation. The high efficiency of the developed neutrosophic estimators have been demonstrated using an empirical and four simulation studies the results of which are presented in Tables 1-18. 17 Int. J. Anal. Appl. (2023), 21:41 In the empirical study on daily stock price, we can see that the proposed estimators provide a lower MSE indicating high efficiency that the similar existing neutrosophic estimators. In simulation studies, it is clear from the results that the developed neutrosophic estimators π‘ππ πΊ1 -π‘ππ πΊ5 ππππ the proposed generalized neutrosphic estimator π‘ππ G provide a much lower MSE as compared to the similar existing neutrosophic ratio type estimators discussed in this paper (Table [3-4], Table [7-8], Table [11-12] and Table [15-16]). The results of the neutrosophic estimators estimators have also been compared with their classical values (Table [5-6], Table [9-10], Table [13-14] and Table [17-18]). It can be seen that the classical values of MSE falls in the indetermancy neutrosophic MSE intervals implying that when the data contains some indetermincay, neutrosophic estimators should be used. Further, it can be seen that, proposed neutrosophic estimators π‘ππ πΊ1 -π‘ππ πΊ5 provide lowest MSE in neutrosophic as well as classical form and thus it is advised to use the proposed neutrosophic estimators π‘ππ πΊ1 -π‘ππ πΊ5 when the data at hand is neutrosophic. Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper. References [1] N. Jan, L. Zedam, T. Mahmood, K. Ullah, Z. Ali, Multiple Attribute Decision Making Method Under Linguistic Cubic Information, J. Intell. Fuzzy Syst. 36 (2019), 253β269. https://doi.org/10.3233/jifs- 181253. [2] D.F. Li, T. Mahmood, Z. Ali, Y. Dong, Decision Making Based on Interval-Valued Complex Single-Valued Neutrosophic Hesitant Fuzzy Generalized Hybrid Weighted Averaging Operators, J. Intell. Fuzzy Syst. 38 (2020), 4359β4401. https://doi.org/10.3233/jifs-191005. [3] F. Smarandache, Introduction to Neutrosophic Statistics, arXiv. (2014). https://doi.org/10.48550/ARXIV.1406.2000. [4] R. Varshney, A. Pal, Mradula, I. Ali, Optimum Allocation in the Multivariate Cluster Sampling Design Under Gamma Cost Function, J. Stat. Comput. Simul. 93 (2022), 312β323. https://doi.org/10.1080/00949655.2022.2104845. [5] N. Gupta, I. Ali, Shafiullah, A. Bari, A Fuzzy Goal Programming Approach in Stochastic Multivariate Stratified Sample Surveys, South Pac. J. Nat. App. Sci. 31 (2013), 80-88. https://doi.org/10.1071/sp13009. https://doi.org/10.3233/jifs-181253 https://doi.org/10.3233/jifs-181253 https://doi.org/10.3233/jifs-191005 https://doi.org/10.48550/ARXIV.1406.2000 https://doi.org/10.1080/00949655.2022.2104845 https://doi.org/10.1071/sp13009 18 Int. J. Anal. Appl. (2023), 21:41 [6] N. Kumar Adichwal, A. Ali H. Ahmadini, Y. Singh Raghav, R. Singh, I. Ali, Estimation of General Parameters Using Auxiliary Information in Simple Random Sampling Without Replacement, J. King Saud Univ. β Sci. 34 (2022), 101754. https://doi.org/10.1016/j.jksus.2021.101754. [7] R. Singh, R. Mishra, Ratio-cum-product Type Estimators for Rare and Hidden Clustered Population, Sankhya B. (2022). https://doi.org/10.1007/s13571-022-00298-x. [8] A. Haq, J. Shabbir, Improved Family of Ratio Estimators in Simple and Stratified Random Sampling, Commun. Stat. β Theory Methods. 42 (2013), 782β799. https://doi.org/10.1080/03610926.2011.579377. [9] Z. Ali, T. Mahmood, Complex Neutrosophic Generalised Dice Similarity Measures and Their Application to Decision Making, CAAI Trans. Intell. Technol. 5 (2020), 78β87. https://doi.org/10.1049/trit.2019.0084. [10] M. Aslam, A New Sampling Plan Using Neutrosophic Process Loss Consideration, Symmetry. 10 (2018), 132. https://doi.org/10.3390/sym10050132. [11] M. Aslam, Neutrosophic Analysis of Variance: Application to University Students, Complex Intell. Syst. 5 (2019), 403β407. https://doi.org/10.1007/s40747-019-0107-2. [12] M. Aslam, Monitoring the Road Traffic Crashes Using NEWMA Chart and Repetitive Sampling, Int. J. Injury Control Safe. Promotion. 28 (2020), 39β45. https://doi.org/10.1080/17457300.2020.1835990. [13] M. Aslam, A new goodness of fit test in the presence of uncertain parameters, Complex Intell. Syst. 7 (2020), 359β365. https://doi.org/10.1007/s40747-020-00214-8. [14] Z. Tahir, H. Khan, M. Aslam, J. Shabbir, Y. Mahmood, F. Smarandache, Neutrosophic Ratio-Type Estimators for Estimating the Population Mean, Complex Intell. Syst. 7 (2021), 2991β3001. https://doi.org/10.1007/s40747-021-00439-1. [15] Yahoo Finance: TESLA. https://finance.yahoo.com/quote/TSLA/history/. Accessed 2021-09-13. [16] National Family Health Survey (NFHS-4), (2015-2016). http://rchiips.org/nfhs/factsheet_nfhs-4.shtml. [17] R. Singh, R. Mishra, Improved Exponential Ratio Estimators in Adaptive Cluster Sampling, J. Stat. Appl. Probab. Lett. 9 (2022), 19β29. https://doi.org/10.18576/jsapl/090103. [18] Z. Yan, B. Tian, Ratio Method to the Mean Estimation Using Coefficient of Skewness of Auxiliary Variable, in: R. Zhu, Y. Zhang, B. Liu, C. Liu (Eds.), Information Computing and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 103β110. https://doi.org/10.1007/978-3-642-16339- 5_14. [19] R. Mishra, B. Ram, Portfolio Selection Using R, Yugoslav J. Oper. Res. 30 (2020), 137β146. https://doi.org/10.2298/yjor181115002m. [20] Yahoo Finance: MRNA. https://finance.yahoo.com/quote/MRNA/history/. Accessed 2021-09-13. https://doi.org/10.1016/j.jksus.2021.101754 https://doi.org/10.1007/s13571-022-00298-x https://doi.org/10.1080/03610926.2011.579377 https://doi.org/10.1049/trit.2019.0084 https://doi.org/10.3390/sym10050132 https://doi.org/10.1007/s40747-019-0107-2 https://doi.org/10.1080/17457300.2020.1835990 https://doi.org/10.1007/s40747-020-00214-8 https://doi.org/10.1007/s40747-021-00439-1 https://finance.yahoo.com/quote/TSLA/history/ http://rchiips.org/nfhs/factsheet_nfhs-4.shtml https://doi.org/10.18576/jsapl/090103 https://doi.org/10.1007/978-3-642-16339-5_14 https://doi.org/10.1007/978-3-642-16339-5_14 https://doi.org/10.2298/yjor181115002m https://finance.yahoo.com/quote/MRNA/history/