Int. J. Anal. Appl. (2023), 21:33 Received: Feb. 26, 2023. 2020 Mathematics Subject Classification. 80A20. Key words and phrases. fractional calculus; reduced differential transform method; diffusion equations. https://doi.org/10.28924/2291-8639-21-2023-33 Β© 2023 the author(s) ISSN: 2291-8639 1 Fractional Reduced Differential Transform Method for Solving Mutualism Model with Fractional Diffusion Mohamed Ahmed Abdallah1,2,*, Khaled Abdalla Ishag3 1Department of Mathematics, Faculty of Sciences, University of Tabuk, Tabuk, KSA 2Department of Basic Science, Faculty of Engineering, University of Sinnar, Sinnar, Sudan 3Department of Basic Science, Faculty of Engineering Science, Omdurman Islamic University, Omdurman, Sudan *Corresponding author: mohamed.ah.abd@hotmail.com ABSTRACT. This study presents the fractional reduced differential transform method for a nonlinear mutualism model with fractional diffusion. The fractional derivatives are described by Caputo's fractional operator. In this method, the solution is considered as the sum of an infinite series. Which converges rapidly to the exact solution. The method eliminates the need to use Adomian's polynomials to calculate the nonlinear terms. To show the efficiency and accuracy of this method, we compared the results of the fractional derivatives orders with the ordinary derivative order index Ξ±=1 for the nonlinear mutualism model with fractional diffusion. Approximate solutions for different values of the fractional derivatives together with non-fractional derivatives and absolute errors are represented graphically in two and three dimensions. From all numerical results, we can conclude the efficiency of the proposed method for solving different types of nonlinear fractional systems of partial differential equations over existing methods. 1. Introduction Recently, it has turned out that many phenomena in engineering and other sciences can be described by models using mathematical tools from fractional calculus [1], fractional calculus owes its origin to a question of whether the meaning of a derivative to an integer order could be extended to still be valid when n is not an integer. Diffusion phenomena is one the most important topic in heat transfer, especially in mechanics engineering and biological population. In the earlier literature most of the https://doi.org/10.28924/2291-8639-21-2023-33 2 Int. J. Anal. Appl. (2023), 21:33 discussions are devoted to coupled systems of two equations. In the recent years, attention has been given to reaction-diffusion systems with three population species, the densities of three populations 𝑒,𝑣,𝑀 are governed by the following coupled equations: ([2], [3]) 𝐷𝑑 𝛼𝑒 βˆ’ d1βˆ‡ 2u = 𝑒(π‘Ž1(𝑑,π‘₯) βˆ’ 𝑏1(𝑑,π‘₯)𝑒 + 𝑐1(𝑑,π‘₯)𝑣) 𝐷𝑑 𝛼𝑣 βˆ’ d2βˆ‡ 2𝑣 = 𝑣(π‘Ž2(𝑑,π‘₯) βˆ’ 𝑏2(𝑑,π‘₯)𝑣 + 𝑐2(𝑑,π‘₯)𝑒 + 𝑒(𝑑,π‘₯)𝑀) (1) 𝐷𝑑 𝛼𝑀 βˆ’ d3βˆ‡ 2𝑀 = 𝑀(π‘Ž3(𝑑,π‘₯) βˆ’ 𝑏3(𝑑,π‘₯)𝑀 + 𝑐3(𝑑,π‘₯)𝑣) with initial conditions 𝑒(π‘₯,0) = 𝑒0, 𝑣(π‘₯,0) = 𝑣0, 𝑀(π‘₯,0) = 𝑀0 where 𝑛 βˆ’ 1 < 𝛼 ≀ 𝑛, for each 𝑖 = 1,2,3, 𝑑𝑖 is constant and π‘Žπ‘–,𝑏𝑖,𝑐𝑖, 𝑒 are smooth functions [2], βˆ‡ 2 denotes Laplacian with respect to the variables π‘₯ = (π‘₯1,π‘₯2,π‘₯3) and 𝑒(π‘₯,𝑑),𝑣(π‘₯,𝑑),𝑀(π‘₯,𝑑) is solution of Eq. (1). If 𝑑𝑖 = 0 for each 𝑖 = 1,2,3 in Eq. (1) we obtain a model of Lotka Volterra for prey- predator. 2. Preliminaries and Fractional Calculus In this section, gives some important definitions, such as the gamma function and basic definitions of the fractional derivatives. 2.1. Gamma Function Gamma function Ξ“(𝑛) is simply the generalization of factorial to complex and real arguments. The gamma function can be defined as ([5], [6]) Ξ“(𝑛) = ∫ π‘‘π‘›βˆ’1π‘’βˆ’π‘‘π‘‘π‘‘ = (𝑛 βˆ’ 1)!, 𝑛 ∈ 𝐼𝑁 ∞ 0 (2) which is convergent for 𝑛 > 0. A recurrence formula for gamma function is ([5], [6]) Ξ“(𝑛 + 1) = 𝑛Γ(𝑛) π‘“π‘œπ‘Ÿ 𝑛 ∈ 𝐼𝑅+ (3) Ξ“(𝑛) = Ξ“(𝑛+1) n π‘“π‘œπ‘Ÿ 𝑛 ∈ πΌπ‘…βˆ’ (4) 2.2. Fractional Derivatives Definition (1): Riemann-Liouville Fractional Integral Operator Suppose that 𝛼 > 0, 𝑛 βˆ’ 1 < 𝛼 ≀ 𝑛, the Riemann-Lioville fractional integral define as [5] 𝐷𝑑 βˆ’π›Ό π‘Ž 𝑅𝐿 (𝑓(𝑑)) = 1 Ξ“(𝛼) ∫(𝑑 βˆ’ 𝑒)π›Όβˆ’1𝑓(𝑒)𝑑𝑒 𝑑 π‘Ž (5) Note: Riemann-Liouville fractional differential operator define as 𝐷𝛼𝑅𝑙 𝑓(𝑑) = π·π‘›π·π›Όβˆ’π‘›π‘“(𝑑), 𝛼 < 𝑛 (6) Definition (2): Caputo Fractional Differential Operator Suppose that 𝛼 > 0, 𝑛 βˆ’ 1 < 𝛼 ≀ 𝑛, the Caputo fractional differential define as [5] 3 Int. J. Anal. Appl. (2023), 21:33 𝐷𝑑 𝛼 π‘Ž 𝐢 (𝑓(𝑑)) = { 1 Ξ“(𝑛 βˆ’ 𝛼) ∫ 𝑓𝑛(𝑒) (𝑑 βˆ’ 𝑒)π›Όβˆ’π‘›+1 𝑑𝑒, 𝑛 βˆ’ 1 < 𝛼 < 𝑛 𝑑 π‘Ž 𝑑𝑛 𝑑𝑑𝑛 𝑓(𝑑) 𝛼 = 𝑛 ∈ 𝑁 (7) Riemann-Liouville and Caputo fractional integral operator for polynomial is [5] 𝐷𝑑 βˆ’π›Ό 0 𝑅𝐿 (𝑑𝑛) = 𝐷𝑑 βˆ’π›Ό 0 𝐢 (𝑓(𝑑)) = Ξ“(𝑛 + 1) Ξ“(𝛼 + 𝑛 + 1) 𝑑𝛼+𝑛 (8) Definition (3): The Mittag- Leffler Function Suppose 𝛼 > 0,𝛽 > 0, then the Mittag-Leffler function define by [5] 𝐸𝛼,𝛽(𝑑) = βˆ‘ π‘‘π‘˜ Ξ“(π›Όπ‘˜ + 𝛽) (9) ∞ π‘˜=0 3. Fractional Reduced Differential Transform Method Fractional Reduced Differential Transform Method (FRDTM) is iteration method, suppose 𝑒(𝑑,π‘₯1,π‘₯2,…,π‘₯𝑛) be analytical and continuously differentiable with respect to 𝑛 + 1 variables 𝑑,π‘₯1,π‘₯2, . . ,π‘₯𝑛 in the domain of interest; then FRDTM in 𝑛 dimensions for the following differential equation 𝐷𝑑 𝛼𝑒 + 𝐿𝑒 + 𝑁(𝑒) = 0 (10) where 𝐷𝑑 𝛼 is differential operator with respect time, 𝐿 differential operator with respect variables π‘₯1,π‘₯2, . . ,π‘₯𝑛 and 𝑁(𝑒) is nonlinear term ([7]-[10]). π‘’π‘˜(π‘₯1,π‘₯2,…,π‘₯𝑛) = Ξ“(π‘˜π›Ό + 1) Ξ“(𝛼(π‘˜ + 1) + 1) [βˆ’πΏ(π‘’π‘˜)βˆ’ βˆ‘π‘(π‘’π‘Ÿ)𝑁(π‘’π‘˜βˆ’π‘Ÿ) π‘˜ π‘Ÿ=0 ] (11) The approximate solution is given by ([7], [8]). 𝑒(𝑑,π‘₯1,π‘₯2,…,π‘₯𝑛) = βˆ‘ π‘’π‘˜π‘‘ π›Όπ‘˜ = 𝑒0 + 𝑒1𝑑 𝛼 + 𝑒2𝑑 2𝛼 + β‹― (12) ∞ π‘˜=0 4. Numerical Results In this section, we assume 𝑑𝑖 = 1,π‘Žπ‘– = 1 π‘“π‘œπ‘Ÿ 𝑖 = 1,2,3, 𝑏1 = 𝑏3 = 1, 𝑏2 = 3, 𝑐1 = 𝑐2 = 𝑐3 = 0.5, 𝑒 = 0.5 in Eq. (1) 𝐷𝑑 𝛼𝑒 = uxx + 𝑒 βˆ’ 𝑒 2 + 0.5𝑒𝑣 𝐷𝑑 𝛼𝑣 = vxx + 𝑣 βˆ’ 3𝑣 2 + 0.5𝑒𝑣 + 0.5𝑀𝑣 𝐷𝑑 𝛼𝑀 = wxx + 𝑀 βˆ’ 𝑀 2 + 0.5𝑣𝑀 4 Int. J. Anal. Appl. (2023), 21:33 with initial conditions 𝑒(π‘₯,0) = 𝑒π‘₯, 𝑣(π‘₯,0) = π‘₯, 𝑀(π‘₯,0) = π‘₯ βˆ’ πœ‹, 0 ≀ π‘₯ ≀ 10 Applied FRDTM π‘’π‘˜+1 = Ξ“(π‘˜π›Ό + 1) Ξ“(𝛼(π‘˜ + 1) + 1) ((π‘’π‘˜)π‘₯π‘₯ + π‘’π‘˜ βˆ’ βˆ‘π‘’π‘Ÿπ‘’π‘˜βˆ’π‘Ÿ π‘˜ π‘Ÿ=0 + 1 2 βˆ‘π‘’π‘Ÿπ‘£π‘˜βˆ’π‘Ÿ π‘˜ π‘Ÿ=0 ) π‘£π‘˜+1 = Ξ“(π‘˜π›Ό + 1) Ξ“(𝛼(π‘˜ + 1) + 1) ((π‘£π‘˜)π‘₯π‘₯ + π‘£π‘˜ βˆ’ 3βˆ‘π‘£π‘Ÿπ‘£π‘˜βˆ’π‘Ÿ π‘˜ π‘Ÿ=0 + 1 2 βˆ‘π‘£π‘Ÿπ‘’π‘˜βˆ’π‘Ÿ π‘˜ π‘Ÿ=0 + 1 2 βˆ‘π‘£π‘Ÿπ‘€π‘˜βˆ’π‘Ÿ π‘˜ π‘Ÿ=0 ) π‘€π‘˜+1 = Ξ“(π‘˜π›Ό + 1) Ξ“(𝛼(π‘˜ + 1) + 1) ((π‘€π‘˜)π‘₯π‘₯ + π‘€π‘˜ βˆ’ βˆ‘π‘€π‘Ÿπ‘€π‘˜βˆ’π‘Ÿ π‘˜ π‘Ÿ=0 + 1 2 βˆ‘π‘€π‘Ÿπ‘£π‘˜βˆ’π‘Ÿ π‘˜ π‘Ÿ=0 ) Given 𝑒0 = 𝑒 π‘₯, 𝑣0 = π‘₯, 𝑀0 = π‘₯ βˆ’ πœ‹ when π‘˜ = 0 𝑒1 = 1 Ξ“(𝛼 + 1) ((𝑒0)π‘₯π‘₯ + 𝑒0 βˆ’ 𝑒0 2 + 1 2 𝑒0𝑣0) 𝑒1 = (2 βˆ’ 𝑒π‘₯ + 0.5π‘₯)𝑒π‘₯ Ξ“(𝛼 + 1) 𝑣1 = 1 Ξ“(𝛼 + 1) ((𝑣0)π‘₯π‘₯ + 𝑣0 βˆ’ 3𝑣0 2 + 1 2 𝑣0𝑒0 + 1 2 𝑣0𝑀0) 𝑣1 = π‘₯ βˆ’ 2.5π‘₯2 + 0.5π‘₯𝑒π‘₯ + 0.5πœ‹π‘₯ 𝛀(𝛼 + 1) 𝑀1 = 1 Ξ“(𝛼 + 1) ((𝑀0)π‘₯π‘₯ + 𝑀0 βˆ’ 𝑀0 2 + 1 2 𝑀0𝑣0) 𝑀1 = (x βˆ’ Ο€)(1 + πœ‹ βˆ’ 0.5π‘₯) Ξ“(𝛼 + 1) when π‘˜ = 1 𝑒2 = 1 Ξ“(2𝛼 + 1) ((𝑒1)π‘₯π‘₯ + 𝑒1 βˆ’ 2𝑒0𝑒1 + 1 2 𝑒0𝑣1 + 1 2 𝑒1𝑣0) 𝑒2 = (5 βˆ’ 9𝑒π‘₯ + 2𝑒2π‘₯ + 0.25(7 βˆ’ πœ‹)π‘₯ βˆ’ 0.5π‘₯𝑒π‘₯ βˆ’ π‘₯2)𝑒π‘₯ Ξ“(2𝛼 + 1) 𝑣2 = 1 Ξ“(2𝛼 + 1) ((𝑣1)π‘₯π‘₯ + 𝑣1 βˆ’ 6𝑣0𝑣1 + 1 2 𝑣0𝑒1 + 1 2 𝑣1𝑒0 + 1 2 𝑣0𝑀1 + 1 2 𝑣1𝑀0) 𝑣2 = (1 βˆ’ 0.5Ο€ βˆ’ 5.5π‘₯ + 0.5𝑒π‘₯)(π‘₯ βˆ’ 2.5π‘₯2 + 0.5π‘₯𝑒π‘₯ + 0.5πœ‹π‘₯)βˆ’ π‘₯3 Ξ“(2𝛼 + 1) + (0.25𝑒π‘₯ βˆ’ 0.5πœ‹2 + 0.25πœ‹ + 0.5)π‘₯2 + (1.5𝑒π‘₯ βˆ’ 0.5𝑒2π‘₯)π‘₯ + 𝑒π‘₯ βˆ’ 5 Ξ“(2𝛼 + 1) 5 Int. J. Anal. Appl. (2023), 21:33 𝑀2 = 1 Ξ“(2𝛼 + 1) ((𝑀1)π‘₯π‘₯ + 𝑀1 βˆ’ 2𝑀0𝑀1 + 1 2 𝑀0𝑣1 + 1 2 𝑀1𝑣0) 𝑀2 = (π‘₯ βˆ’ πœ‹)(Ο€ + 1 βˆ’ 0.5π‘₯)(2Ο€ + 1 βˆ’ 1.5π‘₯)+ 0.5π‘₯(π‘₯ βˆ’ πœ‹)(π‘₯ βˆ’ 0.5πœ‹π‘₯ βˆ’ 2.5π‘₯2 + 0.5π‘₯𝑒π‘₯) βˆ’ 1 Ξ“(2𝛼 + 1) when π‘˜ = 2 𝑒3 = 1 Ξ“(3𝛼 + 1) ((𝑒2)π‘₯π‘₯ + 𝑒2 βˆ’ 2𝑒0𝑒2 βˆ’ 𝑒1 2 + 1 2 𝑒0𝑣2 + 1 2 𝑒1𝑣1 + 1 2 𝑒2𝑣0) 𝑣3 = 1 Ξ“(3𝛼 + 1) ((𝑣2)π‘₯π‘₯ + 𝑣2 βˆ’ 6𝑣0𝑣2 βˆ’ 3𝑣1 2 + 1 2 𝑒0𝑣2 + 1 2 𝑒1𝑣1 + 1 2 𝑒2𝑣0 + 1 2 𝑣0𝑀2 + 1 2 𝑣1𝑀1 + 1 2 𝑣2𝑀0) 𝑀3 = 1 Ξ“(3𝛼 + 1) ((𝑀2)π‘₯π‘₯ + 𝑀2 βˆ’ 2𝑀0𝑀2 βˆ’ 𝑀1 2 + 1 2 𝑀0𝑣2 + 1 2 𝑀1𝑣1 + 1 2 𝑀2𝑣0) . . . 𝑒(π‘₯,𝑑) = βˆ‘ π‘’π‘˜π‘‘ π›Όπ‘˜ = 𝑒0 + 𝑒1𝑑 𝛼 + 𝑒2𝑑 2𝛼 + β‹― ∞ π‘˜=0 𝑒(π‘₯,𝑑) β‰… 𝑒π‘₯ + (2 βˆ’ 𝑒π‘₯ + 0.5π‘₯)𝑒π‘₯ Ξ“(𝛼 + 1) 𝑑𝛼 + (5 βˆ’ 9𝑒π‘₯ + 2𝑒2π‘₯ + 0.25(7 βˆ’ πœ‹)π‘₯ βˆ’ 0.5π‘₯𝑒π‘₯ βˆ’ π‘₯2)𝑒π‘₯ Ξ“(2𝛼 + 1) 𝑑2𝛼 𝑣(π‘₯,𝑑) = βˆ‘ π‘£π‘˜π‘‘ π›Όπ‘˜ = 𝑣0 + 𝑣1𝑑 𝛼 + 𝑣2𝑑 2𝛼 + β‹― ∞ π‘˜=0 𝑣(π‘₯,𝑑) β‰… π‘₯ + π‘₯ βˆ’ 2.5π‘₯2 + 0.5π‘₯𝑒π‘₯ + 0.5πœ‹π‘₯ 𝛀(𝛼 + 1) 𝑑𝛼 + (1 βˆ’ 0.5Ο€ βˆ’ 5.5π‘₯ + 0.5𝑒π‘₯)(π‘₯ βˆ’ 2.5π‘₯2 + 0.5π‘₯𝑒π‘₯ + 0.5πœ‹π‘₯) βˆ’ π‘₯3 Ξ“(2𝛼 + 1) 𝑑2𝛼 + (0.25𝑒π‘₯ βˆ’ 0.5πœ‹2 + 0.25πœ‹ + 0.5)π‘₯2 + (1.5𝑒π‘₯ βˆ’ 0.5𝑒2π‘₯)π‘₯ + 𝑒π‘₯ βˆ’ 5 Ξ“(2𝛼 + 1) 𝑑2𝛼 𝑀(π‘₯,𝑑) = βˆ‘ π‘€π‘˜π‘‘ π›Όπ‘˜ = 𝑀0 + 𝑀1𝑑 𝛼 + 𝑀2𝑑 2𝛼 + β‹― ∞ π‘˜=0 𝑀(π‘₯,𝑑) β‰… (π‘₯ βˆ’ πœ‹)+ (x βˆ’ Ο€)(1 + πœ‹ βˆ’ 0.5π‘₯) Ξ“(𝛼 + 1) 𝑑𝛼 + (π‘₯ βˆ’ πœ‹)(Ο€ + 1 βˆ’ 0.5π‘₯)(2Ο€+ 1 βˆ’ 1.5π‘₯) + 0.5π‘₯(π‘₯ βˆ’ πœ‹)(π‘₯ βˆ’ 0.5πœ‹π‘₯ βˆ’ 2.5π‘₯2 + 0.5π‘₯𝑒π‘₯)βˆ’ 1 Ξ“(2𝛼 + 1) 𝑑2𝛼 6 Int. J. Anal. Appl. (2023), 21:33 Table 1. Numerical results of variable 𝑒(π‘₯,𝑑) 𝒙 𝜢 = 𝟏 𝜢 = 𝟎.πŸ– 𝜢 = 𝟎.πŸ“ 𝜢 = 𝟎.𝟐 1.0e+014 * 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0001 0.0001 0.0000 0.0042 0.0034 0.0021 0.0010 0.0000 0.0851 0.0683 0.0425 0.0209 0.0000 1.7093 1.3734 0.8546 0.4193 7 Int. J. Anal. Appl. (2023), 21:33 Figure 1. Graphical presentation of variable 𝑒(π‘₯,𝑑) Figure 2. Compression derivatives order between non-fractional order with fractional orders of variable 𝑒(π‘₯,𝑑). -10 0 10 -10 0 10 -5 0 5 x 10 8 x axis alpha=1 t axis u a x is -10 0 10 -10 0 10 -2 0 2 x 10 8 x axis alpha=0.8 t axis u a x is -10 0 10 -10 0 10 -5 0 5 x 10 7 x axis alpha=0.5 t axis u a x is -10 0 10 -10 0 10 -1 0 1 x 10 8 x axis alpha=0.2 t axis u a x is 0 1 2 3 4 5 6 7 8 9 10 -2 0 2 4 6 8 10 12 14 16 18 x 10 13 x axis u a x is Comparison between derivative orders alpha=1 alpha=0.8 alpha=0.5 alpha=0.2 8 Int. J. Anal. Appl. (2023), 21:33 Table 1 shows the approximate solution of fractional diffusion of variable 𝑒(π‘₯,𝑑), it is noted that only the Second order of the FRDTM. Figure 1: The surface of diffusion variable 𝑒(π‘₯,𝑑) is convergence between fractional order and ordinary order, in Figure 2: we get small difference between ordinary order with multiple fractional orders. Table 2. Numerical results of variable 𝑣(π‘₯,𝑑) 𝒙 𝜢 = 𝟏 𝜢 = 𝟎.πŸ– 𝜢 = 𝟎.πŸ“ 𝜢 = 𝟎.𝟐 1.0e+009 * 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0003 -0.0002 -0.0002 -0.0001 0.0000 -0.0023 -0.0019 -0.0012 -0.0006 0.0000 -0.0182 -0.0147 -0.0091 -0.0045 0.0000 -0.1473 -0.1184 -0.0737 -0.0361 0.0000 -1.1998 -0.9641 -0.5999 -0.2943 0.0000 -9.7643 -7.8456 -4.8821 -2.3950 9 Int. J. Anal. Appl. (2023), 21:33 Figure 3. Graphical presentation of variable 𝑣(π‘₯,𝑑) Figure 4. Compression derivatives order between non-fractional order with fractional orders of variable 𝑣(π‘₯,𝑑). -10 0 10 -10 0 10 -2 0 2 x 10 6 x axis alpha=1 t axis v a x is -10 0 10 -10 0 10 -1 0 1 x 10 6 x axis alpha=0.8 t axis v a x is -10 0 10 -10 0 10 -2 0 2 x 10 5 x axis alpha=0.5 t axis v a x is -10 0 10 -10 0 10 -2 -1 0 x 10 6 x axis alpha=0.2 t axis v a x is 0 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 x 10 9 x axis v a x is Comparison between derivative orders alpha=1 alpha=0.8 alpha=0.5 alpha=0.2 10 Int. J. Anal. Appl. (2023), 21:33 Table 2 shows the approximate solution of fractional diffusion of variable 𝑣(π‘₯,𝑑), it is noted that only the Second order of the FRDTM. Figure 3: The surface of diffusion of variable 𝑣(π‘₯,𝑑) is convergence between fractional order and ordinary order, in Figure 4: we get small difference between ordinary order with multiple fractional orders. Table 3. Numerical results of variable 𝑀(π‘₯,𝑑) 𝒙 𝜢 = 𝟏 𝜢 = 𝟎.πŸ– 𝜢 = 𝟎.πŸ“ 𝜢 = 𝟎.𝟐 1.0e+007 * 0.0000 -0.0001 -0.0001 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0011 0.0009 0.0006 0.0003 0.0000 0.0077 0.0062 0.0038 0.0019 0.0000 0.0401 0.0322 0.0201 0.0098 0.0000 0.1828 0.1469 0.0914 0.0448 0.0000 0.7647 0.6144 0.3823 0.1876 0.0000 3.0144 2.4220 1.5072 0.7394 11 Int. J. Anal. Appl. (2023), 21:33 Figure 5. Graphical presentation of variable 𝑀(π‘₯,𝑑) Figure 6. Compression derivatives order between non-fractional order with fractional orders of variable 𝑀(π‘₯,𝑑). -10 0 10 -10 0 10 -5 0 5 x 10 5 x axis alpha=1 t axis w a x is -10 0 10 -10 0 10 -5 0 5 x 10 5 x axis alpha=0.8 t axis w a x is -10 0 10 -10 0 10 -1 0 1 x 10 5 x axis alpha=0.5 t axis w a x is -10 0 10 -10 0 10 -5 0 5 x 10 4 x axis alpha=0.2 t axis w a x is 0 1 2 3 4 5 6 7 8 9 10 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 x 10 7 x axis w a x is Comparison between derivative orders alpha=1 alpha=0.8 alpha=0.5 alpha=0.2 12 Int. J. Anal. Appl. (2023), 21:33 Table 3 shows the approximate solution of fractional diffusion of variable 𝑀(π‘₯,𝑑), it is noted that only the Second order of the FRDTM. Figure 5: The surface of diffusion of variable 𝑀(π‘₯,𝑑) is convergence between fractional order and ordinary order, in Figure 6: we get small difference between ordinary order with multiple fractional orders. 5. Conclusions The fractional reduced differential transform method has been successfully applied to obtain an analytical approximate solution for the mutualism model with fractional diffusion. It is easy to recognize that FRDTM is powerful mathematical tool for solving different kinds of linear and/or nonlinear fractional partial differential equations the FRDTM is no need to use Adomian's polynomials to calculate the nonlinear terms. We have concluded that the fractional derivative of diffusion mutualism model is more accurate than ordinary derivative order. From all numerical results, we can conclude the efficiency of the proposed method for solving different types of nonlinear fractional partial differential equations so we recommended researchers would use Fractional reduced differential transform method when derivation the mathematical models (biological phenomena) for fractional derivatives. Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper. References [1] Y. Liu, B. Xin, Numerical Solutions of a Fractional Predator-Prey System, Adv. Differ. Equ. 2011 (2011), 190475. https://doi.org/10.1155/2011/190475. [2] C. Wang, S. Wang, X. Yan, Global Asymptotic Stability of 3-Species Mutualism Models with Diffusion and Delay Effects, Discr. Dyn. Nat. Soc. 2009 (2009), 317298. https://doi.org/10.1155/2009/317298. [3] M.A. Abdallah, Asymptotic Behavior of Solution of a Periodic Mutualistic System, Int. J. Sci. Res. 5 (2016), 543-547. [4] S. Abuasad, I. Hashim, Homotopy Decomposition Method for Solving Higher-Order Time- Fractional Diffusion Equation via Modified Beta Derivative, Sains Malays. 47 (2018), 2899–2905. https://doi.org/10.17576/jsm-2018-4711-33. [5] K. Abdalla Ishag, The Techniques for Solving Fractional Burger's Equations, Asian J. Pure Appl. Math. 4 (2022), 60-73. [6] L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, BirkhΓ€user Boston, https://doi.org/10.1155/2011/190475 https://doi.org/10.1155/2009/317298 https://doi.org/10.17576/jsm-2018-4711-33 13 Int. J. Anal. Appl. (2023), 21:33 Boston, MA, 2005. https://doi.org/10.1007/b138648. [7] S. Abuasad, I. Hashim, S.A. Abdul Karim, Modified Fractional Reduced Differential Transform Method for the Solution of Multiterm Time-Fractional Diffusion Equations, Adv. Math. Phys. 2019 (2019), 5703916. https://doi.org/10.1155/2019/5703916. [8] S. Mukhtar, S. Abuasad, I. Hashim, S.A. Abdul Karim, Effective Method for Solving Different Types of Nonlinear Fractional Burgers’ Equations, Mathematics. 8 (2020), 729. https://doi.org/10.3390/math8050729. [9] S. Abuasad, A. Yildirim, I. Hashim, S. Abdul Karim, J.F. GΓ³mez-Aguilar, Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination, Int. J. Environ. Res. Public Health. 16 (2019) 973. https://doi.org/10.3390/ijerph16060973. [10] D. Lu, J. Wang, M. Arshad, Abdullah, A. Ali, Fractional Reduced Differential Transform Method for Space-Time Fractional Order Heat-Like and Wave-Like Partial Differential Equations, J. Adv. Phys. 6 (2017), 598–607. https://doi.org/10.1166/jap.2017.1383. https://doi.org/10.1007/b138648 https://doi.org/10.1155/2019/5703916 https://doi.org/10.3390/math8050729 https://doi.org/10.3390/ijerph16060973 https://doi.org/10.1166/jap.2017.1383