International Journal of Analysis and Applications ISSN 2291-8639 Volume 5, Number 1 (2014), 45-55 http://www.etamaths.com INEQUALITIES FOR CO-ORDINATED m−CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS ÇETİN YILDIZ1,∗, MEVLÜT TUNÇ2, AND HAVVA KAVURMACI1 Abstract. In this paper, we prove some new inequalities of Hadamard-type for m−convex functions on the co-ordinates via Riemann-Liouville fractional integrals. 1. INTRODUCTION Let f : I ⊆ R → R be a convex function defined on the interval I of real numbers and a < b. The following double inequality; f ( a + b 2 ) ≤ 1 b−a b∫ a f(x)dx ≤ f(a) + f(b) 2 is well known in the literature as Hadamard’s inequality. Both inequalities hold in the reversed direction if f is concave. In [7], Dragomir defined convex functions on the co-ordinates as following: Definition 1. Let us consider the bidimensional interval ∆ = [a,b] × [c,d] in R2 with a < b, c < d. A function f : ∆ → R will be called convex on the co- ordinates if the partial mappings fy : [a,b] → R, fy(u) = f(u,y) and fx : [c,d] → R, fx(v) = f(x,v) are convex where defined for all y ∈ [c,d] and x ∈ [a,b]. Recall that the mapping f : ∆ → R is convex on ∆ if the following inequality holds, f(λx + (1 −λ)z,λy + (1 −λ)w) ≤ λf(x,y) + (1 −λ)f(z,w) for all (x,y), (z,w) ∈ ∆ and λ ∈ [0, 1]. In [7], Dragomir established the following inequalities of Hadamard’s type for co-ordinated convex functions on a rectangle from the plane R2. 2000 Mathematics Subject Classification. 26A15, 26A51, 26D10. Key words and phrases. Riemann-Liouville fractional integrals, co-ordinates, m−convex functions. c©2014 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 45 46 ÇETİN YILDIZ1,∗, MEVLÜT TUNÇ2, AND HAVVA KAVURMACI1 Theorem 1. Suppose that f : ∆ = [a,b] × [c,d] → R is convex on the co-ordinates on ∆. Then one has the inequalities; f ( a + b 2 , c + d 2 ) (1.1) ≤ 1 2 [ 1 b−a ∫ b a f ( x, c + d 2 ) dx + 1 d− c ∫ d c f ( a + b 2 ,y ) dy ] ≤ 1 (b−a)(d− c) ∫ b a ∫ d c f(x,y)dxdy ≤ 1 4 [ 1 (b−a) ∫ b a f(x,c)dx + 1 (b−a) ∫ b a f(x,d)dx + 1 (d− c) ∫ d c f(a,y)dy + 1 (d− c) ∫ d c f(b,y)dy ] ≤ f(a,c) + f(a,d) + f(b,c) + f(b,d) 4 . The above inequalities are sharp. Similar results can be found in [7]-[12]. In [17], Toader defined m−convex functions as following: Definition 2. The function f : [0,b] → R, b > 0 is said to be m−convex, where m ∈ [0, 1], if we have f(tx + m(1 − t)y) ≤ tf(x) + m(1 − t)f(y) for all x,y ∈ [0,b] and t ∈ [0, 1]. Denote by Km(b) the class of all m−convex functions on [0,b] for which f(0) ≤ 0. Obviously, if we choose m = 1, we have ordinary convex functions on [0,b]. In [10], Özdemir et al. defined co-ordinated m−convex functions as following: Definition 3. Let us consider the bidimensional interval ∆ = [0,b] × [0,d] in [0,∞)2. The mapping f : ∆ → R is m−convex on ∆ if f(tx + (1 − t)z,ty + m(1 − t)w) ≤ tf(x,y) + m(1 − t)f(z,w) holds for all (x,y), (z,w) ∈ ∆ and t ∈ [0, 1], b,d > 0 and for some fixed m ∈ [0, 1]. In [16], Sarıkaya et al. proved some Hadamard’s type inequalities for co-ordinated convex functions as followings: Theorem 2. Let f : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ := [a,b] × [c,d] in R2 with a < b and c < d. If ∣∣∣ ∂2f∂t∂s∣∣∣ is a convex function on the co-ordinates on ∆, then one has the inequalities: (1.2) ∣∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + 1(b−a)(d− c) ∫ b a ∫ d c f(x,y)dxdy −A ∣∣∣∣∣ ≤ (b−a)(d− c) 16   ∣∣∣ ∂2f∂t∂s∣∣∣ (a,c) + ∣∣∣ ∂2f∂t∂s∣∣∣ (a,d) + ∣∣∣ ∂2f∂t∂s∣∣∣ (b,c) + ∣∣∣ ∂2f∂t∂s∣∣∣ (b,d) 4   SOME FRACTIONAL INTEGRAL INEQUALITIES 47 where A = 1 2 [ 1 (b−a) ∫ b a [f(x,c) + f(x,d)] dx + 1 (d− c) ∫ d c [f(a,y)dy + f(b,y)] dy ] . Theorem 3. Let f : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ := [a,b] × [c,d] in R2 with a < b and c < d. If ∣∣∣ ∂2f∂t∂s∣∣∣q , q > 1, is a convex function on the co-ordinates on ∆, then one has the inequalities: (1.3)∣∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + 1(b−a)(d− c) ∫ b a ∫ d c f(x,y)dxdy −A ∣∣∣∣∣ ≤ (b−a)(d− c) 4 (p + 1) 2 p   ∣∣∣ ∂2f∂t∂s∣∣∣q (a,c) + ∣∣∣ ∂2f∂t∂s∣∣∣q (a,d) + ∣∣∣ ∂2f∂t∂s∣∣∣q (b,c) + ∣∣∣ ∂2f∂t∂s∣∣∣q (b,d) 4   1 q where A = 1 2 [ 1 (b−a) ∫ b a [f(x,c) + f(x,d)] dx + 1 (d− c) ∫ d c [f(a,y)dy + f(b,y)] dy ] and 1 p + 1 q = 1. Theorem 4. Let f : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ := [a,b] × [c,d] in R2 with a < b and c < d. If ∣∣∣ ∂2f∂t∂s∣∣∣q , q ≥ 1, is a convex function on the co-ordinates on ∆, then one has the inequalities: (1.4)∣∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + 1(b−a)(d− c) ∫ b a ∫ d c f(x,y)dxdy −A ∣∣∣∣∣ ≤ (b−a)(d− c) 16   ∣∣∣ ∂2f∂t∂s∣∣∣q (a,c) + ∣∣∣ ∂2f∂t∂s∣∣∣q (a,d) + ∣∣∣ ∂2f∂t∂s∣∣∣q (b,c) + ∣∣∣ ∂2f∂t∂s∣∣∣q (b,d) 4   1 q where A = 1 2 [ 1 (b−a) ∫ b a [f(x,c) + f(x,d)] dx + 1 (d− c) ∫ d c [f(a,y)dy + f(b,y)] dy ] . We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper. Definition 4. Let f ∈ L1[a,b]. The Riemann-Liouville integrals Jαa+f and J α b− f of order α > 0 with a ≥ 0 are defined by Jαa+f(x) = 1 Γ(α) ∫ x a (x− t)α−1f(t)dt, x > a and Jαb−f(x) = 1 Γ(α) ∫ b x (t−x)α−1f(t)dt, x < b where Γ(α) = ∫∞ 0 e−tuα−1du, here is J0 a+ f(x) = J0 b− f(x) = f(x). 48 ÇETİN YILDIZ1,∗, MEVLÜT TUNÇ2, AND HAVVA KAVURMACI1 In the case of α = 1, the fractional integral reduces to the classical integral. Properties of this operator can be found in the references [3]-[?]. Throughout of this paper, we will use the following notation: B = Γ (α + 1) Γ (β + 1) 4 (b−a)α (d− c)β [ J α,β b−,d− f (a,c) + J α,β a+,d− f (b,c) + J α,β b−,c+ f (a,d) + J α,β a+,c+ f (b,d) ] − Γ (β + 1) 4 (d− c)β [ J β d− f (a,c) + J β d− f (b,c) + J β c+ f (b,d) + J β c+ f (a,d) ] − Γ (α + 1) 4 (b−a)α [Jαb−f (a,d) + J α b−f (a,c) + J α a+f (b,d) + J α a+f (b,c)] where J α,β b−,d− f (a,c) = 1 Γ (α) Γ (β) b∫ a d∫ c (x−a)α−1 (y − c)β−1 f (x,y) dydx J α,β a+,d− f (b,c) = 1 Γ (α) Γ (β) b∫ a d∫ c (x−a)α−1 (d−y)β−1 f (x,y) dydx J α,β b−,c+ f (a,d) = 1 Γ (α) Γ (β) b∫ a d∫ c (b−x)α−1 (y − c)β−1 f (x,y) dydx J α,β a+,c+ f (b,d) = 1 Γ (α) Γ (β) b∫ a d∫ c (b−x)α−1 (d−y)β−1 f (x,y) dydx. The main purpose of this paper is to establish inequalities of Hadamard-type inequalities for m−convex functions on the co-ordinates via Riemann-Liouville frac- tional integrals by using a new Lemma and fairly elemantery analysis. 2. MAIN RESULTS To prove our main result, we need the following Lemma: Lemma 1. Let f : ∆ = [a,b] × [c,d] → R be a twice partial differentiable mapping on ∆ = [a,b] × [c,d] . If ∂ 2f ∂t∂s ∈ L (∆) and α,β > 0, a,c ≥ 0, then the following equality holds: (2.1) f(a,c) + f(a,d) + f(b,c) + f(b,d) 4 + B = (b−a) (d− c) 4 1∫ 0 1∫ 0 [(1 − t)α − tα] [ (1 −s)β −sβ ] ∂2f ∂t∂s (ta + (1 − t) b,sc + (1 −s) d) dsdt. SOME FRACTIONAL INTEGRAL INEQUALITIES 49 Proof. Integration by parts, we can write K = 1∫ 0 1∫ 0 [(1 − t)α − tα] [ (1 −s)β −sβ ] ∂2f ∂t∂s (ta + (1 − t) b,sc + (1 −s) d) dsdt = 1∫ 0 [ (1 −s)β −sβ ] 1∫ 0 (1 − t)α ∂2f ∂t∂s (ta + (1 − t) b,sc + (1 −s) d) dt − 1∫ 0 tα ∂2f ∂t∂s (ta + (1 − t) b,sc + (1 −s) d) dt  ds = 1 b−a   1∫ 0 [ (1 −s)β −sβ ][∂f ∂s (b,sc + (1 −s) d) + ∂f ∂s (a,sc + (1 −s) d) −α 1∫ 0 (1 − t)α−1 ∂f ∂s (ta + (1 − t) b,sc + (1 −s) d) dt −α 1∫ 0 tα−1 ∂f ∂s (ta + (1 − t) b,sc + (1 −s) d) dt  ds   . By integrating again, we get K = 1 (b−a)(d− c) {f(a,c) + f(a,d) + f(b,c) + f(b,d) −β 1∫ 0 (1 −s)β−1 f (b,sc + (1 −s) d) ds−β 1∫ 0 sβ−1f (a,sc + (1 −s) d) ds −β 1∫ 0 (1 −s)β−1 f (a,sc + (1 −s) d) ds−β 1∫ 0 sβ−1f (b,sc + (1 −s) d) ds −α 1∫ 0 (1 − t)α−1 f (ta + (1 − t) b,d) dt−α 1∫ 0 tα−1f (ta + (1 − t) b,d) dt −α 1∫ 0 (1 − t)α−1 f (ta + (1 − t) b,c) dt−α 1∫ 0 tα−1f (ta + (1 − t) b,c) dt +αβ 1∫ 0 1∫ 0 (1 − t)α−1 (1 −s)β−1 f (ta + (1 − t) b,sc + (1 −s) d) dsdt +αβ 1∫ 0 1∫ 0 tα−1 (1 −s)β−1 f (ta + (1 − t) b,sc + (1 −s) d) dsdt 50 ÇETİN YILDIZ1,∗, MEVLÜT TUNÇ2, AND HAVVA KAVURMACI1 +αβ 1∫ 0 1∫ 0 (1 − t)α−1 sβ−1f (ta + (1 − t) b,sc + (1 −s) d) dsdt +αβ 1∫ 0 1∫ 0 tα−1sβ−1f (ta + (1 − t) b,sc + (1 −s) d) dsdt   . By using the change of the variables, we can get x = ta + (1 − t) b and y = sc + (1 −s) d, that is t = x− b a− b and s = y −d c−d . Taking into account these equalities, we obtain (2.2) K = 1 (b−a)(d− c) {f(a,c) + f(a,d) + f(b,c) + f(b,d) − β (d− c)β−1   d∫ c (y − c)β−1 f (a,y) dy + d∫ c (d−y)β−1 f (a,y) dy + d∫ c (y − c)β−1 f (b,y) dy + d∫ c (d−y)β−1 f (b,y) dy   − α (b−a)α−1   b∫ a (x−a)α−1 f (x,d) dx + b∫ a (x−a)α−1 f (x,c) dx + b∫ a (b−x)α−1 f (x,d) dx + b∫ a (b−x)α−1 f (x,c) dx   + αβ (b−a)α−1 (d− c)β−1 ×   b∫ a d∫ c (x−a)α−1 (y − c)β−1 f (x,y) dydx + b∫ a d∫ c (x−a)α−1 (d−y)β−1 f (x,y) dydx + b∫ a d∫ c (b−x)α−1 (y − c)β−1 f (x,y) dydx + b∫ a d∫ c (b−x)α−1 (d−y)β−1 f (x,y) dydx     . Multiplying both sides of (2.2) by (b−a)(d−c) 4 and using the Riemann-Liouville integrals, we obtain equality (2.1). This completes the proof. Theorem 5. Let f : ∆ = [0,b] × [0,d] → R be a partial differentiable mapping on ∆ and ∂ 2f ∂t∂s ∈ L (∆), α,β > 0. If ∣∣∣ ∂2f∂t∂s∣∣∣ is m−convex function on the co-ordinates SOME FRACTIONAL INTEGRAL INEQUALITIES 51 on ∆ where 0 ≤ a < b < ∞ and 0 ≤ c < d < ∞, then the following inequality holds;∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 MαMβ × (∣∣∣∣ ∂2f∂t∂s (a,c) ∣∣∣∣ + ∣∣∣∣ ∂2f∂t∂s (b,c) ∣∣∣∣ + m ∣∣∣∣ ∂2f∂t∂s ( a, d m )∣∣∣∣ + m ∣∣∣∣ ∂2f∂t∂s ( b, d m )∣∣∣∣ ) where Mα = [ 1 α + 1 − ( 1 2 )α α + 1 ] Mβ = [ 1 β + 1 − ( 1 2 )β β + 1 ] . Proof. From Lemma 1 and using the property of modulus, we have∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 1∫ 0 1∫ 0 |(1 − t)α − tα| ∣∣∣(1 −s)β −sβ∣∣∣ ∣∣∣∣ ∂2f∂t∂s (ta + (1 − t) b,sc + (1 −s) d) ∣∣∣∣dsdt. Since ∣∣∣ ∂2f∂t∂s∣∣∣ is co-ordinated m−convex, we can write∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 1∫ 0 1∫ 0 ∣∣∣(1 −s)β −sβ∣∣∣ |(1 − t)α − tα|{ts∣∣∣∣ ∂2f∂t∂s (a,c) ∣∣∣∣ + mt(1 −s) ∣∣∣∣ ∂2f∂t∂s ( a, d m )∣∣∣∣ +(1 − t)s ∣∣∣∣ ∂2f∂t∂s (b,c) ∣∣∣∣ + m(1 − t)(1 −s) ∣∣∣∣ ∂2f∂t∂s ( b, d m )∣∣∣∣ } dtds By computing these integrals, we obtain∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 [ 1 α + 1 − ( 1 2 )α α + 1 ] × 1∫ 0 ∣∣∣(1 −s)β −sβ∣∣∣(s∣∣∣∣ ∂2f∂t∂s (a,c) ∣∣∣∣ + m(1 −s) ∣∣∣∣ ∂2f∂t∂s ( a, d m )∣∣∣∣ +s ∣∣∣∣ ∂2f∂t∂s (b,c) ∣∣∣∣ + m(1 −s) ∣∣∣∣ ∂2f∂t∂s ( b, d m )∣∣∣∣ ) ds. 52 ÇETİN YILDIZ1,∗, MEVLÜT TUNÇ2, AND HAVVA KAVURMACI1 Using co-ordinated m−convexity of ∣∣∣ ∂2f∂t∂s∣∣∣ again, we get∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 [ 1 α + 1 − ( 1 2 )α α + 1 ][ 1 β + 1 − ( 1 2 )β β + 1 ] × (∣∣∣∣ ∂2f∂t∂s (a,c) ∣∣∣∣ + ∣∣∣∣ ∂2f∂t∂s (b,c) ∣∣∣∣ + m ∣∣∣∣ ∂2f∂t∂s ( a, d m )∣∣∣∣ + m ∣∣∣∣ ∂2f∂t∂s ( b, d m )∣∣∣∣ ) Thus, the proof is completed. Remark 1. Suppose that all the assumptions of Theorem 5 are satisfied. If we choose α = β = m = 1, we obtain the inequality (1.2) . Theorem 6. Let f : ∆ → R be a partial differentiable mapping on ∆ and ∂ 2f ∂t∂s ∈ L (∆), α,β ∈ (0, 1]. If ∣∣∣ ∂2f∂t∂s∣∣∣q , q > 1, is m−convex function on the co-ordinates on ∆ where 0 ≤ a < b < ∞ and 0 ≤ c < d < ∞, then the following inequality holds;∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 (αp + 1) 1 p (βp + 1) 1 p ×   ∣∣∣ ∂2f∂t∂s (a,c)∣∣∣q + m ∣∣∣ ∂2f∂t∂s (a, dm)∣∣∣q + ∣∣∣ ∂2f∂t∂s (b,c)∣∣∣q + m ∣∣∣ ∂2f∂t∂s (b, dm)∣∣∣q 4   1 q . where p−1 + q−1 = 1. Proof. From Lemma 1 and by applying the well-known Hölder inequality for double integrals, then one has∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4   1∫ 0 1∫ 0 [ |(1 − t)α − tα| ∣∣∣(1 −s)β −sβ∣∣∣]p dsdt   1 p ×   1∫ 0 1∫ 0 ∣∣∣∣ ∂2f∂t∂s (ta + (1 − t) b,sc + (1 −s) d) ∣∣∣∣q dsdt   1 q . By using the fact that |tα1 − t α 2 | ≤ |t1 − t2| α for α ∈ (0, 1] and t1, t2 ∈ [0, 1] , we get 1∫ 0 |(1 − t)α − tα|p dt ≤ 1∫ 0 |1 − 2t|αp dt = 1 αp + 1 SOME FRACTIONAL INTEGRAL INEQUALITIES 53 and 1∫ 0 ∣∣∣∣∣∣(1 −s)β −sβ∣∣∣∣∣∣p dt ≤ 1∫ 0 |1 − 2s|βp dt = 1 βp + 1 . Since ∣∣∣ ∂2f∂t∂s∣∣∣q is co-ordinated m−convex, we can write∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 (αp + 1) 1 p (βp + 1) 1 p ×   1∫ 0 1∫ 0 [ ts ∣∣∣∣ ∂2f∂t∂s (a,c) ∣∣∣∣q + mt (1 −s) ∣∣∣∣ ∂2f∂t∂s ( a, d m )∣∣∣∣q ] + (1 − t) s ∣∣∣∣ ∂2f∂t∂s (b,c) ∣∣∣∣q + m (1 − t) (1 −s) ∣∣∣∣ ∂2f∂t∂s ( b, d m )∣∣∣∣q dsdt )1 q . By computing these integrals, we obtain∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 (αp + 1) 1 p (βp + 1) 1 p ×   ∣∣∣ ∂2f∂t∂s (a,c)∣∣∣q + m ∣∣∣ ∂2f∂t∂s (a, dm)∣∣∣q + ∣∣∣ ∂2f∂t∂s (b,c)∣∣∣q + m ∣∣∣ ∂2f∂t∂s (b, dm)∣∣∣q 4   1 q . Which completes the proof. Remark 2. Suppose that all the assumptions of Theorem 6 are satisfied. If we choose α = β = m = 1, we obtain the inequality (1.3) . Theorem 7. Let f : ∆ → R be a partial differentiable mapping on ∆ and ∂ 2f ∂t∂s ∈ L (∆), α,β ∈ (0, 1]. If ∣∣∣ ∂2f∂t∂s∣∣∣q , q ≥ 1, is m−convex function on the co-ordinates on ∆ where 0 ≤ a < b < ∞ and 0 ≤ c < d < ∞, then the following inequality holds;∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 ([ 1 − ( 1 2 )α α + 1 ][ 1 − ( 1 2 )β β + 1 ])1−1 q M 1 q α M 1 q β × (∣∣∣∣ ∂2f∂t∂s (a,c) ∣∣∣∣q + m ∣∣∣∣ ∂2f∂t∂s ( a, d m )∣∣∣∣q + ∣∣∣∣ ∂2f∂t∂s (b,c) ∣∣∣∣q + m ∣∣∣∣ ∂2f∂t∂s ( b, d m )∣∣∣∣q )1 q where Mα,Mβ are defined as in Theorem 5. 54 ÇETİN YILDIZ1,∗, MEVLÜT TUNÇ2, AND HAVVA KAVURMACI1 Proof. From Lemma 1 and by applying the well-known Power-mean inequality for double integrals, then one has∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4   1∫ 0 1∫ 0 |(1 − t)α − tα| ∣∣∣(1 −s)β −sβ∣∣∣dsdt  1− 1 q ×   1∫ 0 1∫ 0 |(1 − t)α − tα| ∣∣∣(1 −s)β −sβ∣∣∣ ∣∣∣∣ ∂2f∂t∂s (ta + (1 − t) b,sc + (1 −s) d) ∣∣∣∣q dsdt   1 q . Since ∣∣∣ ∂2f∂t∂s∣∣∣q is co-ordinated m−convex, we can write∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4   1∫ 0 1∫ 0 |(1 − t)α − tα| ∣∣∣(1 −s)β −sβ∣∣∣dsdt  1− 1 q ×   1∫ 0 1∫ 0 |(1 − t)α − tα| ∣∣∣(1 −s)β −sβ∣∣∣[ts∣∣∣∣ ∂2f∂t∂s (a,c) ∣∣∣∣q + mt (1 −s) ∣∣∣∣ ∂2f∂t∂s ( a, d m )∣∣∣∣q ] + (1 − t) s ∣∣∣∣ ∂2f∂t∂s (b,c) ∣∣∣∣q + m (1 − t) (1 −s) ∣∣∣∣ ∂2f∂t∂s ( b, d m )∣∣∣∣q dsdt )1 q . By computing these integrals, we obtain∣∣∣∣f(a,c) + f(a,d) + f(b,c) + f(b,d)4 + B ∣∣∣∣ ≤ (b−a) (d− c) 4 ([ 1 − ( 1 2 )α α + 1 ][ 1 − ( 1 2 )β β + 1 ])1−1 q M 1 q α M 1 q β × (∣∣∣∣ ∂2f∂t∂s (a,c) ∣∣∣∣q + ∣∣∣∣m ∂2f∂t∂s ( a, d m )∣∣∣∣q + ∣∣∣∣ ∂2f∂t∂s (b,c) ∣∣∣∣q + m ∣∣∣∣ ∂2f∂t∂s ( b, d m )∣∣∣∣q )1 q which completes the proof. Remark 3. Suppose that all the assumptions of Theorem 7 are satisfied. If we choose α = β = m = 1, we obtain the inequality (1.4) . References [1] M. Alomari and M. Darus, On the Hadamard’s inequality for log −convex functions on the coordinates, Journal of Inequalities and Appl., 2009, article ID 283147. [2] M.K. Bakula and J. Pečarić, On the Jensen’s inequality for convex functions on the co- ordinates in a rectangle from the plane, Taiwanese Journal of Math., 5, 2006, 1271-1292. [3] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (4) (2010) 493–497. [4] Z. Dahmani, On Minkowski and Hermite–Hadamard integral inequalities via fractional inte- gration, Ann. Funct. Anal., 1 (1) (2010) 51–58. SOME FRACTIONAL INTEGRAL INEQUALITIES 55 [5] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonlinear. Sci. Lett. A., 1 (2) (2010) 155–160. [6] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality using Riemann– Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (3) (2010) 93–99. [7] S.S. Dragomir, On Hadamard’s inequality for convex functions on the co-ordinates in a rec- tangle from the plane, Taiwanese Journal of Math., 5, 2001, 775-788. [8] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien (1997), 223-276. [9] S. Miller and B. Ross, An introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, USA, 1993, p.2. [10] M.E. Özdemir, E. Set, M.Z. Sarıkaya, Some new Hadamard’s type inequalities for co- ordinated m−convex and (α,m)−convex functions, Hacettepe J. of. Math. and St., 40, 219- 229, (2011). [11] M. E. Özdemir, Havva Kavurmacı, Ahmet Ocak Akdemir and Merve Avcı, Inequalities for convex and s−convex functions on ∆ = [a,b]x[c,d], Journal of Inequalities and Applications, 2012:20, doi:10.1186/1029-242X-2012-20. [12] M. E. Özdemir, M. Amer Latif and Ahmet Ocak Akdemir, On some Hadamard-type inequal- ities for product of two s−convex functions on the co-ordinates, Journal of Inequalities and Applications, 2012:21, doi:10.1186/1029-242X-2012-21. [13] I. Podlubni, Fractional Differential Equations, Academic Press, San Diego, 1999. [14] M.Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann–Liouville fractional integra- tion, arXiv:1005.1167v1 (Submitted for publication). [15] M.Z. Sarıkaya, E. Set, H. Yaldız and N. Başak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, In Press. [16] M.Z. Sarıkaya, E. Set, M. Emin Özdemir and S.S. Dragomir, New some Hadamard’s type inequalities for co-ordinated convex functions, Accepted. [17] G. Toader, Some generalization of the convexity, Proc. Colloq. Approx. Opt., Cluj-Napoca, (1984), 329-338. 1ATATÜRK UNIVERSITY, K.K. EDUCATION FACULTY, DEPARTMENT OF MATH- EMATICS, 25240, KAMPUS, ERZURUM, TURKEY 2DEPARTMENT OF MATHEMATICS, FACULTY OF ART AND SCIENCES,KİLİS 7 ARALIK UNIVERSITY, KİLİS, 79000, TURKEY ∗Corresponding author