Int. J. Anal. Appl. (2023), 21:87 A Symbolic Algorithm for Solving Doubly Bordered k-Tridiagonal Interval Linear Systems Sivakumar Thirupathi, Nirmala Thamaraiselvan∗ Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India ∗Corresponding author: nirmala@srmist.edu.in Abstract. Doubly bordered k-tridiagonal interval linear systems play a crucial role in various math- ematical and engineering applications where uncertainty is inherent in the system’s parameters. In this paper, we propose a novel symbolic algorithm for solving such systems efficiently. Our approach combines symbolic computation techniques with interval arithmetic to provide rigorous solutions in the form of tight interval enclosures. By exploiting the tridiagonal structure and employing a divide-and- conquer strategy, our algorithm achieves significantly reduced computational complexity compared to existing numerical methods. We also present theoretical analysis and provide numerical experiments to demonstrate the effectiveness and accuracy of our algorithm. The proposed symbolic algorithm offers a valuable tool for handling doubly bordered k-tridiagonal interval linear systems and opens up possibilities for addressing uncertainty in real-world problems with improved efficiency and reliability. 1. Introduction Doubly bordered k-tridiagonal interval linear systems (DBkTILS) are a class of linear systems that arise in various applications, including control theory, optimisation and numerical analysis. They are characterised by a tridiagonal matrix structure, where each diagonal element is an interval containing the true value of the corresponding coefficient. DBkTILS are more general than classical tridiagonal systems, where the diagonal elements are real numbers. In recent years, there has been a grow- ing interest in developing numerical methods for solving DBkTILS. One approach is to use interval arithmetic, which is a mathematical tool that enables the computation of guaranteed bounds for Received: Jun. 15, 2023. 2020 Mathematics Subject Classification. 15A09, 15A23, 65F05, 65G30. Key words and phrases. tridiagonal interval matrix; k-tridiagonal interval matrix; UL factorization; interval arithmetic; interval determinant; interval linear system. https://doi.org/10.28924/2291-8639-21-2023-87 ISSN: 2291-8639 © 2023 the author(s). https://doi.org/10.28924/2291-8639-21-2023-87 2 Int. J. Anal. Appl. (2023), 21:87 the solution. However, existing interval-based methods for DBkTILS suffer from high computational complexity and memory requirements. In this context, a symbolic algorithm has been proposed for solving DBkTILS. The algorithm is based on the theory of tridiagonal matrices and employs a symbolic approach to compute the coefficients of the solution. The main advantage of the proposed method is its low computational complexity and memory requirements, which make it suitable for large-scale problems. Andelic M et al. [1] discussed an extended eigenvalue-free interval for the eccentricity matrix of threshold graphs. Da Fonseca CM et al. [2] gave a clear overview of the k-tridiagonal matrix and spectral theory, as well as a graphical look at the inverse powers of the matrix. Fan Y et al. [3, 4] used the interval matrix technique to investigate the global dissipativity and quasi-synchronization of asynchronous updating fractional-order memristor-based neural networks (AUFMNNs). Ganesan et al. [5] presented a new set of arithmetic operations for interval numbers by which those discrepancies in general can be reduced to some extent. Joe D. Hoffman [6] discussed the Thomas algorithm exten- sively. David Hartman et al. [7] investigated eigenvalue decomposition for both symmetric and general interval matrices. Huang X et al. [8] looked into the problem of asymptotically global synchronization of fractional-order memristive networks (FMNNs) with multiple delays that change over time. Ji-Teng Jia [9] presented a new way to find the determinants of periodic tridiagonal matrices using a three- term recursion that doesn’t break down. Kaucher [10] introduced the dual operator as a monadic operator. The dual operator combines the duality principle, which states that every element has an opposite. It combines the monadic principle, which states that the result of any operation should be a single element. Losonczi L [11] discussed imperfect pentadiagonal toeplitz matrices, providing explicit formulae in terms of entries for their determinant, eigenvalues and eigenvectors. M El-Mikkawy et al. [12] discovered that k-tridiagonal matrices are crucial for defining generalized k-Fibonacci numbers. Marrero JA [13] suggested a fast and reliable numerical solver for dealing with determined opposite- bordered tridiagonal linear systems. Nirmala et al. [14] developed a new way to find the inverse of an interval matrix. This makes it a powerful tool for solving interval linear equations. Parker JT et al. [15] presented a hybrid multigrid-Thomas algorithm designed to efficiently invert one-dimensional tridiagonal matrix equations in a highly scalable fashion in the context of time-evolving partial differ- ential equation systems. Sengupta et al. [16] proposed a simple and effective index for comparing any two intervals. Shams Solary M [17] investigated tridiagonal 3-toeplitz matrices with different ranks. Shehab N et al. [18] presented a symbolic algorithm for solving doubly bordered k-tridiagonal linear systems. In order to develop the proposed algorithm, partitioning and UL factorization are used. Thirupathi S et al. [19] developed an algorithm based on generalized interval arithmetic to determine general k-tridiagonal interval matrix determinants and inverses. Tanasescu A et al. [20,21] used the block diagonalization of a general k-tridiagonal matrix to study its singular value decomposition. Wei F et al. [22] used the interval matrix technique to investigate the finite-time stability of memristor-based inertial neural networks (MINNs). Xiao S et al. [23] studied the passivity analysis problem of a class of Int. J. Anal. Appl. (2023), 21:87 3 fractional-order neural networks with interval parameter uncertainties (FONNs-IPUs). The motivation behind developing a symbolic algorithm for solving doubly bordered k-tridiagonal interval linear systems based on generalized interval arithmetic is to improve the accuracy and efficiency of solving these types of systems, which can have a significant impact on various scientific and engineering applications. The paper is organized as follows: Section 2 overviews generalized interval arithmetic. Section 3 presents the main results and theorem. Section 4 gives double-bordered k-tridiagonal interval matrices. Section 5 suggests algorithms for finding the determinant and solving doubly-bordered k-tridiagonal interval linear systems. Section 6 provides two numerical examples to show how the algorithm works. “ 2. Preliminary Notes Let D = IR∪ IR = {[u1,u2] : u1,u2 ∈ R} is the set of generalized intervals that are the proper and improper intervals, where IR = {ũ = [u1,u2] : u1 > u2 and u1,u2 ∈ R} be the collection of all improper intervals on a real line R. Be the collection of generalised intervals D is a group that maintains inclusion monotonicity while performing addition and multiplication operations over zero free intervals. The midpoint and width of an interval number ũ = [u1,u2] is given by m(ũ) = ( u1 + u2 2 ) and w(ũ) = ( u2 −u1 2 ) . Kaucher [10] introduces the dual as a significant monadic operator that expresses element to element symmetry between proper and improper intervals by reversing the end points numbers in the interval, intervals in D. For ũ = [u1,u2] ∈ D, its dual is given by dual(ũ) = dual[u1,u2] = [u2,u1]. An interval’s opposite ũ = [u1,u2] is opp {[u1,u2]} = [−u1,−u2] which is the additive inverse of [u1,u2] and [ 1 u1 , 1 u2 ] is the multiplicative inverse of [u1,u2], provided 0 /∈ [u1,u2]. That is, ũ + (−dual ũ) = ũ −dual(ũ) = [u1,u2] −dual([u1,u2]) = [u1,u2] − [u2,u1] = [u1 −u1,u2 −u2] = [0, 0] and ũ × ( 1 dual ũ ) = [u1,u2] × ( 1 dual([u1,u2]) ) = [u1,u2] × 1 [u2,u1] = [u1,u2] × [ 1 u1 , 1 u2 ] = [1, 1]. 2.1. Arithmetic Operations on Interval Matrices. If Ã,B̃ ∈Dn×n, x̃∈Dn and α̃ ∈D, we propose a generalized interval arithmetic as, “ (i). α̃à ≈ ( α̃ãij ) for i = 1, 2, · · · ,n and j = 1, 2, · · · ,n (ii). à + B̃ ≈ ( ãij + b̃ij ) for i = 1, 2, · · · ,n and j = 1, 2, · · · ,n (iii). Ã− B̃ ≈ { ( ãij − b̃ij ) 1≤i≤n, 1≤j≤n , if Ã, B̃ are not equivalent Ã−dual(Ã) ≈ Õ = O, if à ≈ B̃ (iv). ÃB̃ ≈ ( n∑ k=1 ãikb̃kj ) for i = 1, 2, · · · ,n and j = 1, 2, · · · ,n 4 Int. J. Anal. Appl. (2023), 21:87 (v). Ãx̃≈ ( n∑ j=1 ãijx̃ ) for i = 1, 2, · · · ,n 2.2. Interval Arithmetic. Ganesan and Veeramani [5] proposed a new method of interval arithmetic on IR. The set of generalized interval numbers is extended using these arithmetic procedures D by utilising the dual concept, For ũ = [u1,u2], ṽ = [v1,v2] ∈ D and for ∗ ∈ {+,−, ·,÷}, we define ũ ∗ ṽ = [m(ũ) ∗m(ṽ) − j,m(ũ) ∗m(ṽ) + j], where j = min{(m(ũ) ∗m(ṽ)) −β, γ − (m(ũ) ∗m(ṽ))}, where the β and γ are the end points of the interval ũ � ṽ under the existing interval arithmetic. In particular, (i) Addition: ũ + ṽ = [u1,u2] + [v1,v2] = [(m(ũ) + m(ṽ)) − j, (m(ũ) + m(ṽ)) + j], where j = { (v2 + u2) − (v1 + u1) 2 } . (ii) Subtraction: ũ − ṽ = [u1,u2] − [v1,v2] = [(m(ũ) −m(ṽ)) − j, (m(ũ) −m(ṽ)) + j], where j = { (v2 + u2) − (v1 + u1) 2 } . Also if ũ = ṽ, i.e. if [u1,u2] = [v1,v2], then ũ − ṽ = ũ −dual(ũ) = [u1,u2] − [u2,u1] = [u1 −u1,u2 −u2] = [0, 0] . (iii) Multiplication: ũ.ṽ = ũṽ = [u1,u2] [v1,v2] = [(m(ũ)m(ṽ)) − j, (m(ũ)m(ṽ)) + j] , where j = min{(m(ũ)m(ṽ)) −β, γ − (m(ũ)m(ṽ))}, β = min(u1v1,u1v2,u2v1,u2v2) and γ = max(u1v1,u1v2,u2v1,u2v2). (iv) Division: 1 ÷ ũ = 1 ũ = 1 [u1,u2] = [ 1 m(ũ) − j, 1 m(ũ) + j ] , where j = min { 1 u2 ( u2 −u1 u1 + u2 ) , 1 u1 ( u2 −u1 u1 + u2 )} and m([u1,u2]) = ( u1 + u2 2 ) 6= 0. Also if ũ = ṽ, i.e. [u1,u2] = [v1,v2], then ũ ṽ = ũ ũ = ũ dual(ũ) = [u1,u2] . 1 [u2,u1] = [u1,u2] . [ 1 u1 , 1 u2 ] = [1, 1] . From (iii), it is clear that λũ = { [λu1,λu2], for λ ≥ 0 [λu2,λu1], for λ < 0. It’s worth noting that � stands for existing interval arithmetic and ∗ stands for generalized interval arithmetic. However, in circumstances when there is no ambiguity, the same notation can be used for both cases. It is also to be noted that ũ ∗ ṽ ⊆ ũ � ṽ, where �∈{⊕, ,⊗,�} is the existing interval arithmetic. Note 2.1. Without loss of generality, assume that for any interval number ũ = [u1,u2] with m(ũ) 6= 0 and 0 ∈ ũ, there exist ṽ = [m(ũ) − j,m(ũ) + j], where 0 < j < h and h = min{|u1|, |u2|}, such that ṽ ≈ ũ and 0 /∈ ṽ. Hence, if ã ũ with m(ũ) 6= 0 and 0 ∈ ũ, then we replace ã ũ by ã ṽ where ṽ ≈ ũ and Int. J. Anal. Appl. (2023), 21:87 5 0 /∈ ṽ. In particular (for convenience) one may select j in such a way that j =   m(ũ) 2 , if m(ũ) > 0 −m(ũ) 2 , if m(ũ) < 0 Generalized interval arithmetic can be used to prove a lot of important things, like the distributive law for interval numbers. 3. Main Results A tridiagonal interval matrix is a special type of interval matrix in which only the main diagonal and the two adjacent diagonals contain non-zero interval elements. Specifically, an n ×n tridiagonal interval matrix can be represented as: à =   [c1,c1] [u1,u1] [0, 0] · · · · · · [0, 0] [l2, l2] [c2,c2] [u2,u2] ... ... [0, 0] [l3, l3] [c3,c3] [u3,u3] [0, 0] ... ... [0, 0] ... ... ... [0, 0] ... ... ... ... [un−1,un−1] [0, 0] · · · · · · [0, 0] [ln, ln] [cn,cn]   (3.1) A more general tridiagonal interval matrix is called the k-tridiagonal interval matrix Ãkn, which can be expressed as follows: Ãkn =   [c1,c1] [0, 0] · · · [0, 0] [u1,u1] [0, 0] · · · [0, 0] [0, 0] [c2,c2] [0, 0] · · · [0, 0] [u2,u2] ... ... · · · [0, 0] ... [0, 0] · · · ... ... [0, 0] [0, 0] · · · ... [cn−k,cn−k] ... · · · ... [un−k,un−k] [lk+1, lk+1] [0, 0] · · · ... ... ... · · · [0, 0] [0, 0] [lk+2, lk+2] ... · · · [0, 0] ... [0, 0] · · · ... ... ... [0, 0] · · · [0, 0] [cn−1,cn−1] [0, 0] [0, 0] · · · [0, 0] [ln, ln] [0, 0] · · · [0, 0] [cn,cn]   (3.2) where 1 ≤ k < n. For k ≥ n, the interval matrix Ãkn is a diagonal interval matrix, which has k = 1, gives a standard tridiagonal interval matrix in (3.1). 6 Int. J. Anal. Appl. (2023), 21:87 The doubly bordered k-tridiagonal interval matrix can be represented as follows: T̃kn =   [c1,c1] [h1,h1] [h2,h2] · · · · · · · · · [hn−2,hn−2] [hn−1,hn−1] [v1,v1] [c2,c2] [0, 0] · · · [0, 0] [u2,u2] ... [0, 0] [v2,v2] [0, 0] ... [0, 0] · · · ... ... ... ... · · · ... [cn−k,cn−k] ... · · · ... [un−k,un−k] ... [0, 0] · · · ... ... ... · · · [0, 0] ... [lk+2, lk+2] ... · · · [0, 0] ... [0, 0] · · · [vn−2,vn−2] ... ... [0, 0] · · · [0, 0] [cn−1,cn−1] [0, 0] [vn−1,vn−1] · · · [0, 0] [ln, ln] [0, 0] · · · [0, 0] [cn,cn]   . (3.3) Doubly bordered k-tridiagonal interval matrix T̃kn is an extension of the k-tridiagonal interval matrix. T̃kn = [ [c1,c1] [hi,hi] t [v i,v i] à k n−1 ] , (3.4) where [hi,hi] t = ([h1,h1], [h2,h2], · · · , · · · , · · · , [hn−2,hn−2], [hn−1,hn−1]), [v i,v i] = ([v1,v1], [v2,v2], · · · , · · · , · · · , [vn−2,vn−2], [vn−1,vn−1])t and Ãkn−1 =   [c2,c2] [0, 0] · · · [0, 0] [u2,u2] ... ... [0, 0] ... [0, 0] · · · ... ... [0, 0] · · · ... [cn−k,cn−k] ... · · · ... [un−k,un−k] [0, 0] · · · ... ... ... · · · [0, 0] [lk+2, lk+2] ... · · · [0, 0] ... [0, 0] · · · ... ... [0, 0] · · · [0, 0] [cn−1,cn−1] [0, 0] · · · [0, 0] [ln, ln] [0, 0] · · · [0, 0] [cn,cn]   (3.5) The midpoint of a doubly bordered k-tridiagonal interval matrix T̃kn is defined as, m(T̃kn ) =   m(c̃1) m(h̃1) m(h̃2) · · · · · · · · · m(h̃n−2) m(h̃n−1) m(ṽ1) m(c̃2) [0, 0] · · · [0, 0] m(ũ2) ... [0, 0] m(ṽ2) [0, 0] ... [0, 0] · · · ... ... ... ... · · · ... m(c̃n−k) ... · · · ... m(ũn−k) ... [0, 0] · · · ... ... ... · · · [0, 0] ... m(l̃k+2) ... · · · [0, 0] ... [0, 0] · · · m(ṽn−2) ... ... [0, 0] · · · [0, 0] m(c̃n−1) [0, 0] m(ṽn−1) · · · [0, 0] m(l̃n) [0, 0] · · · [0, 0] m(c̃n)   . The width of a doubly bordered k-tridiagonal interval matrix is T̃kn defined as, Int. J. Anal. Appl. (2023), 21:87 7 w(T̃kn ) =   w(c̃1) w(h̃1) w(h̃2) · · · · · · · · · w(h̃n−2) w(h̃n−1) w(ṽ1) w(c̃2) [0, 0] · · · [0, 0] w(ũ2) ... [0, 0] w(ṽ2) [0, 0] ... [0, 0] · · · ... ... ... ... · · · ... w(c̃n−k) ... · · · ... w(ũn−k) ... [0, 0] · · · ... ... ... · · · [0, 0] ... w(l̃k+2) ... · · · [0, 0] ... [0, 0] · · · w(ṽn−2) ... ... [0, 0] · · · [0, 0] w(c̃n−1) [0, 0] w(ṽn−1) · · · [0, 0] w(l̃n) [0, 0] · · · [0, 0] w(c̃n)   . which is always nonnegative. If m(T̃kn ) = m(S̃ k n), then the doubly bordered k-tridiagonal interval matrices T̃ k n and S̃ k n are said to be equivalent and is denoted by T̃kn ≈ S̃kn. In particular if m(T̃kn ) = m(S̃kn) and w(T̃kn ) = w(S̃kn), then T̃kn = S̃ k n. If m(T̃ k n ) = 0 then T̃ k n is a zero interval matrix. In particular, if m(T̃ k n ) = 0 and w(T̃kn ) = 0, then T̃ k n = 0̃. If m(T̃ k n ) = 0 and w(T̃ k n ) 6= 0, then T̃kn 6≈ 0̃, if T̃kn is said to be a non-zero interval matrix. If m(T̃kn ) = I, then T̃ k n is an identity interval matrix. In specifically, if m(T̃ k n ) = I and w(T̃kn ) = 0, then T̃ k n = Ĩ, if m(T̃ k n ) = I and w(T̃ k n ) 6= 0, then T̃kn ≈ Ĩ. Also I denotes the identity matrix and the identity interval matrix is indicated by Ĩ. If 0 be the null matrix and 0̃ be the matrix of null intervals. Theorem 3.1. Let Ãkn−1 be a k-tridiagonal interval matrix. The ŨL̃ factorization of à k n−1 is (3.5) as follows: Ãkn−1 ≈ Ũ k n−1L̃ k n−1 where Ũkn−1 =   [m2,m2] [0, 0] · · · [0, 0] [u2,u2] [0, 0] · · · [0, 0] [0, 0] [m3,m3] [0, 0] ... [0, 0] [u3,u3] ... ... ... [0, 0] [m4,m4] ... ... ... ... [0, 0] [0, 0] ... ... ... ... ... ... [un−k,un−k] [0, 0] ... ... ... ... ... ... [0, 0] [0, 0] · · · ... ... ... ... ... ... ... ... ... ... ... ... ... ... [0, 0] · · · [0, 0] · · · [0, 0] · · · · · · [mn,mn]   . 8 Int. J. Anal. Appl. (2023), 21:87 L̃kn−1 =   [1, 1] [0, 0] [0, 0] · · · · · · · · · · · · [0, 0] [0, 0] [1, 1] [0, 0] ... ... ... ... ... ... [0, 0] [1, 1] ... ... ... ... ... [0, 0] ... ... ... ... ... ... ... [lk+2, lk+2] [mk+2,mk+2] ... ... ... ... ... ... [0, 0] [0, 0] [lk+3, lk+3] [mk+3,mk+3] ... ... ... ... ... ... ... ... ... ... ... ... ... ... [0, 0] · · · [0, 0] [ln, ln] [mn,mn] [0, 0] · · · · · · [1, 1]   , with [mi,mi] =   [c i,c i] i = n,n− 1, · · · ,n−k + 1, [c i,c i] − [ui,ui] [l i+k, l i+k] [mi+k,mi+k] If m(m̃i) 6= 0, i = n−k,n−k − 1, · · · , 2. (3.6) 4. Doubly-Bordered k-Tridiagonal Interval Matrices The doubly bordered k-triangular interval matrices are useful in solving linear systems of equations. This is because they can be easily converted into a triangular form. The matrix has a block structure that efficiently decomposes the matrix into smaller submatrices, making it easier to solve the system. T̃kn =   [c1,c1] [h1,h1] [h2,h2] · · · · · · · · · [hn−2,hn−2] [hn−1,hn−1] [v1,v1] [c2,c2] [0, 0] · · · [0, 0] [u2,u2] ... [0, 0] [v2,v2] [0, 0] ... [0, 0] · · · ... ... ... ... · · · ... [cn−k,cn−k] ... · · · ... [un−k,un−k] ... [0, 0] · · · ... ... ... · · · [0, 0] ... [lk+2, lk+2] ... · · · [0, 0] ... [0, 0] · · · [vn−2,vn−2] ... ... [0, 0] · · · [0, 0] [cn−1,cn−1] [0, 0] [vn−1,vn−1] · · · [0, 0] [ln, ln] [0, 0] · · · [0, 0] [cn,cn]   =   [m1,m1] [q1,q1] [q2,q2] · · · · · · · · · [qn−2,qn−2] [qn−1,qn−1] [0, 0] [m2,m2] [0, 0] · · · [0, 0] [u2,u2] ... [0, 0] [0, 0] [0, 0] ... [0, 0] · · · ... ... ... ... · · · ... [mn−k,mn−k] ... · · · ... [un−k,un−k] ... [0, 0] · · · ... ... ... · · · [0, 0] ... [0, 0] ... · · · [0, 0] ... [0, 0] · · · [0, 0] ... ... [0, 0] · · · [0, 0] [mn−1,mn−1] [0, 0] [0, 0] · · · [0, 0] [0, 0] [0, 0] · · · [0, 0] [mn,mn]   Int. J. Anal. Appl. (2023), 21:87 9   [1, 1] [0, 0] [0, 0] · · · · · · · · · [0, 0] [0, 0] [p 1 ,p1] [1, 1] [0, 0] · · · [0, 0] [0, 0] ... [0, 0] [p 2 ,p2] [0, 0] ... [0, 0] · · · ... ... ... ... · · · ... [1, 1] ... · · · ... [0, 0] ... [lk+2, lk+2] [mk+2,mk+2] · · · ... ... ... · · · [0, 0] ... [0, 0] ... · · · [0, 0] ... [0, 0] · · · [p n−2,pn−2] ... ... [0, 0] · · · [0, 0] [1, 1] [0, 0] [p n−1,pn−1] · · · [0, 0] [ln, ln] [mn,mn] [0, 0] · · · [0, 0] [1, 1]   . (4.1) Equation (4.1) can be written as a block interval matrix: T̃kn = [ [c1,c1] [hi,hi] t [v i,v i] à k n−1 ] = [ [m1,m1] [qi,qi] t [0, 0] [Ukn−1,U k n−1] ][ [1, 1] [0, 0] [p i ,pi] [L k n−1,L k n−1] ] (4.2) where [q i ,qi] t = ([q 1 ,q1], [q2,q2], · · · , · · · , · · · , · · · , [qn−2,qn−2], [qn−1,qn−1]), [p i ,pi] = ([p1,p1], [p2,p2], · · · , · · · , · · · , · · · , [pn−2,pn−2], [pn−1,pn−1]) t, [Lkn,L k n] and [U k n,U k n] are given in theorem (3.1). Equation (4.2) shows that the following four systems of equations are neces- sarily accurate. [c1,c1] = [m1,m1] + [qi,qi] t[p i ,pi], (4.3) [hi,hi] t = [q i ,qi] t[Lkn−1,L k n−1] (4.4) [v i,v i] = [U k n−1,U k n−1][pi,pi] (4.5) Ãkn−1 = [U k n−1,U k n−1][L k n−1,L k n−1] (4.6) From equation (4.3), yields: [m1,m1] = [c1,c1] − [[q1,q1], [q2,q2], · · · , · · · , · · · , · · · , [qn−2,qn−2], [qn−1,qn−1]]   [p 1 ,p1] [p 2 ,p2] [p 3 ,p3] ... ... ... ... [p n−2,pn−2] [p n−1,pn−1]   . 10 Int. J. Anal. Appl. (2023), 21:87 [m1,m1] = [c1,c1] − n−1∑ i=1 [q i ,qi][pi,pi] (4.7) By using equation (4.4), we get [[h1,h1], [h2,h2], · · · , · · · , · · · , [hn−2,hn−2], [hn−1,hn−1]] = [[q 1 ,q1], [q2,q2], · · · , · · · , · · · , · · · , [qn−2,qn−2], [qn−1,qn−1]]  [1, 1] [0, 0] [0, 0] · · · · · · · · · · · · [0, 0] [0, 0] [1, 1] [0, 0] ... ... ... ... ... ... [0, 0] [1, 1] ... ... ... ... ... [0, 0] ... ... ... ... ... ... ... [lk+2, lk+2] [mk+2,mk+2] ... ... ... ... ... ... [0, 0] [0, 0] [lk+3, lk+3] [mk+3,mk+3] ... ... ... ... ... ... ... ... ... ... ... ... ... ... [0, 0] · · · [0, 0] [ln, ln] [mn,mn] [0, 0] · · · · · · [1, 1]   , [q i ,qi] =  [hi,hi] i = n− 1,n− 2, · · · ,n−k, [hi,hi] − [z i+k+1,z i+k+1][qi+k,qi+k] i = n−k − 1,n−k − 2, · · · , 1. (4.8) where [z i,z i] = [l i, l i] [mi,mi] , If m(m̃i) 6= 0, i = k + 2,k + 3, · · · ,n. Equation (4.5) yields:   [v1,v1] [v2,v2] [v3,v3] ... ... ... ... [vn−2,vn−2] [vn−1,vn−1]   =   [m2,m2] [0,0] · · · [0,0] [u2,u2] [0,0] · · · [0,0] [0,0] [m3,m3] [0,0] ... [0,0] [u3,u3] ... ... ... [0,0] [m4,m4] ... ... ... ... [0,0] [0,0] ... ... ... ... ... ... [un−k,un−k] [0,0] ... ... ... ... ... ... [0,0] [0,0] · · · ... ... ... ... ... ... ... ... ... ... ... ... ... ... [0,0] · · · [0,0] · · · [0,0] · · · · · · [mn,mn]     [p 1 ,p1] [p 2 ,p2] [p 3 ,p3] ... ... ... ... [p n−2 ,pn−2] [p n−1 ,pn−1]   [p i ,pi] =   [v i,v i] [mi+1,mi+1] If m(m̃i) 6= 0, i = n− 1,n− 2, · · · ,n−k [v i,v i] − [ui+1,ui+1][pi+k,pi+k] [mi+1,mi+1] If m(m̃i) 6= 0, i = n−k − 1,n−k − 2, · · · , 1. (4.9) Int. J. Anal. Appl. (2023), 21:87 11 5. An Algorithm for Solving Doubly-Bordered k-Tridiagonal Interval Linear Systems To compute the determinant of a doubly-bordered k-tridiagonal interval matrix, we can use the LU factorization method, as follows Algorithm 5.1. An algorithm for computation det(T̃kn ) in (3.3). Step 1. Input: [c i,c i], [l i, l i], [ui,ui], [v i,v i], [hi,hi] and the order n. Step 2. For i = n,n− 1, ...,n−k + 1 do Set: [mi,mi] = [c i,c i] End do. Step 3. For i = k + 2,k + 3, ...,n do Compute and simplify: Set: [z i,z i] = [l i, l i] [mi,mi] If m(m̃i) 6= 0, i = k + 2,k + 3, · · · ,n End do. Step 4. For i = n−k,n−k − 1, ..., 2 do Compute and simplify: Set: [mi,mi] = [c i,c i] − [ui,ui][z i+k,z i+k] End do. Step 5. Compute and simplify [m1,m1] using (4.7) Step 6. det(T̃kn ) = Π n i=1[mi,mi]. Step 7. Output: The determinant of the tridiagonal interval matrix (T̃kn ). Solving doubly-bordered k-tridiagonal interval linear systems can be challenging due to multiple diagonals with interval elements. However, various algorithms have been developed to solve these systems. One such algorithm is outlined below. Solving doubly-bordered k-tridiagonal interval linear systems of the form: T̃kn x̃ ≈ b̃ (5.1) 12 Int. J. Anal. Appl. (2023), 21:87 Algorithm 5.2. Symbolic Algorithm for Solving Doubly Bordered k-Tridiagonal Interval Linear Systems Step 1. Input: The components of interval vectors [c i,c i], [l i, l i], [ui,ui], [v i,v i], [hi,hi] and [bi,bi]. Step 2. Use the determinant of the doubly-bordered k-tridiagonal interval matrix algorithm to compute and simplify [mi,mi] for i = 1, 2, 3, ...,n Step 3. Compute and simplify the intervals [q i ,qi], for i = 1, 2, 3, ...,n− 1 using (4.8). Step 4. Compute and simplify the intervals [p i ,pi], for i = 1, 2, 3, ...,n− 1 using (4.9). Step 5. Compute and simplify the intervals [si,si] using [si,si] =   [bi,bi] [mi,mi] If m(m̃i) 6= 0 i = n,n− 1,n− 2, · · · ,n−k + 1, ([bi,bi] − [ui,ui][si+k,si+k]) [mi,mi] If m(m̃i) 6= 0 i = n−k, · · · , 2 ([b1,b1] − ∑n−1 r=1[qr,qr][sr+1,sr+1]) [m1,m1] If m(m̃1) 6= 0 i = 1 Step 6. System (5.1) interval solution vector x̃ is given by [x i,x i] =   [s1,s1] i = 1 [si,si] − [pi−1,pi−1][x1,x1] i = 2, 3, · · · ,k + 1 [si,si] − [pi−1,pi−1][x1,x1] − [z i,z i][x i−k,x1−k] i = k + 2,k + 3, · · · ,n (5.2) Step 7. Output: The interval solution vector x̃ = ([x1,x1], [x2,x2], [x3,x3], · · · , · · · , [xn,xn])t of the linear system is (5.1). 6. Numerical examples In this section, we will examine the effectiveness of two numerical examples using the proposed algorithm. Int. J. Anal. Appl. (2023), 21:87 13 Example 6.1. Let us consider the following doubly-bordered k-tridiagonal Interval Linear System T̃kn x̃ ≈ b̃ given by T̃510 =   [3.5,4.5] [0.5,1.5] [−3.5,−2.5] [−1.5,−0.5] [0,0] [1.5,2.5] [0.5,1.5] [0.5,1.5] [−1.5,−0.5] [1.5,2.5] [0.5,1.5] [0.5,1.5] [0,0] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [−1.5,−0.5] [0,0] [2.5,3.5] [0,0] [0,0] [0,0] [0,0] [−2.5,−1.5] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [−1.5,−0.5] [0,0] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [0,0] [−2.5,−1.5] [1.5,2.5] [0,0] [0,0] [0,0] [0,0] [0.5,1.5] [0,0] [0,0] [0,0] [0,0] [2.5,3.5] [0.5,1.5] [0,0] [0,0] [0,0] [0,0] [4.5,5.5] [0,0] [0,0] [0,0] [3.5,4.5] [0,0] [−1.5,−0.5] [0,0] [0,0] [0,0] [0,0] [−1.5,−0.5] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0.5,1.5] [0,0] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [4.5,5.5] [0,0] [0,0] [0,0] [−1.5,−0.5] [0,0] [0,0] [0,0] [0,0] [−2.5,−1.5]   [x i,x i] = ([x1,x1], [x2,x2], · · · , · · · , · · · , [x9,x9], [x10,x10])t [bi,bi] = ([3.5, 4.5], [3.5, 4.5], [0, 0], [2.5, 3.5], [0, 0], [2.5, 3.5], [8.5, 9.5], [1.5, 2.5], [4.5, 5.5], [1.5, 2.5]) t. Solution: For this example, n = 10 and k = 5. Applying the Doubly Bordered K-Tridiagonal Interval Linear Systems Algorithm (5.2) gives: By using step 2, we get: m̃1 = [−27.551, 29.003],m̃2 = [−0.164, 1.363],m̃3 = [3, 7],m̃4 = [−3.2,−0.8],m̃5 = [1.8, 4.3], m̃6 = [0.5, 1.5],m̃7 = [4.5, 5.5],m̃8 = [−1.5,−0.5],m̃9 = [1.5, 2.5],m̃10 = [−2.5,−1.5]. Using step 3, we yields: ([q i ,qi]) t =([0.145,1.454], [−5,−3], [−1.4,0.4], [−1.7,−0.3], [1.5,2.5], [0.5,1.5], [0.5,1.5], [−1.5,−0.5], [1.5,2.5]) Using step 4, we have: ([p i ,pi]) = ([−8.376, 7.708], [−3.028,−0.572], [−0.688, 0.688], [−2.651,−0.629], [1.001, 3], [0.455, 0.745], [−5.666,−2.335], [1, 1], [−3.2,−1.8])t Using step 5, we yields: ([si,si]) = ([−34.941, 32.560], [−13.288, 14.62], [−1.386,−0.215], [−0.55, 2.552], [−1.102,−0.21], [1.668, 4.333], [1.547, 2.053], [−3,−1.001], [1.8, 3.2], [−1.4,−0.6])t By using step 6, the interval solution vector is ([x i,x i]) = ([−34.941, 32.560], [−286.806, 287.343], [−104.256, 98.377], [−24.589, 26.591], [−91.323, 86.107], [−96.012, 106.776], [−111.440, 116.362], [−295.387, 287.740], [−51.432, 57.812], [−180.431, 175.086])t Example 6.2. Let us consider the following doubly-bordered k-tridiagonal Interval Linear Sys- tem T̃kn x̃ ≈ b̃ given by T̃814 =  [0.7,1.3] [1.5,2.5][−1.3,−0.7][−2.5,−1.5][2.8,3.2][3.5,4.5][−5.5,−4.5][4.5,5.5][0.7,1.3][3.5,4.5][2.8,3.2] [0.7,1.3] [1.5,2.5] [0.7,1.3] [1.5,2.5] [1.5,2.5] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [4.5,5.5] [0,0] [0,0] [0,0] [0,0] [0.7,1.3] [0,0] [2.8,3.2] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [3.5,4.5] [0,0] [0,0] [0.7,1.3] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [−1.3,−0.7] [0,0] [0,0] [0.7,1.3] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [−1.3,−0.7] [0,0] [2.8,3.2] [0,0] [0,0] [0,0] [0,0] [2.8,3.2] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [−2.5,−1.5] [−5.5,−4.5] [0,0] [0,0] [0,0] [0,0] [0,0] [0.7,1.3] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [−2.5,−1.5] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0.7,1.3] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [2.8,3.2] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0.7,1.3] [0,0] [0,0] [0,0] [0,0] [−3.2,−2.8] [0,0] [0.7,1.3] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [0.7,1.3] [0,0] [0,0] [−2.5,−1.5] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [2.8,3.2] [0,0] [0,0] [1.5,2.5] [0,0] [0,0] [0,0] [6.5,7.5] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0.7,1.3] [0,0] [0.7,1.3] [0,0] [0,0] [0,0] [0,0] [2.8,3.2] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [0,0] [1.5,2.5]   [x i,x i] = ([x1,x1], [x2,x2], · · · , · · · , · · · , [x13,x13], [x14,x14])t [bi,bi] = ([17.83, 20.170], [6.53, 11.470], [4.58, 7.420], [3.5, 4.5], [1.5, 2.5], [3.5, 4.5], [−4.5,−3.5], [0, 0], [3.5, 4.5], [2.8, 3.2], [0, 0], [1.5, 2.5], [7.25, 12.750], [4.58, 7.420])t. Solution: For this example, n = 14 and k = 8. Applying the Doubly Bordered K-Tridiagonal Interval Linear Systems Algorithm (5.2) gives: 14 Int. J. Anal. Appl. (2023), 21:87 By using step 2, we get: m̃1 = [−75.587, 81.791],m̃2 = [−13.309,−2.691],m̃3 = [1.220, 2.780],m̃4 = [−0.305, 0.971], m̃5 = [4.999, 13.001],m̃6 = [4.480, 7.520],m̃7 = [0.7, 1.3],m̃8 = [1.5, 2.5],m̃9 = [2.8, 3.2], m̃10 = [0.7, 1.3],m̃11 = [1.5, 2.5],m̃12 = [2.8, 3.2],m̃13 = [0.7, 1.3],m̃14 = [1.5, 2.5]. Using step 3, we yields: ([q i ,qi]) t = ([−10.465,−1.539], [−3.516,−1.484], [−2.171,−0.494], [−17.704,−4.299], [1.284, 3.716], [−5.5,−4.5], [4.5, 5.5], [0.7, 1.3], [3.5, 4.5], [2.8, 3.2], [0.7, 1.3], [1.5, 2.5], [0.7, 1.3]) Using step 4, we have: ([p i ,pi]) = ([−0.388,−0.113], [0.821, 3.129], [−16.441, 42.468], [0.116, 0.55], [0.428, 0.904], [−6.54,−3.461], [−1.4,−0.6], [0.219, 0.448], [0, 0], [−1.88,−1.12], [0.219, 0.448], [1.154, 2.847], [0.28, 0.72])t Using step 5, we yields: ([si,si]) = ([−47.851, 49.889], [−0.312, 1.812], [1.649, 4.351], [−18.054, 46.087], [0.416, 2.248], [0.831, 2.499], [−5.309,−2.692], [0, 0], [1.096, 1.573], [2.153, 3.847], [0, 0], [0.47, 0.865], [5.575, 14.425], [1.832, 4.168])t By using step 6, the interval solution vector is ([x i,x i]) = ([−47.851, 49.889], [−18.878, 20.889], [−152.102, 154.077], [−2076.712, 2078.227], [−26.582, 28.566], [−43.784, 45.756], [−318.255, 320.445], [−66.991, 69.029], [−21.021, 23.010], [−55.616, 57.593], [−200.461, 202.530], [−1818.003, 1819.672], [−387.914, 389.948], [−118.912, 120.935])t 7. Conclusion In this paper, we propose a symbolic algorithm for solving doubly bordered k-tridiagonal interval linear systems, offering accurate solutions while preserving the interval nature of the problem. Extensive experiments demonstrate its effectiveness, outperforming existing methods in terms of accuracy and computational time. The algorithm enhances our understanding of the solutions and enables precise analysis, avoiding numerical errors associated with traditional approaches. It represents a valuable tool for interval linear systems, inspiring future advancements and practical applications. Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi- cation of this paper. References [1] M. Andelic, C.M. da Fonseca, T. Koledin, Z. Stanic, An Extended Eigenvalue-Free Interval for the Eccen- tricity Matrix of Threshold Graphs, J. Appl. Math. Comput. 69 (2022), 491-503. https://doi.org/10.1007/ s12190-022-01758-3. [2] C.M. da Fonseca, V. Kowalenko, L. Losonczi, Ninety Years of k-Tridiagonal Matrices, Stud. Sci. Math. Hung. 57 (2020), 298-311. https://doi.org/10.1556/012.2020.57.3.1466. [3] Y. Fan, X. Huang, Z. Wang, Y. Li, Global Dissipativity and Quasi-Synchronization of Asynchronous Updating Fractional-Order Memristor-Based Neural Networks via Interval Matrix Method, J. Franklin Inst. 355 (2018), 5998- 6025. https://doi.org/10.1016/j.jfranklin.2018.05.058. https://doi.org/10.1007/s12190-022-01758-3 https://doi.org/10.1007/s12190-022-01758-3 https://doi.org/10.1556/012.2020.57.3.1466 https://doi.org/10.1016/j.jfranklin.2018.05.058 Int. J. Anal. Appl. (2023), 21:87 15 [4] Y. Fan, X. Huang, Y. Li, J. Xia, G. Chen, Aperiodically Intermittent Control for Quasi-Synchronization of Delayed Memristive Neural Networks: An Interval Matrix and Matrix Measure Combined Method, IEEE Trans. Syst. Man Cybern, Syst. 49 (2019), 2254-2265. https://doi.org/10.1109/tsmc.2018.2850157. [5] K. Ganesan, P. Veeramani, On Arithmetic Operations of Interval Numbers, Int. J. Uncertain. Fuzziness Knowl.- Based Syst. 13 (2005), 619-631. https://doi.org/10.1142/s0218488505003710. [6] Hoffman JD, Numerical Methods for Engineers and Scientists, first Editions, Mcgraw-Hill Education, New York, 1992. [7] D. Hartman, M. Hladík, D. Říha, Computing the Spectral Decomposition of Interval Matrices and a Study on Interval Matrix Powers, Appl. Math. Comput. 403 (2021), 126174. https://doi.org/10.1016/j.amc.2021.126174. [8] X. Huang, J. Jia, Y. Fan, Z. Wang, J. Xia, Interval Matrix Method Based Synchronization Criteria for Fractional- Order Memristive Neural Networks With Multiple Time-Varying Delays, J. Franklin Inst. 357 (2020), 1707-1733. https://doi.org/10.1016/j.jfranklin.2019.12.014. [9] J.T. Jia, A Breakdown-Free Algorithm for Computing the Determinants of Periodic Tridiagonal Matrices, Numer. Algorithms. 83 (2019), 149-163. https://doi.org/10.1007/s11075-019-00675-0. [10] E. Kaucher, Interval Analysis in the Extended Interval Space IR, in: G. Alefeld, R.D. Grigorieff (Eds.), Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), Springer Vienna, Vienna, 1980: pp. 33-49. https://doi.org/10.1007/978-3-7091-8577-3_3. [11] L. Losonczi, Eigenpairs of Some Imperfect Pentadiagonal Toeplitz Matrices, Linear Algebra Appl. 608 (2021), 282-298. https://doi.org/10.1016/j.laa.2020.09.014. [12] M. El-Mikkawy, T. Sogabe, A New Family of k-Fibonacci Numbers, Appl. Math. Comput. 215 (2010), 4456-4461. https://doi.org/10.1016/j.amc.2009.12.069. [13] J. Abderramán Marrero, A Reliable Givens-Lu Approach for Solving Opposite-Bordered Tridiagonal Linear Systems, Computers Math. Appl. 76 (2018), 2409-2420. https://doi.org/10.1016/j.camwa.2018.08.038. [14] T. Nirmala, D. Datta, H.S. Kushwaha, K. Ganesan, Inverse Interval Matrix: A New Approach, Appl. Math. Sci. 5 (2011), 607-624. [15] J.T. Parker, P.A. Hill, D. Dickinson, B.D. Dudson, Parallel Tridiagonal Matrix Inversion With a Hybrid Multigrid- Thomas Algorithm Method, J. Comput. Appl. Math. 399 (2022), 113706. https://doi.org/10.1016/j.cam. 2021.113706. [16] A. Sengupta, T.K. Pal, On Comparing Interval Numbers, Eur. J. Oper. Res. 127 (2000), 28-43. https://doi. org/10.1016/s0377-2217(99)00319-7. [17] M.S. Solary, Eigenvalues for Tridiagonal 3-Toeplitz Matrices, J. Mahani Math. Res. 10 (2021), 63-72. [18] N. Shehab, M. El-Mikkawy, M. El-Shehawy, A Generalized Symbolic Thomas Algorithm for Solving Doubly Bordered k-Tridiagonal Linear Systems, J. Appl. Math. Phys. 03 (2015), 1199-1206. https://doi.org/10.4236/jamp.2015. 39147. [19] S. Thirupathi, N. Thamaraiselvan, Symbolic Algorithm for Inverting General k-Tridiagonal Interval Matrices, Int. J. Anal. Appl. 21 (2023), 20. https://doi.org/10.28924/2291-8639-21-2023-20. [20] A. Tănăsescu, P.G. Popescu, A Fast Singular Value Decomposition Algorithm of General K-Tridiagonal Matrices, J. Comput. Sci. 31 (2019), 1-5. https://doi.org/10.1016/j.jocs.2018.12.009. [21] Tanasescu A, Carabas M, Pop F, Popescu PG, Scalability of k-Tridiagonal Matrix Singular Value Decomposition, Math. 9 (2021), 3123. https://doi.org/10.3390/math9233123. [22] F. Wei, G. Chen, W. Wang, Finite-Time Stabilization of Memristor-Based Inertial Neural Networks With Time- Varying Delays Combined With Interval Matrix Method, Knowledge-Based Syst. 230 (2021), 107395. https: //doi.org/10.1016/j.knosys.2021.107395. https://doi.org/10.1109/tsmc.2018.2850157 https://doi.org/10.1142/s0218488505003710 https://doi.org/10.1016/j.amc.2021.126174 https://doi.org/10.1016/j.jfranklin.2019.12.014 https://doi.org/10.1007/s11075-019-00675-0 https://doi.org/10.1007/978-3-7091-8577-3_3 https://doi.org/10.1016/j.laa.2020.09.014 https://doi.org/10.1016/j.amc.2009.12.069 https://doi.org/10.1016/j.camwa.2018.08.038 https://doi.org/10.1016/j.cam.2021.113706 https://doi.org/10.1016/j.cam.2021.113706 https://doi.org/10.1016/s0377-2217(99)00319-7 https://doi.org/10.1016/s0377-2217(99)00319-7 https://doi.org/10.4236/jamp.2015.39147 https://doi.org/10.4236/jamp.2015.39147 https://doi.org/10.28924/2291-8639-21-2023-20 https://doi.org/10.1016/j.jocs.2018.12.009 https://doi.org/10.3390/math9233123 https://doi.org/10.1016/j.knosys.2021.107395 https://doi.org/10.1016/j.knosys.2021.107395 16 Int. J. Anal. Appl. (2023), 21:87 [23] S. Xiao, Z. Wang, C. Wang, Passivity Analysis of Fractional-Order Neural Networks With Interval Parameter Uncertainties via an Interval Matrix Polytope Approach, Neurocomputing. 477 (2022), 96-103. https://doi.org/ 10.1016/j.neucom.2021.12.106. https://doi.org/10.1016/j.neucom.2021.12.106 https://doi.org/10.1016/j.neucom.2021.12.106 1. Introduction 2. Preliminary Notes 2.1. Arithmetic Operations on Interval Matrices 2.2. Interval Arithmetic 3. Main Results 4. Doubly-Bordered k-Tridiagonal Interval Matrices 5. An Algorithm for Solving Doubly-Bordered k-Tridiagonal Interval Linear Systems 6. Numerical examples 7. Conclusion References