International Journal of Analysis and Applications ISSN 2291-8639 Volume 7, Number 1 (2015), 50-58 http://www.etamaths.com NEW INTEGRAL INEQUALITIES IN QUANTUM CALCULUS KAMEL BRAHIM1,∗, SABRINA TAF2 AND BOCHRA NEFZI1 Abstract. In this paper, we study the q-analogue of Klamkin-McLenaghan’s and Grueb-Reinboldt’s inequalities then we use the Riemann-Liouville frac- tional q-integral to get some new integral results. 1. introduction Let us consider (1.1) T(f,g; a,b) = 1 b−a ∫ b a f(x)g(x)dx− ( 1 b−a ∫ b a f(x)dx )( 1 b−a ∫ b a g(x)dx ) where f and g are two integrable functions on [a,b], and Tq(f,g; a,b) = 1 b−a ∫ b a f(x)g(x)dqx− ( 1 b−a ∫ b a f(x)dqx )( 1 b−a ∫ b a g(x)dqx ) where f and g are two functions defined on [a,b]q. The well-known Grüss integral inequality can be stated as follows (see [10, 15]): (1.2) |T(f,g; a,b)| ≤ 1 4 (M −m)(N −n), provided that f and g are two integrable functions on [a,b] such that (1.3) 0 < m ≤ f(x) ≤ M < ∞, 0 < n ≤ g(x) ≤ N < ∞, ,x ∈ [a,b]. The constant 1 4 is best possible. Gauchman gave the q-integral Grüss inequality as follows (see [8]): |Tq(f,g; a,b)| ≤ 1 4 (M −m)(N −n), In [12], the authors proved the following Klamkin-McLenaghan inequality (1.4) n∑ k=1 wka 2 k n∑ k=1 wkb 2 k − ( n∑ k=1 wkakbk )2 ≤ (√ M n − √ m N )2 n∑ k=1 wkakbk n∑ k=1 wkb 2 k, 2010 Mathematics Subject Classification. 35A23. Key words and phrases. Grüss inequality, fractional q-integral, Klamkin-McLenaghan inequal- ity, Grueb-Reinboldt inequality. c©2015 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 50 NEW INTEGRAL INEQUALITIES IN QUANTUM CALCULUS 51 where 0 < m N ≤ ak bk ≤ M n < ∞, wk > 0, k = 1, . . . ,n. In [9], the authors proved the following Grueb-Reinboldt inequality (1.5) n∑ k=1 wka 2 k n∑ k=1 wkb 2 k ≤ (MN + mn)2 4nmNM ( n∑ k=1 wkakbk )2 In [6], Dragomir and Diamond proved that (1.6) |T(f,g; a,b)| ≤ 1 4 · (M −m)(N −n) √ mMnN · 1 b−a ∫ b a f(x)dx · 1 b−a ∫ b a g(x)dx, and (1.7) |T(f,g; a,b)| ≤ (√ M − √ m )(√ N − √ n )√ 1 b−a ∫ b a f(x)dx · 1 b−a ∫ b a g(x)dx. In recent years, many researches have studies (1.1) and number of inequalities ap- peared in literature (see [1, 2, 3, 4, 5, 14, 18]). The main objective of this paper is to establish some new q-fractional integral inequalities of Klamkin-McLenaghan and Grueb-Reinboldt type. This paper is organized as follows: in section 2, we present some preliminary re- sults and notation. In section 3, we state the q-analogue of Klamkin-McLenaghan and Grueb-Reinboldt inequalities, then we establish some new q-fractional integral inequalities. 2. Basic Definitions For the convenience of the reader, we provide in this section a summary of the mathematical notations and definitions used in this paper (see [7, 13, 16]). We write for a,b ∈ C and q ∈ (0, 1), (a; q)∞ = ∞∏ k=0 (1 −aqk), (a− b)(α) = aα ( b a ; q)∞ (qα b a ; q)∞ . The q-Jackson integral from 0 to a is defined by (see [11]) (2.1) ∫ a 0 f(x)dqx = (1 −q)a ∞∑ n=0 f(aqn)qn, provided the sum converges absolutely. The q-Jackson integral in a generic interval [a,b] is given by (see [11]) (2.2) ∫ b a f(x)dqx = ∫ b 0 f(x)dqx− ∫ a 0 f(x)dqx. In the case a = bqn, we can write (2.3) ∫ b a f(x)dqx = (1 −q)b n−1∑ k=0 f(bqk)qk. 52 BRAHIM, TAF AND NEFZI The fractional q-integral of the Riemann-Liouville type is (see [16])( Jαq f ) (x) = 1 Γq(α) ∫ x 0 (x−qt)(α−1)f(t)dqt; α > 0 = xα Γq(α) (1 −q) ∞∑ n=0 (1 −qn+1)(α−1)f(xqn)qn.(2.4) where Γq(α) = 1 1 −q ∫ 1 0 ( u 1 −q )α−1 eq(qu)dqu, and eq(t) = ∞∏ k=0 (1 −qkt). The q-fractional integration has the following semi-group property for α,β ∈ R+ (Jβq J α q f)(x) = (J α+β q f)(x). For the expression (2.4), when f(x) = xλ, we get another expression that will be used later: Jαq (x λ) = Γq(λ + 1) Γ(α + λ + 1) xα+λ. Finally, for b > 0 and a = bqn,n = 1, 2, ...,∞, we write (2.5) [a,b]q = {bqk : 0 ≤ k ≤ n}, [0,b]q = {bqk : k ∈ N}. 3. Main results Theorem 1. Let f and g be two functions defined on [a,b]q satisfying the condition 0 < m ≤ f(t) ≤ M < ∞, 0 < n ≤ g(t) ≤ N < ∞, t ∈ [a,b]q(3.1) Then one has the inequality (3.2) |Tq(f,g; a,b)| ≤ (√ M− √ m )(√ N− √ n )√ 1 b−a ∫ b a f(x)dqx · 1 b−a ∫ b a g(x)dqx. The following Lemma is used to prove Theorem 1: Lemma 1. Let h and l are two functions defined on [a,b]q such that 0 < m1 ≤ h(t) ≤ M1 < ∞, 0 < n1 ≤ l(t) ≤ N1 < ∞, t ∈ [a,b]q.(3.3) Then, we have (3.4)∫ b a h2(x)dqx ∫ b a l2(x)dqx − (∫ b a h(x)l(x)dqx )2 ≤ (√ M1 n1 − √ m1 N1 )2 ∫ b a h(x)l(x)dqx ∫ b a l2(x)dqx Proof. From the condition (3.8), we have m1 √ qk ≤ h(bqk) √ qk ≤ M1 √ qk, and n1 √ qk ≤ l(bqk) √ qk ≤ N1 √ qk. NEW INTEGRAL INEQUALITIES IN QUANTUM CALCULUS 53 Using the Klamkin-McLenaghan inequality (1.4), we obtain n−1∑ k=0 h2(bqk)qk n−1∑ k=0 l2(bqk)qk − ( n−1∑ k=0 h(bqk)l(bqk)qk )2 ≤ (√ M1 n1 − √ m1 N1 )2 n−1∑ k=0 h(bqk)l(bqk)qk n−1∑ k=0 l2(bqk)qk. From (2.3), we get∫ b a h2(x)dqx ∫ b a l2(x)dqx − (∫ b a h(x)l(x)dqx )2 ≤ (√ M1 n1 − √ m1 N1 )2 ∫ b a h(x)l(x)dqx ∫ b a l2(x)dqx Lemma 1 is thus proved. � Proof of Theorem 1: Using the Cauchy-Schwartz inequality for double integrals, we have |Tq(f,g; a,b)| = ∣∣∣∣∣ 12(b−a)2 ∫ b a ∫ b a (f(x) −f(y))(g(x) −g(y))dqxdqy ∣∣∣∣∣ ≤ 1 2(b−a)2 [∫ b a ∫ b a (f(x) −f(y))2dqxdqy · ∫ b a ∫ b a (g(x) −g(y))2dqxdqy ]1 2 = 1 2(b−a)2 [ 4 [ (b−a) ∫ b a f2(x)dqx− (∫ b a f(x)dqx )2] × [ (b−a) ∫ b a g2(x)dqx− (∫ b a g(x)dqx )2]]1 2 = [ 1 b−a ∫ b a f2(x)dqx− ( 1 b−a ∫ b a f(x)dqx )2]1 2 × [ 1 b−a ∫ b a g2(x)dqx− ( 1 b−a ∫ b a g(x)dqx )2]1 2 .(3.5) By Lemma 1, we get 1 b−a ∫ b a f2(x)dqx − ( 1 b−a ∫ b a f(x)dqx )2 ≤ (√ M − √ m )2 1 b−a ∫ b a f(x)dqx(3.6) and 1 b−a ∫ b a g2(x)dqx − ( 1 b−a ∫ b a g(x)dqx )2 ≤ (√ N − √ n )2 1 b−a ∫ b a g(x)dqx(3.7) 54 BRAHIM, TAF AND NEFZI From (3.5), (3.6) and (3.7), we deduce the desired inequality (3.9). Theorem 1 is thus proved. Corollary 1. Let f and g be two functions defined on [0,b]q satisfying the condition 0 < m ≤ f(t) ≤ M < ∞, 0 < n ≤ g(t) ≤ N < ∞, t ∈ [0,b]q(3.8) Then one has the inequality (3.9) |Tq(f,g; 0,b)| ≤ 1 b (√ M − √ m )(√ N − √ n )√∫ b 0 f(x)dqx · ∫ b 0 g(x)dqx. Proof. By taking a = bqn in the previous theorem and by tending n to ∞ we obtain the result. � Theorem 2. Let f and g be two functions defined on [a,b]q satisfying the condition (3.1). Then one has the inequality (3.10) |Tq(f,g; a,b)| ≤ (M −m)(N −n) 4 √ nmNM · 1 b−a ∫ b a f(x)dqx · 1 b−a ∫ b a g(x)dqx Lemma 2. [17] Let f and g are two functions defined on [a,b]q satisfying the condition (3.8). Then we have (3.11) ∫ b a f2(x)dqx ∫ b a g2(x)dqx ≤ (MN + mn)2 4nmNM (∫ b a f(x)g(x)dqx )2 Proof of Theorem 2: Using Lemma 2, we get (b−a) ∫ b a f2(x)dqx ≤ (M + m)2 4mM (∫ b a f(x)dqx )2 , Hence (3.12) 1 b−a ∫ b a f2(x)dqx− ( 1 b−a ∫ b a f(x)dqx )2 ≤ (M −m)2 4mM ( 1 b−a ∫ b a f(x)dqx )2 . Similarly, we have (3.13) 1 b−a ∫ b a g2(x)dqx− ( 1 b−a ∫ b a g(x)dqx )2 ≤ (N −n)2 4nN ( 1 b−a ∫ b a g(x)dqx )2 . From (3.5), (3.12) and (3.13), we deduce the desired inequality (3.14). Theorem 2 is thus proved. Corollary 2. Let f and g be two functions defined on [0,b]q satisfying the condition (3.8). Then one has the inequality (3.14) |Tq(f,g; 0,b)| ≤ (M −m)(N −n) 4b2 √ nmNM · ∫ b 0 f(x)dqx · ∫ b 0 g(x)dqx Theorem 3. Let f and g be two positive functions defined on [0,∞) satisfying the condition (3.15) 0 < m ≤ f(τ) ≤ M < ∞, 0 < n ≤ g(τ) ≤ N < ∞, τ ∈ [0, t], t > 0. NEW INTEGRAL INEQUALITIES IN QUANTUM CALCULUS 55 Then for all α > 0, b > 0 we have (3.16) ∣∣∣∣ bαΓq(α + 1)Jαq (f(b)g(b)) −Jαq f(b)Jαq g(b) ∣∣∣∣ ≤ (√ M − √ m )(√ N − √ n ) bα Γq(α + 1) √ Jαq f(b)J α q g(b) The following Lemma is used to prove Theorem 3: Lemma 3. Let h and l be two positive functions on [0,∞) such that (3.17) 0 < m1 ≤ h(τ) ≤ M1 < ∞, 0 < n1 ≤ l(τ) ≤ N1 < ∞, τ ∈ [0, t], t > 0. Then for all α > 0, b > 0, we have (3.18) Jαq h 2(b)Jαq l 2(b) − ( Jαq (h(b)l(b)) )2 ≤ (√ M1 n1 − √ m1 N1 )2 Jαq (h(b)l(b))J α q l 2(b). Proof. Using the Klamkin-McLenaghan inequality (1.4), we obtain ∞∑ k=0 h2(bqk)(1 −qk+1)(α−1)qk ∞∑ k=0 l2(bqk)(1 −qk+1)(α−1)qk − ( ∞∑ k=0 h(bqk)l(bqk)(1 −qk+1)(α−1)qk )2 ≤ (√ M1 n1 − √ m1 N1 )2 ∞∑ k=0 h(bqk)l(bqk)(1 −qk+1)(α−1)qk ∞∑ k=0 l2(bqk)(1 −qk+1)(α−1)qk. From (2.4), we obtain Jαq h 2(b)Jαq l 2(b) − ( Jαq (h(b)l(b)) )2 ≤ (√ M1 n1 − √ m1 N1 )2 Jαq (h(b)l(b))J α q l 2(b). Lemma 3 is thus proved. � Proof of Theorem 3: Define (3.19) Q(τ,ρ) = (f(τ) −f(ρ))(g(τ) −g(ρ)) Multiplying (3.19) by (b−qτ)(α−1)(b−qρ)(α−1) Γ2q(α) and double integrating with respect to τ and ρ from 0 to b, we get 1 Γ2q(α) ∫ b 0 ∫ b 0 (b−qτ)(α−1)(b−qρ)(α−1)Q(τ,ρ)dqτdqρ(3.20) = 2 bα Γq(α + 1) Jαq (f(b)g(b)) − 2J α q f(b)J α q g(b). 56 BRAHIM, TAF AND NEFZI On the other hand, using the Cauchy-Schwartz inequality we get∣∣∣∣∣ 1Γ2q(α) ∫ b 0 ∫ b 0 (b−qτ)(α−1)(b−qρ)(α−1)Q(τ,ρ)dqτdqρ ∣∣∣∣∣ ≤ [ 1 Γ2q(α) ∫ b 0 ∫ b 0 (b−qτ)(α−1)(b−qρ)(α−1)(f(τ) −f(ρ))2dqτdqρ ]1 2 × [ 1 Γ2q(α) ∫ b 0 ∫ b 0 (b−qτ)(α−1)(b−qρ)(α−1)(g(τ) −g(ρ))2dqτdqρ ]1 2 . Then, ∣∣∣∣∣ 1Γ2q(α) ∫ b 0 ∫ b 0 (b−qτ)(α−1)(b−qρ)(α−1)Q(τ,ρ)dqτdqρ ∣∣∣∣∣(3.21) ≤ 2 [ bα Γq(α + 1) Jαq f 2(b) − ( Jαq f(b) )2]12 ×[ bα Γq(α + 1) Jαq g 2(b) − ( Jαq g(b) )2]12 Using Lemma 3, we get (3.22) bα Γq(α + 1) Jαq f 2(b) − ( Jαq f(b) )2 ≤ (√M −√m)2 bα Γq(α + 1) ( Jαq f(b) ) and (3.23) bα Γq(α + 1) Jαq g 2(b) − ( Jαq g(b) )2 ≤ (√N −√n)2 bα Γq(α + 1) ( Jαq g(b) ) . Using (3.20), (3.22) and (3.23), we deduce the desired inequality (3.16). Theorem 3 is thus proved. Theorem 4. Let f and g be two positive functions defined on [0,∞) satisfying the condition (3.15). Then for all α > 0, b > 0, we have (3.24)∣∣∣∣ bαΓq(α + 1)Jαq (f(b)g(b)) −Jαq f(b)Jαq g(b) ∣∣∣∣ ≤ (M −m)(N −n) 4 √ mMnN Jαq f(b)J α q g(b). To prove Theorem 4 we need the following result: Lemma 4. Let h and l be two positive functions on [0,∞) such that the condition (3.17). Then for all α > 0, b > 0, we have (3.25) Jαq h 2(b)Jαq l 2(b) ≤ (MN + mn)2 4nmNM (Jαq h(b)l(b)) 2 Proof. Using Grueb-Reinboldt inequality (1.5), we obtain( ∞∑ k=0 h2(bqk)(1 −qk+1)α−1qk )( ∞∑ k=0 l2(bqk)(1 −qk+1)α−1qk ) ≤ (MN + mn)2 4nmNM ( ∞∑ k=0 h(bqk)l(bqk)(1 −qk+1)α−1qk )2 (3.26) NEW INTEGRAL INEQUALITIES IN QUANTUM CALCULUS 57 Which implies that (3.27) (Jαq h 2(b))(Jαq l 2(b)) (Jαq h(b)l(b)) 2 ≤ (MN + mn)2 4nmNM Lemma 4 is thus proved. � Proof of Theorem 4: Using Lemma 4, we get bα Γq(α + 1) Jαq f 2(b) ≤ (M + m)2 4mM (Jαq f(b)) 2 thus, (3.28) bα Γq(α + 1) Jαq f 2(b) − (Jαq f(b)) 2 ≤ (M −m)2 4mM (Jαq f(b)) 2 By the same, we obtain (3.29) bα Γq(α + 1) Jαq g 2(b) − (Jαq g(b)) 2 ≤ (N −n)2 4nN (Jαq g(b)) 2 Using (3.20), (3.28) and (3.29), we deduce the desired inequality (3.24). Theorem 4 is thus proved. References [1] Anber. A and Dahmani. Z., New integral results using Pólya-Szegö inequalities, ACTA et Comm. Univ. Tari de Math. 17 (2) (2013), 171-178. [2] Brahim. K and Taf. S., On some fractional q-integral inequalities, Malaya Journal of Matem- atik 3(1)(2013), 21-26. [3] Brahim. K and Taf. S., Some Fracional Intehral Inequalities In Quantum Calculus, Journal of Fractional Calculus and Application. 4(2)(2013), 245-250. [4] Dahmani. Z., Tabahrit. L and Taf.S., New generalisation of Grüss inequality using Riemann- Liouville fractional integrals, Bull. Math. Anal. Appl. 2(2010), 93-99. [5] Dragomir. S.S., Some integral inequalities of Grüss type, Indian J.Pure Apll. Math. 31(2000),397-415. [6] Dragomir. S.S. and Diamond. N.T., Integral inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results,East Asian Math. J.19 (2003), 27-39. [7] Gasper. G and Rahman. R., Basic Hypergeometric Series, 2nd Edition, (2004), Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge. [8] Gauchman. H., Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2-3)(2004), 281- 300. [9] Grueb. W and Rheinboldt. W., On generalisation of an inequality of L.V. Kantrovich, Proc. Amer. Math. Soc., 10 (1959), 407-415. [10] Grüss. G., Uber das maximum des absoluten Betrages von 1/(b − a) ∫ b a f(x)g(x)dx − 1/(b − a)2 ∫ b a f(x)dx ∫ b a g(x)dx, Math.Z.39(1)(1935), 215-226. [11] Jackson. F.H., On a q-Definite Integrals. Quarterly Journal of Pure and Applied Mathematics 41, 1910, 193-203. [12] Klamkin. D.S and McLenaghan. J.E., An ellipse inequality, Math. Mag., 50 (1977), 261-263. [13] Kac. V.G and Cheung. P., Quantum Calculus, Universitext, Springer-Verlag, New York, (2002). [14] Mercer. A.McD and Mercer. P., New proofs of the Grüss inequality, Aust. J. Math. Anal. Apll. 1 (2) (2004), Article ID 12. [15] Mitrinović. D.S., Pečarić. J.E., Fink. A.M., Classical and New Inequalities in Analysis, in: Mathematics and its Applications, Vol. 61, Kluwer Acadmic Publishers, Dordrecht, The Netherlands, 1993. [16] Rajković. P.M and Marinkonvić. S.D., Fractional integrals and derivatives in q-calculus, Ap- plicable analysis and discrete mathematics, 1 (2007), 311-323. 58 BRAHIM, TAF AND NEFZI [17] Rajković. P., Marinkonvić. S.D and Stanković. M.S., The inequalities for some types of q- integrals, ArXiv. Math. CA, 8 May 2006. [18] Sarikaya. M.Z, Aktan. N and Yildirim. H., On weighted Čebyšev-Grüss type inequalities on time scales, J. Math. Inequal. 2(2008), 185-195. 1Departement of Mathematics, Faculty of Science of Tunis, Tunisia 2Department of Mathematics, Faculty SEI, UMAB University of Mostaganem, Alge- ria ∗Corresponding author