Analytic Solutions of Special Functional Equations © ,fgg  ,,)( Dxxxf  D .f g g ,f g ,g .f F XDU  X X )( H .H R, vu vu  [,] vu R[,:] vug ,R)(lim)(lim   wxgxg vxux [,] u [.,[ v [,][,:] vuvuf  [,])),(()( vuxxfgxg  [,] vu ;)(lim,)(lim uxfvxf vxux    ff   1 [;,] vu [;,] vu ,1},{N}),{\[,](  nnvuCg n  });{\[,]( vuCf n  },{\[,] vu [),,(] 2 vuCg  0)( g R  )(lim: 1 xf x })\{[,(])[,(] 21  vuCvuCf  ;1)(  f [),,(] 3 vuCg  0)( g R  )(lim: 1 xf x ,)(lim: 2 Rxf x     })[\{,(][),(] 32  vuCvuCf  ; )( )( 3 2 )( 2    g g f    g , f    ;1 f ,|: [,] ul gg  ;|: [,] vr gg   ],])}()(;[,[sup{))(()( 000 1 0  uxxgxgvxxggxf lrlr    [,[)}()(;],]inf{))(()( 000 1 0 vxxgxguxxggxf rlrl     .f  ,\[,] vux    ., xgx ,g g       .,,, 1111 xxxgxxgx    .1xxf             .:,\[,],1   fvuxxfgxgxg x  xfu ],,]  [,,[ v v . x [,[ v  xf ],,] u  .u [,0]  G   ,0[,,0][,0:]  gg ],0]  [,,[      .limlim 0   xgxg xx ,, Ghg  hg , , hg ff  hg ff , ,g h [.,0],,  Ghg hgghg  ,,  G ; hg ff  ;,|:,|:, [,[],0] 11 Ggggggghgh rlllrr      [,0[[,0[:    ,00   .gh  X )( XIzom  XXT :  X X  X ,X lD };;{   xXxD l r D };;{   xXxD r XDg ll : }.{\,))(()(  ll DxXIzomxg    XDg rr : }.{\,))(()(  rr DxXIzomxg    )()(  rl gg  ),()( rl gRgR  )( gR ,g )( xg g x         ., ,: rrll rl DxxgxgDxxgxg XDDDg    DDF : DxxFgxg  )),(()( F D  1 F FF   1 ;D ,)}()(;sup{))(()( 000 1 0 llrrlr DxxgxgDxxggxF   .)}()(;inf{))(()( 000 1 0 rrllrl DxxgxgDxxggxF   , ~ g g .       ,0~~,  wgzgwzH         .lim 0 0 ~ ~ lim,0, zw zwg zg w H zz          ,\[,] vu f . g ~ g g ~ [.,] vu f ~ , ~~~ fgg  f ~ f [.,] vu f ~ .                                           .0 !12 ~ !2 ~ ~~ ,0 !12 ~ !2 ~ ~~ 122 2 122 2                               zfzf k g k g zfgzfg zz k g k g zgzg kk k kk k km 2 m g ~   .g , ~~~ fgg      .lim  fzfz                           , ~~ !2/ ~ !2/ ~~~ 2/1 2 2 k k k zfzfkg zzkg z fzf                   .  f  ~ k2 f ~     .1 ~   ff □ V         .0Im,Re;,0Im,Re; ,0Im,Re;,0Im,Re;     zzVzVzzVzV zzVzVzzVzV rr ll   V   VfVf ~ : ~                      . ~ , ~ , ~ , ~ , ~~   lrlrrlrl VfVfVfVfVfVfVfVfidff  f ~ f f ~ ,0 x f □ W [,] vu f ~ .W       zf z 1 1 z   2 zzf                2 2 ~ 11       z f z z zf z .1 z ,1 1 2   n nan 1, na n ,11 a 2, na n     .2,   zzfzzf       zf z 1 . □    zzf           1 2 1 .1, n n n n n anzaz      ,2,1,0,1, 2 2 1 1       nmpapazazh nn n nm nn n n n  nn mp , ,       . ~ ~ 2 ~ zg zg zzf                      .0 2 ~ ~~~ 0 22 zzfzzf zg zzfzgzgzfg      0 zzf   ,zzf  □ g ~ U ,H  U , f ~                         ,~~2 ~ ,0Im ~ 0Im , ~~ , ~~~ 1    UgUgUUf zUfzU UUffUgUfg  .U □         .0,0,0,expexp   axxfxfxx aa        .0/:,0,expexp  abxxbfxfbxx  [,0][,0:] f     ;0,0  ff b/1 ;f ff   1 [;,0]   xf               [;,/1[,expexp];/1,0]inf ],/1,0],expexp[;,/1[sup 0000 0000   bxbxxbxxbxxf bxbxxbxxbxxf f f ~ [,,0]    , ~~ ,1/1 ~ idffbf   f ~ ,/1 b   . 2 12~ bz bz b zzf       bxxxg  exp 0   11 /1   bebg  ,,0 1b  1bg 0 [.,[ 1   b g , ~ g            .,1,,exp1~,0~ 11 Cznnbznbzbzgbg nnn     ,0~ 1  bg □ g [,,] vu , 1 b g    .[,,] vgugvu      fbzbzzzg ~ ,,0Re,exp ~ 1   f [,0]     HAAXX  , .H         .0,; ,,;,; 111 HhhVhXVX XUUVVUXVAXXAUUAHUX    X           ,,],/1[; ,[/1,[; 1 1 rlr l DDDIbvbVXVD IbbuVXVD          V .V ,: DDF         .,expexp DUUbFUFbUU  Ib 1 ;F F FF   1 ;D F lD rD rD ;lD F               ;,expexp;inf ,,expexp;sup 0000 0000 rl lr DUbUUbUUDUUF DUbUUbUUDUUF   ,AU  , 1 b      .2)2( 11   bUIbUIbUUF    bUUUg  exp ,, rl DD g [,] vu ,, 21 lDUU  .2,1,  jDU rj 21 , UU  1,0t                              .1 1 11 21 21 21 221 21 1 21 21 2121 UtgUgt ddxgtddxgt ddtxxtgtUUtg EE UU EE UU EE UU          rl DD ,  ,\ 1 IbDU l        0exp  IbUbUUg l    .\,0 1 IbDUUg rr   rl gg ,      ,:, 121 UFUgrUg ll  F f ,f           .,/1 2112 rDUvbUfUFU           ,/1,, 1Ubuttfgtg rl  ,1U                  .21 1 1 1 1 1 rrrUE U rUE U ll gRUgUfgdtfgdtgUg       .lr grgr  □ f        ,0,11   xeeee xfxfxx     .0,1ln   xexf x     .0Re,1ln ~   zezf z     [,0],1   xeexg xx .2ln ,f          .22 xxfxxfxxfxxf eeeeeeee     ,2ln,0   xee xxf □ f ~        2 2 ~ ,1, ~~~         z z zgzzfgzg   . 1 ~   z z zf