International Journal of Analysis and Applications ISSN 2291-8639 Volume 8, Number 2 (2015), 104-109 http://www.etamaths.com SOME REMARKS CONCERNING THE JACOBI-DUNKL TRANSFORM IN THE SPACE Lp(R,Aα,β(t)dt) R. DAHER, S. EL OUADIH∗ AND A. BELKHADIR Abstract. In this paper, using a generalized Jacobi-Dunkl translation oper- ator, we obtain a generalization of Titchmarsh’s theorem for the Dunkl trans- form for functions satisfying the (φ,p)-Lipschitz Jacobi-Dunkl condition in the space Lp(R,Aα,β(t)dt),α ≥ β ≥ −12 ,α 6= −1 2 . 1. INTRODUCTION AND PRELIMINARIES Titchmarsh’s [8,Theorem 85] characterized the set of functions in L2(R) satisfy- ing the Cauchy-Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namely we have Theorem 1.1. [8] Let α ∈ (0, 1) and assume that f ∈ L2(R). Then the fol- lowing are equivalents (a) ‖f(t + h) −f(t)‖ = 0(hα), as h → 0 (b) ∫ |λ|≥r |f̂(λ)|2dλ = O(r−2α) as r →∞, where f̂ stand for the Fourier transform of f. In this paper, we prove a generalization of Theorem 1.1 for the Jacobi-Dunkl trans- form for functions satisfying the (φ,p)-Lipschitz Jacobi-Dunkl condition in the space Lp(R,Aα,β(t)dt), 1 < p ≤ 2. For this purpose, we use the generalized Jacobi-Dunkl translation operator. In this section, we recapitulate from [1,2,3,5,6] some results related to the harmonic analysis associated with Jacobi-Dunkl operator Λα,β. The Jacobi-Dunkl function with parameters (α,β),α ≥ β ≥ −1 2 ,α 6= −1 2 , defined by the formula: ∀x ∈ R,ψα,βλ (x) =   ϕα,βµ (x) − i λ d dx ϕα,βµ (x) if λ ∈ C\{0} 1 if λ = 0 with λ2 = µ2 + ρ2, ρ = α + β + 1 and ϕα,βµ is the Jacobi function given by: ϕα,βµ (x) = F ( ρ + iµ 2 , ρ− iµ 2 ,α + 1,−(sinh(x))2 ) , 2010 Mathematics Subject Classification. 65R10. Key words and phrases. Jacobi-Dunkl operator, Jacobi-Dunkl transform, generalized Jacobi- Dunkl translation. c©2015 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 104 GELFAND TRIPLE ISOMORPHISMS 105 F is the Gausse hypergeometric function (see [1,7]). ψ α,β λ is the unique C ∞-solution on R of the differentiel-difference equation  Λα,βU = iλU ,λ ∈ C U(0) = 1 where Λα,β is the Jacobi-Dunkl operator given by: Λα,βU(x) = dU(x) dx + [(2α + 1) coth x + (2β + 1) tanh x] × U(x) −U(−x) 2 ]. The operator Λα,β is a particular case of the operator D given by DU(x) = dU(x) dx + A′(x) A(x) × ( U(x) −U(−x) 2 ) , where A(x) = |x|2α+1B(x), and B a function of class C∞ on R, even and positive. The operator Λα,β corresponds to the function A(x) = Aα,β(x) = 2 ρ(sinh |x|)2α+1(cosh |x|)2β+1. Using the relation d dx ϕα,βµ (x) = − µ2 + ρ2 4(α + 1) sinh(2x)ϕα+1,β+1µ (x), the function ψ α,β λ can be written in the form above (see [2]) ∀x ∈ R,ψα,βλ (x) = ϕ α,β µ (x) + i λ 4(α + 1) sinh(2x)ϕα+1,β+1µ (x). Denote L p α,β(R) = L p α,β(R,Aα,β(t)dt), 1 < p ≤ 2, the space of measurable functions f on R such that ‖f‖p,α,β = (∫ R |f(t)|pAα,β(t)dt )1/p < +∞. Using the eigenfunctions ψ α,β λ of the operator Λα,β called the Jacobi-Dunkl kernels, we define the Jacobi-Dunkl transform by Fα,βf(λ) = ∫ R f(t)ψ α,β λ (t)Aα,β(t)dt, λ ∈ R, and the inversion formula by f(t) = ∫ R Fα,βf(λ)ψ α,β −λ (t)dσ(λ), where dσ(λ) = |λ| 8π √ λ2 −ρ2|Cα,β( √ λ2 −ρ2)| IR\]−ρ,ρ[(λ)dλ. Here, Cα,β(µ) = 2ρ−iµΓ(α + 1)Γ(iµ) Γ( 1 2 (ρ + iµ))Γ( 1 2 (α−β + 1 + iµ)) , µ ∈ C\(iN) and IR\]−ρ,ρ[ is the characteristic function of R\] −ρ,ρ[. The Jacobi-Dunkl transform is a unitary isomorphism from L2α,β(R) onto L 2(R,dσ(λ)), i.e. ‖f‖2,α,β = ‖Fα,β(f)‖L2(R,dσ(λ)).(1) 106 DAHER, OUADIH AND BELKHADIR Plancherel’s theorem (1) and the Marcinkiewics interpolation theorem (see [8]) we get for f ∈ Lpα,β(R) with 1 < p ≤ 2 and q such that 1 p + 1 q = 1, ‖Fα,β(f)‖Lq(R,dσ(λ)) ≤ K‖f‖p,α,β,(2) where K is a positive constant (see [6]). The operator of Jacobi-Dunkl translation is defined by Txf(y) = ∫ R f(z)dνα,βx,y (z), ∀x,y ∈ R where να,βx,y (z),x,y ∈ R are the signed measures given by dνα,βx,y (z) =   Kα,β(x,y,z)Aα,β(z)dz if x,y ∈ R∗ δx if y = 0 δy if x = 0 Here, δx is the Dirac measure at x. And, Kα,β(x,y,z) = Mα,β(sinh(|x|) sinh(|y|) sinh(|z|))−2αIIx,y × ∫ π 0 ρθ(x,y,z) × (gθ(x,y,z)) α−β−1 + sin 2β θdθ Ix,y = [−|x|− |y|,−||x|− |y||] ∪ [||x|− |y||, |x| + |y|] ρθ(x,y,z) = 1 −σθx,y,z + σ θ z,x,y + σ θ z,y,x ∀z ∈ R,θ ∈ [0,π],σθx,y,z =   cosh(x)+cosh(y)−cosh(z) cos(θ) sinh(x) sinh(y) ,if xy 6= 0 0 ,if xy = 0 gθ(x,y,z) = 1 − cosh2(x) − cosh2(y) − cosh2(z) + 2 cosh(x) cosh(y) cosh(z) cos θ t+ =   t ,if t > 0 0 ,if t ≤ 0 and, Mα,β =   2−2ρΓ(α+1)√ πΓ(α−β)Γ(β+ 1 2 ) ,if α > β 0 ,if α = β In [2], we have Fα,β(Thf)(λ) = ψ α,β λ (h)Fα,β(f)(λ).(3) For α ≥ −1 2 , we introduce the Bessel normalized function of the first kind defined by jα(z) = Γ(α + 1) ∞∑ n=0 (−1)n(z 2 )2n n!Γ(n + α + 1) , z ∈ C. Moreover, we see that lim z→0 jα(z) − 1 z2 6= 0, by consequence, there exists C1 > 0 and η > 0 satisfying |z| ≤ η ⇒|jα(z) − 1| ≥ C1|z|2.(4) GELFAND TRIPLE ISOMORPHISMS 107 Lemma 1.1. Let α ≥ β ≥ −1 2 ,α 6= −1 2 . Then for |ν| ≤ ρ, there exists a positive constant C2 such that |1 −ϕα,βµ+iν(t)| ≥ C2|1 − jα(µt)|. Proof. (See[4],Lemma 9). 2. MAIN RESULT In this section we give the main result of this paper. We need first to define (φ,p)-Lipschitz Jacobi-Dunkl class. Denote Nh by Nh = Th + T−h − 2I where I is the unit operator in the space L p α,β(R). Definition 2.1. A function f ∈ Lpα,β(R) is said to be in (φ,p)-Lipschitz Jacobi- Dunkl class, denoted by Lip(φ,p,α,β), if ‖Nhf‖p,α,β = O(φ(h)), as h → 0, where φ(t) is a continuous increasing function on [0,∞), φ(0) = 0 and φ(ts) = φ(t)φ(s) for all t,s ∈ [0,∞). Lemma 2.2. For f ∈ Lpα,β(R), then(∫ R 2q|ϕα,βµ (h) − 1| q|Fα,βf(λ)|qdσ(λ) )1 q ≤ K‖Nhf‖p,α,β where 1 p + 1 q = 1. Proof. We us formula (3), we conclude that Fα,β(Nhf)(λ) = (ψ α,β λ (h) + ψ α,β λ (−h) − 2)Fα,β(f)(λ), Since ψ α,β λ (h) = ϕ α,β µ (h) + i λ 4(α + 1) sinh(2h)ϕα+1,β+1µ (h), ψ α,β λ (−h) = ϕ α,β µ (−h) − i λ 4(α + 1) sinh(2h)ϕα+1,β+1µ (−h), and ϕα,βµ is even (see [2]), then Fα,β(Nhf)(λ) = 2(ϕα,βµ (h) − 1)Fα,β(f)(λ). By formula (2), we have the result. Theorem 2.3. Let f(x) belong to Lip(φ,p,α,β). Then∫ |λ|≥r |Fα,β(f)(λ)|qdσ(λ) = O(φ(r−q)), as r →∞, where 1 p + 1 q = 1. Proof. Assume that f ∈ Lip(φ,p,α,β), then we have ‖Nhf‖p,α,β = O(φ(h)), as h → 0. 108 DAHER, OUADIH AND BELKHADIR From Lemma 2.2, we have∫ R |ϕα,βµ (h) − 1| q|Fα,βf(λ)|qdσ(λ) ≤ Kq 2q ‖Nhf‖ q p,α,β By (4) and Lemma 1.1, we get∫ η 2h ≤|λ|≤η h |1−ϕα,βµ (h)| q|Fα,β(f)(λ)|qdσ(λ) ≥ C q 1C q 2 ∫ η 2h ≤|λ|≤η h |µh|2q|Fα,β(f)(λ)|qdσ(λ). From η 2h ≤ |λ| ≤ η h we have( η 2h )2 − ρ2 ≤ µ2 ≤ (η h )2 −ρ2 ⇒ µ2h2 ≥ η2 4 −ρ2h2. Take h ≤ η 3ρ , then we have µ2h2 ≥ C3 = C3(η). So,∫ η 2h ≤|λ|≤η h |1−ϕα,βµ (h)| q|Fα,β(f)(λ)|qdσ(λ) ≥ C q 1C q 2C q 3 ∫ η 2h ≤|λ|≤η h |Fα,β(f)(λ)|qdσ(λ). There exists then a positives constants C and K1 such that∫ η 2h ≤|λ|≤η h |Fα,β(f)(λ)|qdσ(λ) ≤ C ∫ R |1 −ϕα,βµ (h)| q|Fα,β(f)(λ)|qdσ(λ) ≤ K1φq(h) = K1φ(hq). For all 0 < h < η 3ρ . Then we have∫ r≤|λ|≤2r |Fα,β(f)(λ)|qdσ(λ) ≤ K2φ(r−q), r →∞, where K2 = K1φ(η q2−q). Furthermore, we obtain∫ |λ|≥r |Fα,β(f)(λ)|qdσ(λ) = (∫ r≤|λ|≤2r + ∫ 2r≤|λ|≤4r + ∫ 4r≤|λ|≤8r + · ·· ) |Fα,β(f)(λ)|qdσ(λ) ≤ K2φ(r−q) + K2φ((2r)−q) + K2φ((4r)−q) + · · · ≤ K2φ(r−q) + K2φ(2−q)φ(r−q) + K2φ((2−q)2)φ(r−q) + · · · ≤ K2φ(r−q)(1 + φ(2−q) + φ((2−q)2) + · · ·). We have φ(2−q) < 1, then∫ |λ|≥r |Fα,β(f)(λ)|qdσ(λ) ≤ K3φ(r−q), where K3 = K2(1 −φ(2−q))−1. Finally, we get∫ |λ|≥r |Fα,β(f)(λ)|qdσ(λ) = O(φ(r−q)), as r →∞. Thus, the proof is finished. GELFAND TRIPLE ISOMORPHISMS 109 References [1] Ben Mohamed. H and Mejjaoli. H, Distributional Jacobi-Dunkl transform and applications, Afr.Diaspora J.Math 1(2004), 24-46. [2] Ben Mohamed. H, The Jacobi-Dunkl transform on R and the convolution product on new space of distributions, Ramanujan J.21(2010), 145-175.. [3] Ben Salem. N and Ahmed Salem. A , Convolution structure associated with the Jacobi-Dunkl operator on R, Ramanuy J.12(3) (2006), 359-378. [4] Bray. W. O and Pinsky. M. A, Growth properties of Fourier transforms via module of conti- nuity , Journal of Functional Analysis.255(288), 2256-2285. [5] Chouchane. F, Mili. M and Trimche. K, Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R, J.Anal. Appl.1(4)(2003), 387-412. [6] Johansen. T. R, Remarks on the inverse cherednik-opdam transform on the real line, arxiv: 1502.01293v1 (2015). [7] Koornwinder. T. H , A new proof of a Paley-Wiener type theorems for the Jacobi transform , Ark.Math.13(1975), 145-159. [8] Titchmarsh. E. C, Introduction to the theory of Fourier integrals , Claredon, Oxford. (1948), Komkniga, Moscow, (2005). Departement of Mathematics, Faculty of Sciences Äın Chock, University Hassan II, Casablanca, Morocco ∗Corresponding author