International Journal of Analysis and Applications ISSN 2291-8639 Volume 8, Number 2 (2015), 123-129 http://www.etamaths.com (δ,γ)-JACOBI-DUNKL LIPSCHITZ FUNCTIONS IN THE SPACE L2(R,Aα,β(x)dx) R. DAHER, S. EL OUADIH∗ Abstract. Using a generalized Jacobi-Dunkl translation, we obtain an ana- log of Theorem 5.2 in Younis paper [7] for the Jacobi-Dunkl transform for functions satisfying the (δ,γ)-Jacobi-Dunkl Lipschitz condition in the space L2(R,Aα,β(x)dx),α ≥ β ≥ −12 ,α 6= −1 2 . 1. Introduction and Preliminaries Younis ([7], Theorem 5.2) characterized the set of functions in L2(R) satisfying the Dini-Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely we have the following statement. Theorem 1.1. [7] Let f ∈ L2(R). Then the following are equivalents: (a) ‖f(x + h) −f(x)‖ = O ( hη (log 1 h )γ ) , as h → 0, 0 < η < 1,γ > 0 (b) ∫ |λ|≥r |f̂(λ)|2dλ = O ( r−2η (log r)2γ ) , as r →∞, where f̂ stand for the Fourier transform of f. In this paper, we obtain an analog of Theorem 1.1 for the Jacobi-Dunkl transform on the real line. For this purpose, we use a generalized Jacobi-Dunkl translation operator. In this section , we recapitulate from [1,2,3,5] some results related to the harmonic analysis associated with Jacobi-Dunkl operator Λα,β. The Jacobi-Dunkl function with parameters (α,β),α ≥ β ≥ −1 2 ,α 6= −1 2 , defined by the formula ∀x ∈ R,ψα,βλ (x) =   ϕα,βµ (x) − i λ d dx ϕα,βµ (x) if λ ∈ C\{0} 1 if λ = 0, with λ2 = µ2 + ρ2, ρ = α + β + 1 and ϕα,βµ is the Jacobi function given by ϕα,βµ (x) = F ( ρ + iµ 2 , ρ− iµ 2 ,α + 1,−(sinh(x))2 ) , 2010 Mathematics Subject Classification. 65R10. Key words and phrases. Jacobi-Dunkl operator, Jacobi-Dunkl transform, generalized Jacobi- Dunkl translation. c©2015 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 123 124 DAHER AND OUADIH F is the Gausse hypergeometric function (see [1,6]). ψ α,β λ is the unique C ∞-solution on R of the differential-difference equation  Λα,βU = iλU ,λ ∈ C U(0) = 1, where Λα,β is the Jacobi-Dunkl operator given by Λα,βU(x) = dU(x) dx + [(2α + 1) coth x + (2β + 1) tanh x] × U(x) −U(−x) 2 ]. The operator Λα,β is a particular case of the operator D given by DU(x) = dU(x) dx + A′(x) A(x) × ( U(x) −U(−x) 2 ) , where A(x) = |x|2α+1B(x) and B a function of class C∞ on R, even and positive. The operator Λα,β corresponds to the function A(x) = Aα,β(x) = 2 ρ(sinh |x|)2α+1(cosh |x|)2β+1. Using the relation d dx ϕα,βµ (x) = − µ2 + ρ2 4(α + 1) sinh(2x)ϕα+1,β+1µ (x), the function ψ α,β λ can be written in the form above (see [2]) ψ α,β λ (x) = ϕ α,β µ (x) + i λ 4(α + 1) sinh(2x)ϕα+1,β+1µ (x), x ∈ R. Denote L2α,β(R) = L 2 α,β(R,Aα,β(x)dx) the space of measurable functions f on R such that ‖f‖L2 α,β (R) = (∫ R |f(x)|2Aα,β(x)dx )1/2 < +∞. Using the eigenfunctions ψ α,β λ of the operator Λα,β called the Jacobi-Dunkl kernels , we define the Jacobi-Dunkl transform of a function f ∈ L2α,β(R) by Fα,βf(λ) = ∫ R f(x)ψ α,β λ (x)Aα,β(x)dx, λ ∈ R, and the inversion formula f(x) = ∫ R Fα,βf(λ)ψ α,β −λ (x)dσ(λ), where dσ(λ) = |λ| 8π √ λ2 −ρ2|Cα,β( √ λ2 −ρ2)| IR\]−ρ,ρ[(λ)dλ. Here, Cα,β(µ) = 2ρ−iµΓ(α + 1)Γ(iµ) Γ( 1 2 (ρ + iµ))Γ( 1 2 (α−β + 1 + iµ)) , µ ∈ C\(iN) and IR\]−ρ,ρ[ is the characteristic function of R\] −ρ,ρ[. The Jacobi-Dunkl transform is a unitary isomorphism from L2α,β(R) onto L 2(R,dσ(λ)), i.e. ‖f‖ := ‖f‖L2 α,β (R) = ‖Fα,β(f)‖L2(R,dσ(λ)).(1) STRONG METRIZABILITY FOR CLOSED OPERATORS 125 The operator of Jacobi-Dunkl translation is defined by Txf(y) = ∫ R f(z)dνα,βx,y (z), ∀x,y ∈ R where να,βx,y (z),x,y ∈ R are the signed measures given by dνα,βx,y (z) =   Kα,β(x,y,z)Aα,β(z)dz if x,y ∈ R∗ δx if y = 0 δy if x = 0 Here, δx is the Dirac measure at x. And, Kα,β(x,y,z) = Mα,β(sinh(|x|) sinh(|y|) sinh(|z|))−2αIIx,y × ∫ π 0 ρθ(x,y,z) × (gθ(x,y,z)) α−β−1 + sin 2β θdθ Ix,y = [−|x|− |y|,−||x|− |y||] ∪ [||x|− |y||, |x| + |y|] ρθ(x,y,z) = 1 −σθx,y,z + σ θ z,x,y + σ θ z,y,x ∀z ∈ R,θ ∈ [0,π],σθx,y,z =   cosh(x)+cosh(y)−cosh(z) cos(θ) sinh(x) sinh(y) ,if xy 6= 0 0 ,if xy = 0 gθ(x,y,z) = 1 − cosh2(x) − cosh2(y) − cosh2(z) + 2 cosh(x) cosh(y) cosh(z) cos θ t+ =   t ,if t > 0 0 ,if t ≤ 0 and, Mα,β =   2−2ρΓ(α+1)√ πΓ(α−β)Γ(β+ 1 2 ) ,if α > β 0 ,if α = β In [2], we have Fα,β(Thf)(λ) = ψ α,β λ (h)Fα,β(f)(λ); λ,h ∈ R.(2) For α ≥ −1 2 , we introduce the Bessel normalized function of the first kind defined by: jα(x) = Γ(α + 1) ∞∑ n=0 (−1)n(x 2 )2n n!Γ(n + α + 1) . Moreover, we see that lim x→0 jα(x) − 1 x2 6= 0, by consequence , there exists C1 > 0 and ε > 0 satisfying |x| ≤ ε ⇒|jα(x) − 1| ≥ C1|x|2(3) Lemma 1.2. (See[8],Lemma 3.1,Lemma 3.2) The following inequalities are valid for Jacobi functions ϕα,βµ (x) (c) |ϕα,βµ (x)| ≤ 1, (d) |1 −ϕα,βµ (x)| ≤ x2(µ2 + ρ2). 126 DAHER AND OUADIH Lemma 1.3. (See[4],Lemma 9) Let α ≥ β ≥ −1 2 ,α 6= −1 2 . Then for |ν| ≤ ρ, there exists a positive constant C2 such that |1 −ϕα,βµ+iν(x)| ≥ C2|1 − jα(µx)|. 2. Main Results In this section we give the main results of this paper. We need first to define (η,γ)-Jacobi-Dunkl Lipschitz class. Definition 2.1. Let 0 < η < 1 and γ > 0. A function f ∈ L2α,β(R) is said to be in the (η,γ)-Jacobi-Dunkl Lipschitz class, denoted by Lip(η,γ, 2), if ‖Thf(x) + T−hf(x) − 2f(x)‖ = O ( hη (log 1 h )γ ) , as h → 0. Lemma 2.2. For f ∈ L2α,β(R), then ‖Thf(x) + T−hf(x) − 2f(x)‖2 = 4 ∫ R |ϕα,βµ (h) − 1| 2|Fα,βf(λ)|2dσ(λ). Proof. We us formula (2), we conclude that Fα,β(Thf + T−hf − 2f)(λ) = (ψ α,β λ (h) + ψ α,β λ (−h) − 2)Fα,β(f)(λ), Since ψ α,β λ (h) = ϕ α,β µ (h) + i λ 4(α + 1) sinh(2h)ϕα+1,β+1µ (h), ψ α,β λ (−h) = ϕ α,β µ (−h) − i λ 4(α + 1) sinh(2h)ϕα+1,β+1µ (−h), and ϕα,βµ is even (see [2]), then Fα,β(Thf + T−hf − 2f)(λ) = 2(ϕα,βµ (h) − 1)Fα,β(f)(λ). By Parseval’s identity (formula (1)), we have the result. Theorem 2.3. Let 0 < η < 1 , γ > 0 and f ∈ L2α,β(R). Then the following conditions are equivalents (i) f ∈ Lip(η,γ, 2) (ii) ∫ |λ|≥r |Fα,βf(λ)|2dσ(λ) = O ( r−2η (log r)2γ ) , as r →∞. Proof. (i) ⇒ (ii). Assume that f ∈ Lip(η,γ, 2) . Then we have ‖Thf(x) + T−hf(x) − 2f(x)‖ = O ( hη (log 1 h )γ ) , as h → 0 From Lemma 2.2, we have ‖Thf(x) + T−hf(x) − 2f(x)‖2 = 4 ∫ R |ϕα,βµ (h) − 1| 2|Fα,βf(λ)|2dσ(λ). By (3) and Lemma 1.3, we get∫ ε 2h ≤|λ|≤ε h |1−ϕα,βµ (h)| 2|Fα,β(f)(λ)|2dσ(λ) ≥ C21C 2 2 ∫ ε 2h ≤|λ|≤ε h |µh|4|Fα,β(f)(λ)|2dσ(λ). STRONG METRIZABILITY FOR CLOSED OPERATORS 127 From ε 2h ≤ |λ| ≤ ε h we have( ε 2h )2 − ρ2 ≤ µ2 ≤ (ε h )2 −ρ2 ⇒ µ2h2 ≥ ε2 4 −ρ2h2. Take h ≤ ε 3ρ , then we have µ2h2 ≥ C3 = C3(ε). So,∫ ε 2h ≤|λ|≤ε h |1−ϕα,βµ (h)| 2|Fα,β(f)(λ)|2dσ(λ) ≥ C21C 2 2C 2 3 ∫ ε 2h ≤|λ|≤ε h |Fα,β(f)(λ)|2dσ(λ). There exists then a positive constant C4 such that∫ ε 2h ≤|λ|≤ε h |Fα,β(f)(λ)|2dσ(λ) ≤ C4 ∫ R |1 −ϕα,βµ (h)| 2|Fα,β(f)(λ)|2dσ(λ) = O ( h2η (log 1 h )2γ ) . We obtain ∫ r≤|λ|≤2r |Fα,β(f)(λ)|2dσ(λ) ≤ C r−2η (log r)2γ , where C is a positive constant. Now,∫ |λ|≥r |Fα,β(f)(λ)|2dσ(λ) = ∞∑ i=0 ∫ 2ir≤|λ|≤2i+1r |Fα,β(f)(λ)|2dσ(λ) ≤ C ( r−2η (log r)2γ + (2r)−2η (log 2r)2γ + (4r)−2η (log 4r)2γ + · · · ) ≤ C r−2η (log r)2γ ( 1 + 2−2η + (2−2η)2 + (2−2η)3 + · · · ) ≤ Kη r−2η (log r)2γ , where Kη = C(1 − 2−2η)−1 since 2−2η < 1. Consequently∫ |λ|≥r |Fα,βf(λ)|2dσ(λ) = O ( r−2η (log r)2γ ) , as r →∞. (ii) ⇒ (i). Suppose now that∫ |λ|≥r |Fα,βf(λ)|2dλ = O ( r−2η (log r)2γ ) , as r →∞, and write ∫ R |1 −ϕα,βµ (h)| 2|Fα,β(f)(λ)|2dσ(λ) = I1 + I2 where I1 = ∫ |λ|< 1 h |1 −ϕα,βµ (h)| 2|Fα,β(f)(λ)|2dσ(λ), I2 = ∫ |λ|≥1 h |1 −ϕα,βµ (h)| 2|Fα,β(f)(λ)|2dσ(λ). 128 DAHER AND OUADIH Firstly, we use the formula |ϕα,βµ (h)| ≤ 1 and I2 ≤ 4 ∫ |λ|≥1 h |Fα,β(f)(λ)|2dσ(λ) = O ( h2η (log 1 h )2γ ) .(4) Set φ(λ) = ∫ ∞ λ |Fα,β(f)(x)|2dσ(x). An integration by parts gives∫ x 0 λ2|Fα,β(f)(λ)|2dσ(λ) = ∫ x 0 −λ2φ′(λ)dλ = −x2φ(x) + 2 ∫ x 0 λφ(λ)dλ ≤ 2 ∫ x 0 λ1−2δ(log λ)−2γdλ = O(x2−2δ(log x)−2γ). We use the formula (d) of Lemma 1.2 I1 ≤ ∫ |λ|< 1 h |1 −ϕα,βµ (h)||Fα,β(f)(λ)| 2dσ(λ) ≤ ∫ |λ|< 1 h (µ2 + ρ2)h2|Fα,β(f)(λ)|2dσ(λ) ≤ h2 ∫ |λ|< 1 h λ2|Fα,β(f)(λ)|2dσ(λ) = O ( h2h−2+2η ( log 1 h )−2γ) .. Hence, I1 = O ( h2η (log 1 h )2γ ) .(5) Finally, we conclude from (4) and (5) that∫ R |1 −ϕα,βµ (h)| 2|Fα,β(f)(λ)|2dσ(λ) = O ( h2η (log 1 h )2γ ) . And this ends the proof. References [1] Ben Mohamed. H and Mejjaoli. H, Distributional Jacobi-Dunkl transform and applications, Afr.Diaspora J.Math 1(2004), 24-46. [2] Ben Mohamed. H, The Jacobi-Dunkl transform on R and the convolution product on new space of distributions, Ramanujan J.21(2010), 145-175.. [3] Ben Salem. N and Ahmed Salem. A , Convolution structure associated with the Jacobi-Dunkl operator on R, Ramanuy J.12(3) (2006), 359-378. [4] Bray. W. O and Pinsky. M. A, Growth properties of Fourier transforms via module of conti- nuity , Journal of Functional Analysis.255(288), 2256-2285. [5] Chouchane. F, Mili. M and Trimche. K, Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R, J.Anal. Appl.1(4)(2003), 387-412. STRONG METRIZABILITY FOR CLOSED OPERATORS 129 [6] Koornwinder. T. H, Jacobi functions and analysis on noncompact semi-simple Lie groups.in: Askey.RA, Koornwinder. T. H and Schempp.W(eds) Special Functions: Group theatrical aspects and applications.D.Reidel, Dordrecht (1984). [7] Younis . M. S, Fourier transforms of Dini-Lipschitz functions. Int. J. Math. Math. Sci. (1986), 9 (2), 301C312. doi:10.1155/S0161171286000376 [8] Platonov. S, Approximation of functions in L2-metric on noncompact rank 1 symmetric space . Algebra Analiz .11(1) (1999), 244-270. Departement of Mathematics, Faculty of Sciences Äın Chock, University Hassan II, Casablanca, Morocco ∗Corresponding author