International Journal of Analysis and Applications ISSN 2291-8639 Volume 9, Number 2 (2015), 90-95 http://www.etamaths.com TITCHMARSH’S THEOREM FOR THE CHEREDNIK-OPDAM TRANSFORM IN THE SPACE L2α,β(R) S. EL OUADIH∗ AND R. DAHER Abstract. In this paper, we prove the generalization of Titchmarshs theorem for the Cherednik- Opdam transform for functions satisfying the (ψ, 2)-Cherednik-Opdam Lipschitz condition in the space L2 α,β (R). 1. Introduction and Preliminaries In [3], E. C. Titchmarsh’s characterizes the set of functions in L2(R) satisfying the Cauchy- Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namely we have Theorem 1.1 [3] Let δ ∈ (0, 1) and assume that f ∈ L2(R). Then the following are equivalents (i) ‖f(t + h) −f(t)‖ = O(hδ), as h → 0, (ii) ∫ |λ|≥r |f̂(λ)|2dλ = O(r−2δ) as r →∞, where f̂ stands for the Fourier transform of f. In this paper, we prove the generalization of Theorem 1.1 for the Cherednik-Opdam transform for functions satisfying the (ψ, 2)-Cherednik-Opdam Lipschitz condition in the space L2α,β(R). For this purpose, we use the generalized translation operator. In this section, we develop some results from harmonic analysis related to the differential- difference operator T(α,β). Further details can be found in [1] and [2]. In the following we fix parameters α, β subject to the constraints α ≥ β ≥−1 2 and α > −1 2 . Let ρ = α + β + 1 and λ ∈ C. The Opdam hypergeometric functions G(α,β)λ on R are eigenfunc- tions T(α,β)G (α,β) λ (x) = iλG (α,β) λ (x) of the differential-difference operator T(α,β)f(x) = f′(x) + [(2α + 1) coth x + (2β + 1) tanh x] f(x) −f(−x) 2 −ρf(−x), that are normalized such that G (α,β) λ (0) = 1. In the notation of Cherednik one would write T(α,β) as T(k1 + k2)f(x) = f ′(x) + { 2k1 1 + e−2x + 4k2 1 −e−4x } (f(x) −f(−x)) − (k1 + 2k2)f(x), with α = k1 +k2− 12 and β = k2− 1 2 . Here k1 is the multiplicity of a simply positive root and k2 the (possibly vanishing) multiplicity of a multiple of this root. By [1] or [2], the eigenfunction 2010 Mathematics Subject Classification. 46L08. Key words and phrases. Cherednik-Opdam operator; Cherednik-Opdam transform; generalized translation. c©2015 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 90 TITCHMARSH’S THEOREM FOR THE CHEREDNIK-OPDAM TRANSFORML SPECTRUM 91 G (α,β) λ is given by G (α,β) λ (x) = ϕ α,β λ (x) − 1 ρ− iλ ∂ ∂x ϕ α,β λ (x) = ϕ α,β λ (x) + ρ 4(α + 1) sinh(2x)ϕ α+1,β+1 λ (x), where ϕ α,β λ (x) =2 F1( ρ+iλ 2 ; ρ−iλ 2 ; α + 1;−sinh2 x) is the classical Jacobi function. Lemma 1.2. [4] The following inequalities are valids for Jacobi functions ϕ α,β λ (x) (i) |ϕα,βλ (x)| ≤ 1. (ii) 1 −ϕα,βλ (x) ≤ x 2(λ2 + ρ2). (iii) there is a constant c > 0 such that 1 −ϕα,βλ (x) ≥ c, for λx ≥ 1. Denote L2α,β(R), the space of measurable functions f on R such that ‖f‖2,α,β = (∫ R |f(x)|2Aα,β(x)dx )1/2 < +∞, where Aα,β(x) = (sinh |x|)2α+1(cosh |x|)2β+1. The Cherednik-Opdam transform of f ∈ Cc(R) is defined by Hf(λ) = ∫ R f(x)G (α,β) λ (−x)Aα,β(x)dx for all λ ∈ C. The inverse transform is given as H−1g(x) = ∫ R g(λ)G (α,β) λ (x) ( 1 − ρ iλ ) dλ 8π|cα,β(λ)|2 , here cα,β(λ) = 2ρ−iλΓ(α + 1)Γ(iλ) Γ( 1 2 (ρ + iλ))Γ( 1 2 (α−β + 1 + iλ)) . The corresponding Plancherel formula was established in [1], to the effect that∫ R |f(x)|2Aα,β(x)dx = ∫ +∞ 0 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ), where f̌(x) := f(−x) and dσ is the measure given by dσ(λ) = dλ 16π|cα,β(λ)|2 . According to [2] there exists a family of signed measures µ (α,β) x,y such that the product formula G (α,β) λ (x)G (α,β) λ (y) = ∫ R G (α,β) λ (z)dµ (α,β) x,y (z), holds for all x,y ∈ R and λ ∈ C, where dµ(α,β)x,y (z) =   Kα,β(x,y,z)Aα,β(z)dz if xy 6= 0 dδx(z) if y = 0 dδy(z) if x = 0 and Kα,β(x,y,z) = Mα,β|sinh x. sinh y. sinh z|−2α ∫ π 0 g(x,y,z,χ) α−β−1 + × [1 −σχx,y,z + σ χ x,z,y + σ χ z,y,x + ρ β + 1 2 coth x. coth y. coth z(sin χ)2] × (sin χ)2βdχ 92 OUADIH AND DAHER if x,y,z ∈ R\{0} satisfy the triangular inequality ||x|−y|| < |z| < |x|+|y|, and Kα,β(x,y,z) = 0 otherwise. Here ∀x,y,z ∈ R,χ ∈ [0, 1],σχx,y,z =   cosh x+cosh y−cosh z cos χ sinh x sinh y if xy 6= 0 0 if xy = 0 and g(x,y,z,χ) = 1 − cosh2 x− cosh2 y. cosh2 z + 2 cosh x. cosh y. cosh z. cos χ. Lemma 1.3. [2] For all x,y ∈ R, we have (i) Kα,β(x,y,z) = Kα,β(y,x,z). (ii) Kα,β(x,y,z) = Kα,β(−x,z,y). (iii) Kα,β(x,y,z) = Kα,β(−z,y,−x). The product formula is used to obtain explicit estimates for the generalized translation op- erators τ(α,β)x f(y) = ∫ R f(z)dµ(α,β)x,y (z). It is known from [2] that Hτ(α,β)x f(λ) = G (α,β) λ (x)Hf(λ),(1.1) for f ∈ Cc(R). 2. Main Result In this section we give the main result of this paper. We need first to define (ψ, 2)-Cherednik- Opdam Lipschitz class. Denote Nh by Nh = τ (α,β) h + τ (α,β) −h − 2I, where I is the unit operator in the space L2α,β(R). Definition 2.1. A function f ∈ L2α,β(R) is said to be in the (ψ, 2)-Cherednik-Opdam Lip- schitz class, denoted by Lip(ψ, 2), if ‖Nhf(x)‖2,α,β = O(ψ(h)) as h → 0, where ψ is a continuous increasing function on [0,∞),ψ(0) = 0 , ψ(ts) = ψ(t)ψ(s) for all t,s ∈ [0,∞) and this function verify∫ 1/h 0 sψ(s−2)ds = O(h−2ψ(h2)), h → 0. Lemma 2.2. If f ∈ Cc(R), then Hτ̌(α,β)x f(λ) = G (α,β) λ (−x)Hf̌(λ).(2.1) Proof. For f ∈ Cc(R), we have Hτ̌(α,β)x f(λ) = ∫ R τ(α,β)x f(−y)G (α,β) λ (−y)Aα,β(y)dy = ∫ R τ(α,β)x f(y)G (α,β) λ (y)Aα,β(y)dy = ∫ R [∫ R f(z)Kα,β(x,y,z)Aα,β(z)dz ] G (α,β) λ (y)Aα,β(y)dy = ∫ R f(z) [∫ R G (α,β) λ (y)Kα,β(x,y,z)Aα,β(y)dy ] Aα,β(z)dz. TITCHMARSH’S THEOREM FOR THE CHEREDNIK-OPDAM TRANSFORML SPECTRUM 93 Since Kα,β(x,y,z) = Kα,β(−x,z,y), it follows from the product formula that Hτ̌(α,β)x f(λ) = G (α,β) λ (−x) ∫ R f(z)G (α,β) λ (z)Aα,β(z)dz = G (α,β) λ (−x) ∫ R f(−z)G(α,β)λ (−z)Aα,β(z)dz = G (α,β) λ (−x)Hf̌(λ). Lemma 2.3. For f ∈ L2α,β(R), then ‖Nhf(x)‖22,α,β = 4 ∫ +∞ 0 |ϕα,βλ (h) − 1| 2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ). Proof. From formulas (1) and (2), we have H(Nhf)(λ) = (G (α,β) λ (h) + G (α,β) λ (−h) − 2)H(f)(λ), and H(Ňhf)(λ) = (G (α,β) λ (−h) + G (α,β) λ (h) − 2)H(f̌)(λ). Since G (α,β) λ (h) = ϕ α,β λ (h) + ρ 4(α + 1) sinh(2h)ϕ α+1,β+1 λ (h), and ϕ α,β λ is even, then H(Nhf)(λ) = 2(ϕ α,β λ (h) − 1)H(f)(λ) and H(Ňhf)(λ) = 2(ϕ α,β λ (h) − 1)H(f̌)(λ). Now by Plancherel Theorem, we have the result. Theorem 2.4. Let f ∈ L2α,β(R). Then the following are equivalents (a) f ∈ Lip(ψ, 2), (b) ∫ +∞ r ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) = O(ψ(r−2)), as r →∞. Proof. (a) ⇒ (b) Let f ∈ Lip(ψ, 2). Then we have ‖Nhf(x)‖2,α,β = O(ψ(h)) as h → 0. From Lemma 2.2, we have ‖Nhf(x)‖22,α,β = 4 ∫ +∞ 0 |1 −ϕα,βλ (h)| 2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ. If λ ∈ [ 1 h , 2 h ], then λh ≥ 1 and (iii) of Lemma 1.2 implies that 1 ≤ 1 c2 |1 −ϕα,βλ (h)| 2. Then∫ 2 h 1 h ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) ≤ 1 c2 ∫ 2 h 1 h |1 −ϕα,βλ (h)| 2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) ≤ 1 c2 ∫ +∞ 0 |1 −ϕα,βλ (h)| 2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) ≤ 1 4c2 ‖Nhf(x)‖22,α,β = O(ψ(h2)). 94 OUADIH AND DAHER We obtain ∫ 2r r ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) ≤ Cψ(r−2), r →∞, where C is a positive constant. Now,∫ +∞ r ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) = ∞∑ i=0 ∫ 2i+1r 2ir ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) ≤ Cψ(r−2) ∞∑ i=0 (ψ(2−2))i ≤ CCδψ(r−2), where Cδ = (1 −ψ(2−2))−1 since ψ(2−2) < 1. Consequently ∫ +∞ r ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) = O(ψ(r−2)), as r →∞. (b) ⇒ (a). Suppose now that∫ +∞ r ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) = O(ψ(r−2)), as r →∞, and write ‖Nhf(x)‖22,α,β = 4(I1 + I2), where I1 = ∫ 1 h 0 |1 −ϕα,βλ (h)| 2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ, and I2 = ∫ +∞ 1 h |1 −ϕα,βλ (h)| 2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ. Firstly, we use the formula |ϕα,βλ (h)| ≤ 1 and I2 ≤ 4 ∫ +∞ 1 h ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ) = O(ψ(h2)), as h → 0. To estimate I1, we use the inequalities (i) and (ii) of Lemma 1.2 I1 = ∫ 1 h 0 |1 −ϕα,βλ (h)| 2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ ≤ 2 ∫ 1 h 0 |1 −ϕα,βλ (h)| ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ ≤ 2h2 ∫ 1 h 0 (λ2 + ρ2) ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ = I3 + I4, where I3 = 2h 2ρ2 ∫ 1 h 0 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ, and I4 = 2h 2 ∫ 1 h 0 λ2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ. Note that I3 ≤ 2h2ρ2 ∫ +∞ 0 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ = 2h2ρ2‖f‖22,α,β = O(ψ(h 2)), as h → 0. TITCHMARSH’S THEOREM FOR THE CHEREDNIK-OPDAM TRANSFORML SPECTRUM 95 For a while, we put φ(s) = ∫ +∞ s ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσ(λ). Using integration by parts, we find that h2 ∫ 1/h 0 λ2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ = h2 ∫ 1/h 0 −s2φ′(s)ds = h2 ( − 1 h2 φ( 1 h ) + 2 ∫ 1/h 0 sφ(s)ds ) = −φ( 1 h ) + 2h2 ∫ 1/h 0 sφ(s)ds. Since φ(s) = O(ψ(s−2)), we have sφ(s) = O(sψ(s−2)) and∫ 1/h 0 sφ(s)ds = O (∫ 1/h 0 sψ(s−2)ds ) = O(h−2ψ(h2)). Then h2 ∫ 1/h 0 λ2 ( |Hf(λ)|2 + |Hf̌(λ)|2 ) dσλ ≤ 2C1h2h−2ψ(h2), where C1 is a positive constant. Finally I4 = O(ψ(h 2)), which completes the proof of the theorem. � References [1] E. M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75C121. [2] J. P. Anker, F. Ayadi, and M. Sifi, Opdams hypergeometric functions: product formula and convolution structure in dimension 1, Adv. Pure Appl. Math. 3 (2012), no. 1, 11C44. [3] E. C. Titchmarsh , Introduction to the Theory of Fourier Integrals . Claredon , oxford, 1948, Komkni- ga.Moxow.2005. [4] S. S. Platonov, Approximation of functions in L2-metric on noncompact rank 1 symmetric space . Algebra Analiz .11(1) (1999), 244-270. Department of Mathematics, Faculty of Sciences Äın Chock, University Hassan II, Casablanca, Morocco ∗Corresponding author