International Journal of Analysis and Applications ISSN 2291-8639 Volume 9, Number 2 (2015), 142-150 http://www.etamaths.com CHARACTERIZATION OF (δ,γ)-DINI-LIPSCHITZ FUNCTIONS IN TERMS OF THEIR JACOBI-DUNKL TRANSFORMS A. BELKHADIR1,∗, A. ABOUELAZ2 AND R. DAHER3 Abstract. In this paper, we are going to define a generalized Dini-Lipschitz class and give a characterization for functions belonging to by means of an asymptotic estimating growth of the norm of their Jacobi-Dunkl transforms. 1. Introduction and Preliminaries Younis theorem 5.2 [3] characterizes the set of functions in L2(R) satisfying the Dini-Lipschitz condition by means of an asymptotic estimating growth of the norm of their Fourier transforms. i.e. Theorem 1.1. [3] Let δ ∈ (0, 1) , γ > 0 and f ∈ L2(R) . Then the following conditions are equivalents: (1) ‖f(t + h) −f(t)‖L2(R) = O ( hδ(log 1 h )−γ ) , as h → 0 ; (2) ∫ |λ|≥r |f̂(λ)|2dλ = O ( r−2δ(log r)−2γ ) , as r → +∞ . where f̂ is the Fourier transform of f . In the following, Let α,β and ρ denote 3 reals such that α ≥ β ≥ −1 2 , α 6= −1 2 and ρ = α + β + 1, Aα,β(x) = 2 ρ(sinh |x|)2α+1(cosh |x|)2β+1. In [1] we have established a characterization of functions f in L2(R,Aα,β(x)dx) satisfying a certain Lipschitz condition, namely the equivalence between the two following conditions: (1) ||∆hf|| = ||τhf + τ−hf − 2f||L2(R,Aα,β(x)dx) = O(h δ) , as h → 0; (2) ∫ |λ|≥r |Fα,β(f)(λ)|2dσ(λ) = O(r−2δ) , as r →∞ . where Fα,β(f) stands for the Jacobi-Dunkl transform of f, and τh is the related generalized translation operator . This result has been generalized in [2] by using the higher powers: Λrα,β and ∆khf = ∆h(∆ k−1 h f), r ∈ N, k ∈ N ∗ . In this way, we are going in section 3 to define a generalized Dini-Lipschitz class DLip[2, (δ,γ),k,r], δ ∈ (0, 1), γ > 0, and give a characterization for functions belonging to by means of an asymptotic estimating 2010 Mathematics Subject Classification. 47B36, 46E35. Key words and phrases. Younis theorem; Generalized Jacobi-Dunkl translation; Jacobi-Dunkl transform; Dini-Lipschitz class; Sobolev spaces. c©2015 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 142 CHARACTERIZATION OF (δ,γ)-DINI-LIPSCHITZ FUNCTIONS 143 growth of the norm of their Jacobi-Dunkl transforms, i.e. we show the equivalence of the two following conditions: (1) f ∈ DLip[2, (δ,γ),k,r] ; (2) ∫ ∞ s λ2r |Fα,β(f)(λ)| 2 dσα,β(λ) = O ( s−2δ(log s)−2γ ) , as s → +∞ . In the following section we recapitulate some results related to the harmonic analysis associated with the Jacobi-Dunkl operator Λα,β (see [4, 5, 6, 7, 9]). 2. Notations and Preliminaries Notations: • dσα,β(λ) = |λ| 8π √ λ2 −ρ2|Cα,β( √ λ2 −ρ2)| IR\]−ρ,ρ[(λ)dλ where, Cα,β(µ) = 2ρ−iµΓ(α + 1)Γ(iµ) Γ( 1 2 (ρ + iµ))Γ( 1 2 (α−β + 1 + iµ)) , µ ∈ C\ (iN) . and IΩ is the characteristic function of Ω . • Lp(Aα,β) (resp. Lp(σα,β) ,p ∈]0, +∞[ , the space of measurable functions g on R such that ||g||Lp(Aα,β) = (∫ R |g(t)|pAα,β(t)dt )1/p < +∞ . (resp. ||g||Lp(σα,β) = (∫ R |g(λ)|pdσα,β(λ) )1/p < +∞) . • D(R) the space of C∞-functions on R with compact support. • S(R) the usual Schwartz space of C∞-functions on R rapidly decreasing together with their derivatives, equipped with the topology of semi-norms Lm,n , (m,n) ∈ N2 , where Lm,n(f) = sup x∈R,0≤k≤n [ (1 + x2)m ∣∣∣∣ dkdxk f(x) ∣∣∣∣ ] < +∞. • S1(R) = {(cosh t)−2ρf; f ∈S(R)} . The topology of this space is given by the semi-norms L1m,n , (m,n) ∈ N2 , where L1m,n(f) = sup x∈R,0≤k≤n [ (cosh t)−2ρ(1 + x2)m ∣∣∣∣ dkdxk f(x) ∣∣∣∣ ] < +∞. • ( S1(R) )′ the topological dual of S1(R) . Now, we introduce the Jacobi-Dunkl Transform and its basic properties: The Jacobi-Dunkl function with parameters (α,β) , α ≥ β ≥ −1 2 ,α 6= −1 2 , is defined by : (1) ∀x ∈ R, ψ(α,β)λ (x) = { ϕ (α,β) µ (x) − i λ d dx ϕ (α,β) µ (x) , if λ ∈ C\{0}; 1 , if λ = 0. 144 BELKHADIR, ABOUELAZ AND DAHER with λ2 = µ2 + ρ2, ρ = α + β + 1 and ϕ (α,β) µ is the Jacobi function given by: (2) ϕ(α,β)µ (x) = F ( ρ + iµ 2 , ρ− iµ 2 ; α + 1,−(sinh x)2 ) , where F is the Gaussian hypergeometric function given by F(a,b,c,z) = ∞∑ m=0 (a)m(b)m (c)mm! zm , |z| < 1, a,b,z ∈ C and c /∈−N; (a)0 = 1, (a)m = a(a + 1)...(a + m− 1) . (see [4, 10, 11]). ψ (α,β) λ is the unique C ∞-solution on R of the differentiel-difference equation (3) { Λα,βu = iλu , λ ∈ C; u(0) = 1. where Λα,β is the Jacobi-Dunkl operator given by: Λα,βu(x) = du dx (x) + A′α,β(x) Aα,β(x) × u(x) −u(−x) 2 ; i.e. Λα,βu(x) = du dx (x) + [(2α + 1) coth x + (2β + 1) tanh x] × u(x) −u(−x) 2 . The function ψ (α,β) λ can be written in the form below (See [5]), (4) ψ (α,β) λ (x) = ϕ (α,β) µ (x) + i λ 4(α + 1) sinh(2x)ϕ(α+1,β+1)µ (x) , ∀x ∈ R , where λ2 = µ2 + ρ2 , ρ = α + β + 1. The Jacobi-Dunkl transform of a function f ∈ L1(Aα,β) is defined by : (5) Fα,β(f)(λ) = ∫ R f(x)ψ (α,β) −λ (x)Aα,β(x)dx, ∀λ ∈ R ; The inverse Jacobi-Dunkl transform of a function h ∈ L1(σα,β) is: (6) F−1α,β(h)(t) = ∫ R h(λ)ψ (α,β) λ (t)dσα,β(λ) . Fα,β is a topological isomorphism from S1(R) onto S(R) , and extends uniquely to a unitary isomorphism from L2(Aα,β) onto L 2(σα,β) . The Plancherel formula is given by (7) ‖f‖L2(Aα,β) = ‖Fα,β(f)‖L2(σα,β) . For f ∈S1(R) we have the following inversion formula (8) f(x) = ∫ R Fα,β(f)(λ)ψ (α,β) λ (x)dσα,β(λ) , ∀x ∈ R , and the relation (9) Fα,β(Λα,βf)(λ) = iλFα,β(f)(λ) . CHARACTERIZATION OF (δ,γ)-DINI-LIPSCHITZ FUNCTIONS 145 Let f ∈ L2(Aα,β) . For all x ∈ R the operator of Jacobi-Dunkl translation τx is defined by: (10) τxf(y) = ∫ R f(z)dνα,βx,y (z) , ∀ y ∈ R . where να,βx,y , x,y ∈ R are the signed measures given by (11) dνα,βx,y (z) =   Kα,β(x,y,z)Aα,β(z)dz , if x,y ∈ R∗; δx , if y = 0; δy , if x = 0. Here, δx is the Dirac measure at x. And Kα,β(x,y,z) = Mα,β(sinh(|x|) sinh(|y|) sinh(|z|))−2αIIx,y × ∫π 0 ρθ(x,y,z) ×(gθ(x,y,z)) α−β−1 + sin 2β θdθ. Ix,y = [−|x|− |y|,−||x|− |y||] ∪ [||x| + |y||, |x| + |y|] , ρθ(x,y,z) = 1 −σθx,y,z + σ θ z,x,y + σ θ z,y,x σθx,y,z =   cosh(x) + cosh(y) − cosh(z) cos(θ) sinh(x) sinh(y) , if xy 6= 0; 0 , if xy = 0. for all x,y,z ∈ R , θ ∈ [0,π]. gθ(x,y,z) = 1 − cosh2 x− cosh2 y − cosh2 z + 2 cosh x cosh y cosh z cos θ . t+ = { t , if t > 0; 0 , if t ≤ 0. and Mα,β =   2−2ρΓ(α + 1) √ πΓ(α−β)Γ(β + 1 2 ) , if α > β; 0 , if α = β. We have (12) Fα,β(τhf)(λ) = ψ α,β λ (h).Fα,β(f)(λ) ; h,λ ∈ R . Let g ∈ L2(σα,β) . Then the distribution Tgσα,β defined by (13) 〈Tgσα,β,ϕ〉 = ∫ R g(λ)ϕ(λ)dσα,β(λ) , ϕ ∈D(R) , belongs to S′(R) . Let f ∈ L2(Aα,β) . Then the distribution TfAα,β defined by (14) 〈TfAα,β,ϕ〉 = ∫ R f(x)ϕ(x)Aα,β(x)dx, ϕ ∈S1(R) , belongs to ( S1(R) )′ . Via the correspondance f 7→ TfAα,β , we identify L 2(Aα,β) as a subspace of( S1(R) )′ . 146 BELKHADIR, ABOUELAZ AND DAHER The jacobi-dunkl transform of a distribution T ∈ ( S1(R) )′ is defined by: (15) 〈Fα,β(T),ϕ〉 = 〈T,F−1α,β(ϕ̌)〉 , ϕ ∈S(R) , where ϕ̌ is given by ϕ̌(x) = ϕ(−x) . It is clear that Fα,β(T) ∈S′(R) . The jacobi-dunkl transform of a distribution defined by f ∈ L2(Aα,β) is given by the distribution TFα,β(f)σα,β ; i.e. (16) Fα,β(TfAα,β ) = TFα,β(f)σα,β . We identify the tempered distribution given by Fα,β(f) and the function Fα,β(f) . Let T ∈ ( S1(R) )′ and consider the distribution Λα,βT defined by (17) 〈Λα,β(T),ϕ〉 = −〈T, Λα,β(ϕ)〉 , for all ϕ ∈S1(R) . (Note that S1(R) is unvariant under Λα,β) . By using (9) it is easy to see that (18) Fα,β(Λα,β(T)) = iλFα,β(T) . For f ∈ L2(Aα,β) , we define the finite differences of first and higher order as follows: ∆1hf = ∆hf = τhf + τ−hf − 2f = (τh + τ−h − 2E)f; ∆khf = ∆h(∆ k−1 h )f = (τh + τ−h − 2E) kf , k = 2, 3, ...; where E is the unit operator in L2(Aα,β) . Lemma 2.1. The following inequalities are valids for Jacobi functions ϕα,βµ (h) (1) |ϕ(α,β)µ (h)| ≤ 1 ; (2) |1 −ϕ(α,β)µ (h)| ≤ h2λ2; where λ2 = µ2 + ρ2 . Proof. (See [12], Lemmas 3.1-3.2) � For α ≥ −1 2 , we introduce the Bessel normalized function of the first kind defined by jα(z) = Γ(α + 1) ∞∑ n=0 (−1)n(z 2 )2n n!Γ(n + α + 1) , z ∈ C. We see that lim z→0 jα(z) − 1 z2 6= 0 , by consequence, there exists c1 > 0 and η > 0 satisfying (19) |z| ≤ η ⇒ |jα(z) − 1| ≥ c1|z|2 . Lemma 2.2. Let α ≥ β ≥ −1 2 , α 6= −1 2 . Then for |υ| ≤ ρ , there exists a positive constant c2 such that |1 −ϕ(α,β)µ+iυ(t)| ≥ c2|1 − jα(µt)| . Proof. (See [8], Lemma 9) � CHARACTERIZATION OF (δ,γ)-DINI-LIPSCHITZ FUNCTIONS 147 3. Main Results We denote by W 2,k α,β , k ∈ N ∗ , the Sobolev space constructed by the operator Λα,β ; i.e. (20) W 2,k α,β = { f ∈ L2(Aα,β); Λ j α,βf ∈ L 2(Aα,β), j = 0, 1, 2, ...,k } ; where, Λ0α,βf = f, Λ 1 α,βf = Λα,βf , Λ r α,βf = Λα,β(Λ r−1 α,β f), r = 2, 3, ... Lemma 3.1. Let f ∈ W 2,kα,β , k ∈ N ∗ . Then∥∥∆khΛrα,βf∥∥2L2(Aα,β) = 22k ∫ R λ2r|1 −ϕµ(h)|2k|Fα,β(f)(λ)|2dσα,β(λ) , where r = 0, 1, ...,k. Proof. Using the eveness of ϕµ and formula (4) we get Fα,β(τhf + τ−hf − 2f)(λ = (ψ (α,β) λ (h) + ψ (α,β) λ (−h) − 2).Fα,β(f)(λ) = 2(ϕ(α,β)µ (h) − 1).Fα,β(f)(λ). and (21) Fα,β(∆khf)(λ) = 2 k(ϕ(α,β)µ (h) − 1) k.Fα,β(f)(λ). Furthermore, we obtain by the formula (18) (22) Fα,β(Λrα,βf)(λ) = (iλ) rFα,β(f)(λ) . Using the formulas (21) and (22) we get Fα,β(∆khΛ r α,βf)(λ) = 2 k(iλ)r.(ϕ(α,β)µ (h) − 1) k.Fα,β(f)(λ). By the Plancherel formula (7), we have the result. � Definition 3.2. Let δ ∈ (0, 1),γ > 0 and k ∈ N∗ . A function f ∈ W 2,kα,β is said to be in the (δ,γ)-Dini-Lipschitz class, denoted by DLip[2, (δ,γ),k,r] , if∥∥∆khΛrα,βf∥∥L2(Aα,β) = O ( hδ(log 1 h )−γ ) , as h −→ 0, where r = 0, 1, ...,k. Theorem 3.3. Let f ∈ W 2,kα,β , k ∈ N ∗ . Then the following are equivalents: (1) f ∈ DLip[2, (δ,γ),k,r] ; (2) ∫ ∞ s λ2r |Fα,β(f)(λ)| 2 dσα,β(λ) = O ( s−2δ(log s)−2γ ) , as s → +∞ . Proof. (1) ⇒ (2): Assume that f ∈ DLip[2, (δ,γ),k,r] ; then∥∥∆khΛrα,βf∥∥L2(Aα,β) = O ( hδ(log 1 h )−γ ) as h −→ 0. by lemma 3.1, we have ∫ R λ2r|1 −ϕµ(h)|2k|Fα,β(f)(λ)|2dσα,β(λ) = O ( h2δ(log 1 h )−2γ ) 148 BELKHADIR, ABOUELAZ AND DAHER If |λ| ∈ [ η 2h , η h ] then |µh| ≤ η (recall that λ2 = µ2 + ρ2). We get by (19): |jα(µh)− 1| ≥ c1µ2h2. From |λ| ≥ η 2h we have, µ2h2 ≥ η2 4 − ρ2h2; then we can find a positive constant c3 = c3(η,α,β) such that µ 2h2 ≥ c3 (take h < 1) ; thus, |jα(µh) − 1| ≥ c1c3. This inequality and lemma 2.2 implys that: |1 −ϕ (α,β) µ (h)| ≥ c1c2c3 = C. Hence, 1 ≤ 1 C2 |1 −ϕ(α,β)µ (h)|2. Then, ∫ η 2h ≤|λ|≤η h λ2r|Fα,β(f)(λ)|2dσα,β(λ) ≤ 1 C2k ∫ η 2h ≤|λ|≤η h λ2r|1 −ϕ(α,β)µ (h)| 2k ×|Fα,β(f)(λ)|2dσα,β(λ) ≤ 1 C2k ∫ R λ2r|1 −ϕ(α,β)µ (h)| 2k|Fα,β(f)(λ)|2dσα,β(λ) = O ( h2δ(log 1 h )−2γ ) . Then we have, ∫ s≤|λ|≤2s λ2r|Fα,β(f)(λ)|2dσα,β(λ) = O ( s−2δ(log s)−2γ ) , as s → +∞. Or equivalently ∫ s≤|λ|≤2s λ2r|Fα,β(f)(λ)|2dσα,β(λ) ≤ K1O ( s−2δ(log s)−2γ ) , as s → +∞, where K1 is some positive constant . It follows that, ∫ |λ|≥s λ2r|Fα,β(f)(λ)|2dσα,β(λ) = ∞∑ i=0 ∫ 2is≤|λ|≤2i+1s λ2r|Fα,β(f)(λ)|2dσα,β(λ) ≤ K1 ∞∑ i=0 (2is)−2δ(log 2is)−2γ ≤ K1 ( ∞∑ i=0 (2i)−2δ )( s−2δ(log s)−2γ ) ≤ K ( s−2δ(log s)−2γ ) . where K = K1 1 − 2−2δ . This proves that: ∫ |λ|≥s λ2r|Fα,β(f)(λ)|2dσα,β(λ) = O ( s−2δ(log s)−2γ ) , as s → +∞. (2) ⇒ (1) : Suppose now that∫ |λ|≥s λ2r|Fα,β(f)(λ)|2dσα,β(λ) = O ( s−2δ(log s)−2γ ) , as s → +∞. we have to show that: CHARACTERIZATION OF (δ,γ)-DINI-LIPSCHITZ FUNCTIONS 149 ∫ R λ2r|1 −ϕ(α,β)µ (h)| 2k|Fα,β(f)(λ)|2dσα,β(λ) = O ( h2δ(log 1 h )−2γ ) , as h → 0. Write: ∫ R λ2r|1 −ϕ(α,β)µ (h)| 2k|Fα,β(f)(λ)|2dσα,β(λ) = I1 + I2, where: I1 = ∫ |λ|≤1 h λ2r|1 −ϕ(α,β)µ (h)| 2k|Fα,β(f)(λ)|2dσα,β(λ) ; I2 = ∫ |λ|> 1 h λ2r|1 −ϕ(α,β)µ (h)| 2k|Fα,β(f)(λ)|2dσα,β(λ). Estimate I1 and I2 . From (1) of lemma 2.1 we can write, I2 ≤ 4k ∫ |λ|> 1 h λ2r|Fα,β(f)(λ)|2dσα,β(λ) , (s = 1 h ) = O ( h2δ(log 1 h )−2γ ) . Using the inequalities (1) and (2) of lemma 2.1 we get I1 = ∫ |λ|≤1 h λ2r|1 −ϕ(α,β)µ (h)| 2k|Fα,β(f)(λ)|2dσα,β(λ) ≤ 22k−1 ∫ |λ|≤1 h λ2r|1 −ϕ(α,β)µ (h)|.|Fα,β(f)(λ)| 2dσα,β(λ) ≤ 22k−1h2 ∫ |λ|≤1 h λ2r.λ2|Fα,β(f)(λ)|2dσα,β(λ). Consider the function ψ(s) = ∫ ∞ s λ2r|Fα,β(f)(λ)|2dσα,β(λ). Since ψ(s) = O ( s−2δ(log s)−2γ ) , an integration by parts gives: 22k−1h2 ∫ 1 h 0 λ2r.λ2|Fα,β(f)(λ)|2dσα,β(λ) = 22k−1h2 ∫ 1 h 0 ( −s2ψ′(s) ) ds = 22k−1h2 ( − 1 h2 ψ( 1 h ) + 2 ∫ 1 h 0 sψ(s)ds ) ≤ 22k−1h2 ∫ 1 h 0 sψ(s)ds ≤ C1.h2 ∫ 1 h 0 s1−2δ(log s)−2γds ≤ C2.h2δ(log 1 h )−2γ. 150 BELKHADIR, ABOUELAZ AND DAHER Hence, I1 = O ( h2δ(log 1 h )−2γ ) . Finally we get I1 + I2 = O ( h2δ(log 1 h )−2γ ) + O ( h2δ(log 1 h )−2γ ) = O ( h2δ(log 1 h )−2γ ) Which completes the proof of the theorem. � Corollary 3.4. Let f ∈ W 2,kα,β such that f ∈ DLip[2, (δ,γ),k,r] . Then∫ ∞ s |Fα,β(f)(λ)| 2 dσα,β(λ) = O ( s−2(δ+r)(log s)−2γ ) , as s → +∞. References [1] A. Belkhadir, A. Abouelaz, and R. Daher, An analog of Titchmarsh’s theorem for the Jacobi- Dunkl transform in the space L2 α,β (R), International Journal of Analysis and Applications, 8(1) (2015), 15-21. [2] A. Belkhadir and A. Abouelaz, Generalization of Titchmarsh’s theorem for the Jacobi-Dunkl transform, Gen. Math. Notes, 28(2) (2015), 9-20. [3] M. S. Younis, Fourier Transforms of Dini-Lipschitz functions, International Journal of Math- ematics and Mathematical Sciences, 9(2) (1986), 301-312. [4] H.B. Mohamed and H. Mejjaoli, Distributional Jacobi-Dunkl transform and application, Afr. Diaspora J. Math, (2004), 24-46. [5] H.B. Mohamed, The Jacobi-Dunkl transform on R and the convolution product on new spaces of distributions, Ramanujan J., 21(2010), 145-175. [6] N.B. Salem and A.O.A. Salem, Convolution structure associated with the Jacobi-Dunkl op- erator on R , Ramanujan J., 12(3) (2006), 359-378. [7] N.B. Salem and A.O.A. Salem, Sobolev types spaces associated with the Jacobi-Dunkl oper- ator, Fractional Calculus and Applied Analysis, 7(1) (2004), 37-60. [8] W.O. Bray and M.A. Pinsky, Growth properties of Fourier transforms via moduli of conti- nuity, Journal of Functional Analysis, 255(2008), 2256-2285. [9] F. Chouchane, M. Mili and K. Trimèche, Positivity of the intertwining opertor and harmonic analysis associated with the Jacobi-Dunkl operator on R, J. Anal. Appl., 1(4) (2003), 387-412. [10] T.H. Koornwinder, Jacobi functions and analysis on noncompact semi-simple Lie groups, In: R.A. Askey, T.H. Koornwinder and W. Schempp (eds.), Special Functions: Group Theoritical Aspects and Applications, D. Reidel, Dordrecht, (1984). [11] T.H. Koornwinder, A new proof of a Paley-Wiener type theorems for the Jacobi transform, Ark. Math., 13(1975), 145-159. [12] S.S. Platonov, Approximation of functions in L2-metric on noncompact rank 1 symetric spaces, Algebra Analiz., 11(1) (1999), 244-270. [13] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Claredon, Oxford, (1948), Komkniga, Moscow, (2005). Department of Mathematics and Informatics, Faculty of Science Ain Chock, Univer- sity of Hassan II, Casablanca, Morocco ∗Corresponding author