International Journal of Analysis and Applications ISSN 2291-8639 Volume 10, Number 1 (2016), 17-23 http://www.etamaths.com HARMONIC ANALYSIS ASSOCIATED WITH THE GENERALIZED q-BESSEL OPERATOR AHMED ABOUELAZ, RADOUAN DAHER, EL MEHDI LOUALID∗ Abstract. In this article, we give a new harmonic analysis associated with the generalized q-Bessel operator. We introduce the generalized q-Bessel transform, the generalized q-Bessel translation and the generalized q-Bessel convolution product. 1. Introduction In this paper we consider a generalized q-Bessel operator ∆q,α,n defined by (1) ∆q,α,nf(x) = 1 x2 [ q2nf(q−1x) − (1 + q2α+4n)f(x) + q2α+2nf(qx) ] where n = 0, 1, ... . For n = 0, we regain the q-Bessel operator (2) ∆q,αf(x) = 1 x2 [ f(q−1x) − (1 + q2α)f(x) + q2αf(qx) ] Through this paper, we provide a new harmonic analysis corresponding to the generalized q-Bessel operator ∆d,α,n. The structure of the paper is as follows: In section 2, we set some notations and collect some basic results about q-harmonnic analysis. In section 3, we give some facts about harmonic analysis related to the generalized q-Bessel operator ∆q,α,n, we define the generalized q-Bessel transform and we give some proprieties. In section 4, we define the generalized q-Bessel translation Tαq,x,n and the generalized q-Bessel convolution product related to Tαq,x,n. 2. Element of q-harmonnic analysis In this section, we recapitulate some facts about harmonic analysis related to the Bessel operator ∆d,α,n. We cite here, as briefly as possible, some properties. For more details we refer to [5, 6, 1, 2]. Throught this paper, we assume that 0 < q < 1 and α > −1. let a ∈ C, the q-shifted factorial are defined by (a; q)0 = 1, (a; q)n = n−1∏ k=0 (1 −aqk), (a; q)∞ = ∞∏ k=0 (1 −aqk) The q-derivative of a function f is given by Dqf(x) = f(x) −f(qx) (1 −q)x if x 6= 0 The q-Jackson integrals from 0 to a and from 0 to ∞ are defined by [3, 4]∫ a 0 f(x)dqx = (1 −q)a ∞∑ 0 f(aqn)qn, 2010 Mathematics Subject Classification. 05A30, 44A15. Key words and phrases. Generalized q-Bessel operator; Generalized q-Bessel transform; Generalized q-Bessel trans- lation; Genaralized q-Bessel translation. c©2016 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 17 18 ABOUELAZ, DAHER AND LOUALID ∫ ∞ 0 f(x)dqx = (1 −q)a ∞∑ n=−∞ f(qn)qn. We have Dq ∫ a x H(t)dqt = −H(x). The q-analogue of the integration theorem by a change of variable can be stated as follows∫ b a H( λ r )λ2α+1dqλ = r 2α+2 ∫ b r a r H(t)t2α+1dqt, ∀r ∈ R+q The q-integration by parts formula is given by∫ b a g(x)Dqf(x)dqx = [f(b)g(b) −f(a)g(a)] − ∫ b a f(qx)Dqg(x)dq. The third Jackson q-Bessel function Jα (also called Hahn-Exton q-Bessel functions) is defined by the power series [7] Jα(x; q) = (qα+1; q)∞ (q; q)∞ xα ∞∑ n=0 (−1)n q n(n+1) 2 (qα+1; q)n(q; q)n x2n, and has the normalized form jα(x; q) = ∞∑ n=0 (−1)n q n(n+1) 2 (qα+1; q)n(q; q)n x2n. It satisfies the following estimate [5] |jα(qn,q2)| ≤ (−q2; q2)∞(−q2α+2; q2)∞ (q2α+2; q2)∞ { 1 if n ≥ 0 qn 2−(2α+1)n if n < 0 If x ∈ C∗ \R then we have the following asymptotic expansion as |x|→∞ jα(x; q 2) ∼ (x2q2; q2)∞ (q2α+2; q2)∞ Also the normalized q-Bessel functions satisfies an orthogonality relation c2q,α ∫ ∞ 0 jα(xt,q 2)jα(yt,q 2)t2α+1dqt = δq(x,y) where δq(x,y) = { 0, if y 6= x; 1 (1−q)x2(α+1) , if x = y. (3) cq,α = 1 1 −q (q2α+2; q2)∞ (q2; q2)∞ . The function x 7→ jα(λx,q2) is a solution of the following q-differential equation (4) ∆q,αf(x) = −λ2f(x), where ∆q,α is the q-Bessel operator given by (2). For 1 ≤ p < ∞ we denote by Lpq,α the set of all real functions on R+q for which ‖f‖q,p,α = (∫ ∞ 0 |f(x)|px2α+1dqx ) 1 P < ∞. Proposition 2.1. Let f,g ∈L2q,α such that ∆q,αf, ∆q,αg ∈L2q,α then (5) ∫ ∞ 0 ∆q,αf(x)g(x)x 2α+1dqx = ∫ ∞ 0 f(x)∆q,αg(x)x 2α+1dqx. GENERALIZED q-BESSEL OPERATOR 19 The q-Bessel Fourier transform Fq,α was introduced and studies in [5, 6] (6) Fq,αf(x) = cq,α ∫ ∞ 0 f(t)jα(xt,q 2)t2α+1dqt, The q-Bessel translation operator is defined as follows [5, 6] (7) Tαq,xf(y) = cq,α ∫ ∞ 0 Fq,α(f)(t)jα(xt,q2)jα(yt,q2)t2α+1dqt. Proposition 2.2. We have for all x,y ∈ R+q Tαq,xf(y) = T α q,yf(x) The q-translation operator is positive if Tαq,xf ≥ 0, ∀f ≥ 0, ∀x ∈ R + q . The domaine of positivity of the q-translation operator is Qα = {q ∈]0, 1[, Tαq,x is positive for all x ∈ R + q }. In [1] it was proved that if −1 < α < α′ then Qα ⊂ Qα′. As a consequence: • if 0 ≤ α then Qα =]0, 1[. • if −1 2 ≤ α < 0 then ]0,q0[⊂ Q−1 2 ⊂ Qα (]0, 1[, q0 ' 0.43. • if −1 ≤ α < −1 2 then Qα ⊂ Q−1 2 . In the rest of this section we always assume that the q-translation operator is positive. The q-convolution product of two functions is given by [5, 6] (8) f ∗q,α g(x) = cq,α ∫ ∞ 0 Tαq,xf(y)g(y)y 2α+1dqy. The following Theorem summarize some result about q-Bessel Fourier transform [6] Theorem 2.3. The q-Bessel Fourier transform satisfies (1) For all functions f ∈Lpq,α, F2q,αf(x) = f(x), ∀x ∈ R + q . (2) For all functions f ∈L2q,α, (9) ‖F2q,αf ‖q,α,2=‖ f ‖q,α,2 . (3) For all functions f ∈Lpq,α, where p ≥ 1 then Fq,αf ∈Lpq,α. If 1 ≤ p ≤ 2 then (10) ‖Fq,αf‖q,α,p ≤ B 2 p −1 q,α ‖f‖q,α,p. where (11) Bq,α = 1 1 −q (−q2; q2)∞(−q2α+2; q2)∞ (q2; q2)∞ (4) Let f ∈Lpq,α and g ∈Lrq,α the f ∗q g ∈Lsq,α and (12) Fq,α(f ∗q,α g)(x) = Fq,αf(x) ×Fq,αf(x), ∀x ∈ R+q . where 1 ≤ p,r,s such that 1 p + 1 r − 1 = 1 s . Proposition 2.4. [2] For all x,y ∈ R+q , we have (13) Tαq,xjα(λy,q 2) = jα(λx,q 2)jα(λy,q 2). Proposition 2.5. [2] For any function f ∈L2q,α we have (14) Fq,α(Tαq,xf)(λ) = jα(λx,q 2)Fq,α(f)(λ), ∀λ,x ∈ R+q . 20 ABOUELAZ, DAHER AND LOUALID 3. Generalized q-Bessel transform Let • M the map defined by (15) Mf(x) = x2nf(x). • Lpq,α,n the class of measurable functions f on R+q for which ‖f‖q,α,p,n = ‖M−1f‖q,α+2n,p < ∞. ∀x ∈ R+q , put (16) Ψα,n(λx,q2) = x2njα+2n(λx,q2). Proposition 3.1. (i): The map M is a topological isomorphism from Lpq,α onto Lpq,α,n (ii): We have (17) ∆q,α,n ◦M = M◦ ∆q,α+2n. (iii): Ψα,n(λ.,q2) satisfies the differential equation (18) ∆q,α,nΨα,n(λ.,q2) = −λ2Ψα,n(λ.,q2) Proof. Assertion (i) is easily checked. (ii) easy combination of (1), (2) and (16). Using (4) and (18), we have ∆q,α,nΨα,n(λ.,q 2) = M◦ ∆q,α+2n ◦M−1Ψα,n(λ.,q2), = M◦ ∆q,α+2njα+2n(λ.,q2), = −λ2Mjα+2n(λ.,q2), = −λ2Ψα,n(λ.,q2) which prove (iii). Definition 3.2. The generalized q-Bessel transform of a function f ∈L1q,α,nis defined by (19) Fq,α,n(f)(x) = cq,α+2n ∫ ∞ 0 f(t)Ψα,n(λt,q 2)t2α+1dqt where cq,α+2n is given by (3). Proposition 3.3. (i): For all f ∈L1q,α,n we have (20) Fq,α,n(f)(λ) = Fq,α+2n ◦M−1f(λ). (ii): For all f ∈L1q,α,n (21) Fq,α,n(∆q,α,nf)(λ) = −λ2Fq,α,n(f)(λ). Proof. Let f ∈L1q,α,n. From (6), (17) and (20), we have Fq,α,n(f)(λ) = cq,α+2n ∫ ∞ 0 f(t)Ψα,n(λt,q 2)t2α+1dqt, = cq,α+2n ∫ ∞ 0 f(t)x2njα+2n(λt,q 2)t2α+1dqt, = cq,α+2n ∫ ∞ 0 M−1f(t)jα+2n(λt,q2)t2α+4n+1dqt, = Fq,α+2n ◦M−1f(λ). GENERALIZED q-BESSEL OPERATOR 21 which prove (i). Let f ∈L1q,α,n. From (5), (19) and (20), we have Fq,α,n(∆q,α,nf)(λ) = cq,α+2n ∫ ∞ 0 ∆q,α,nf(t)Ψα,n(λt,q 2)t2α+1dqt, = cq,α+2n ∫ ∞ 0 f(t)∆q,α,nΨα,n(λt,q 2)t2α+1dqt, = cq,α+2n ∫ ∞ 0 (−λ2)f(t)Ψα,n(λt,q2)t2α+1dqt, = −λ2Fq,α,n(f)(λ). Theorem 3.4. (1) For f ∈Lpq,α,n, we have (22) ‖Fq,α,nf‖q,α,n,∞ ≤ Bq,α+2n‖f‖q,α,n,1. where Bq,α+2n is given by (11) (2) Let f ∈L1q,α,n, then (23) ‖Fq,α,nf‖q,α,n,2 = ‖f‖q,α,n,2. Proof. Let f ∈L1q,α,n, from (10), (11) and (21) we have ‖Fq,α,nf‖q,α,n,∞ = ‖Fq,α+2n ◦M−1f‖q,α+2n,∞, ≤ Bq,α+2n‖M−1f‖q,α+2n,1, ≤ Bq,α+2n‖f‖q,α,n,1. which prove 1). Let f ∈L1q,α,n. Using (9) and (21), we have ‖Fq,α,nf‖q,α,n,2 = ‖Fq,α+2n ◦M−1f‖q,α+2n,2, = ‖M−1f‖q,α+2n,2, = ‖f‖q,α,n,2. 4. Generalized convolution product associated with ∆q,α,n Definition 4.1. The generalized q-Bessel translation operators Tαq,x,n associated with ∆q,α,n are defined by (24) Tαq,x,n = x 2nM◦Tα+2nq,x ◦M −1 where Tα+2nq,x is given by (7). The generalized q-Bessel translation operator is positive if Tαq,x,nf ≥ 0, ∀f ≥ 0, ∀x ∈ R + q . The domaine of positivity of the generalized q-Bessel translation operator is Qα,n = {q ∈]0, 1[, Tαq,x,n is positive for all x ∈ R + q }. In the rest of this paper we always assume that the generalized q-Bessel translation operator is positive. Proposition 4.2. (i): Let f ∈L1q,α,n, we have (25) Tαq,x,nf(y) = T α q,y,nf(x) and Tαq,x,nf(0) = f(x). (ii): ∀x,y ∈ R+q , we have (26) Tαq,x,nΨα,n(λy,q 2) = Ψα,n(λx,q 2)Ψα,n(λy,q 2) 22 ABOUELAZ, DAHER AND LOUALID (iii): For any function f ∈L2q,α,n, we have (27) Fq,α,n(Tαq,x,nf)(λ) = Ψα,n(λx,q 2)Fq,α,n(f)(λ). Proof. Let f ∈L1q,α,n, from Porosition 2.2 and (25), we have Tαq,x,nf(y) = x 2nM◦Tα+2nq,x ◦M −1f(y), = x2ny2nTα+2nq,y ◦M −1f(x), = y2nM◦Tα+2nq,y ◦M −1f(x), = Tαq,y,nf(x). which prove (i). Let x,y ∈ R+q . From (13) and (25), we have Tαq,x,nΨα,n(λy,q 2) = x2nM◦Tα+2nq,x ◦M −1(y2njα+2n(λy,q 2)), = x2ny2nTα+2nq,x jα+2n(λy,q 2)), = x2njα+2n(λx,q 2))y2njα+2n(λy,q 2)), = Ψα,n(λx,q 2)Ψα,n(λy,q 2). which prove (ii). Let f ∈L2q,α,n. From (14), (17), (21) and (25), we have Fq,α,n(Tαq,x,nf)(λ) = Fq,α,n(x 2nM◦Tα+2nq,x ◦M −1f)(λ), = x2nFq,α+2n(Tα+2nq,x ◦M −1f)(λ), = x2njα+2n(λx,q 2)Fq,α+2n(M−1f)(λ), = Ψα,n(λx,q 2)Fq,α,n(f)(λ). which prove (iii). Definition 4.3. The generalized q-convolution product of both function f,g ∈L1q,α,n is defined by (28) f ∗q,α,n g(x) = cq,α+2n ∫ ∞ 0 Tαq,x,nf(y)g(y)y 2α+1dqy. where cq,α+2n is given by (3). Proposition 4.4. For f,g ∈L1q,α,n (29) f ∗q,α,n g = M [ (M−1f) ∗q,α+2n (M−1f) ] . Proof. Let f,g ∈L1q,α,n. From (8), (25) and (29), we have f ∗q,α,n g(x) = cq,α+2n ∫ ∞ 0 Tαq,x,nf(y)g(y)y 2α+1dqy, = cq,α+2nx 2n ∫ ∞ 0 Tα+2nq,x M −1f(y)g(y)y2α+2n+1dqy, = cq,α+2nx 2n ∫ ∞ 0 Tα+2nq,x M −1f(y)M−1g(y)y2α+4n+1dqy, = x2n [ (M−1f) ∗q,α+2n (M−1g) ] (x), = M [ (M−1f) ∗q,α+2n (M−1g) ] (x). Proposition 4.5. For f,g ∈L1q,α,n, then f ∗q,α,n g ∈L1q,α,n and (30) Fq,α,n(f ∗q,n g)(λ) = Fq,α,n(f)(λ)Fq,α,n(g)(λ). GENERALIZED q-BESSEL OPERATOR 23 Proof. Let f,g ∈L1q,α,n, we have ‖f ∗q,n g‖q,α,n,1 = ‖M−1(f ∗q,n g)‖q,α+2n,1, ≤ ‖M−1f‖q,α+2n,1‖M−1g‖q,α+2n,1, = ‖f‖q,α,n,1‖g‖q,α,n,1. On the other hand, from (12), (21) and (30), we have Fq,α,n(f ∗q,α,n g)(λ) = Fq,α,n ( M [ (M−1f) ∗q,α+2n (M−1f) ]) (λ), = Fq,α+2n ◦M−1 ( M [ (M−1f) ∗q,α+2n (M−1f) ]) (λ), = Fq,α+2n ( M−1f ) (λ) ×Fq,α+2n ( M−1g ) (λ), = Fq,α,n(f)(λ)Fq,α,n(g)(λ). Proposition 4.6. Let f ∈L1q,α,n, we have (31) Tαq,x,nf(y) = ∫ ∞ 0 f(z)Dα,n(x,y,z)z 2α+1dqz, where Dα,n(x,y,z) = c2q,α+2n ∫∞ 0 Ψα,n(xt,q 2)Ψα,n(yt,q 2)Ψα,n(zt,q 2)t2α+4n+1dqt Proof. Let f ∈L1q,α,n, from (7), (19) and (24) we have Tαq,x,nf(y) = x 2n ( M◦Tα+2nq,x ◦M −1) (f)(y), = x2ny2nTα+2nq,x ◦M −1f(y), = x2ny2ncq,α+2n ∫ ∞ 0 Fq,α+2n ◦M−1f(t)jα+2n(xt,q2)jα+2n(yt,q2)t2α+4n+1dqt, = cq,α+2n ∫ ∞ 0 Fq,α,n(f)(t)Ψα,n(xt,q2)Ψα,n(yt,q2)t2α+4n+1dqt, = ∫ ∞ 0 f(z) [ c2q,α+2n ∫ ∞ 0 Ψα,n(xt,q 2)Ψα,n(yt,q 2)Ψα,n(zt,q 2)t2α+4n+1dqt ] z2α+1dqz, = ∫ ∞ 0 f(z)Dα,n(x,y,z)z 2α+1dqz. References [1] A. Fitouhi and L. Dhaouadi, Positivity of the generalized Translation Associated with the q-Hankel Transform, Constructive Approximation, 34(2011), 435-472. [2] Ahmed Fitouhi and M. Moncef Hamza, The q-jαBessel Function, Journal of Approximation Theory 115(2002), 144-166. [3] F.H. Jackson, On a q-Defnite Integrals, Quarterly Journal of Pure and Application Mathematics, 41(1910), 193-203. [4] G.Gasper and M.Rahman, Basic hypergeometric series, Encycopedia of mathematics and its applications, Volume 35, Cambridge university press (1990). [5] L.Dhaouadi, A.Fitouhi and J.El Kamel, Inequalities in q-Fourier Analysis, journal of Inequalities in Pure and Applied Mathematics, 7(2006), Article ID 171. [6] L.Dhaoudi, On the q-Bessel Fourier transform, Bulletin of Mathematical Analysis and Applications, 5(2013), 42-60. [7] R. F. Swarttouw, The Hahn-Exton q-Bessel functions, Ph. D. Thesis, Delft Technical University (1992). Department of Mathematics, Faculty of Sciences Aïn Chock,, University of Hassan II, Casablanca, Morocco ∗Corresponding author: mehdi.loualid@gmail.com