International Journal of Analysis and Applications ISSN 2291-8639 Volume 13, Number 1 (2017), 15-21 http://www.etamaths.com SOME NEW ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS WITH APPLICATIONS WEN WANG1,2,∗ AND JIBING QI1 Abstract. In this paper, we first establish an integral identity. Further, using this identity, some new estimates for Hermite-Hadamard inequalities for harmonically convex functions are established. Finally, some applications to special mean are showed. 1. Introduction In this article, let R = (−∞,∞), R++ = (0,∞). Theory of convex functions and theory of inequalities are closely related to each other. Therefore, some literature on inequalities can be found for convex functions. One of the most extensively research on inequalities is Hermite-Hadamard type inequalities. Definition 1.1 ( [1, 2]) A function f : I ⊂ R → R is convex function on I, if f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y), ∀x,y ∈ I,t ∈ [0, 1]. (1.1) f is concave function if −f is convex function. Let f : I ⊂ R → R be a convex function. The following inequality is the well-known Hermite- Hadamard’s inequality f ( a + b 2 ) ≤ 1 b−a ∫ b a f(x)dx ≤ f(a) + f(b) 2 , a,b ∈ I with a < b. (1.2) Estimates for Hermite-Hadamard inequality for convex functions are studied in a rich literature [8–16]. Theorem 1.2 ( [1]) Let f : I0 ⊂ R → R be a differentiable mapping on I0 and a,b ∈ I0 with a < b. If |f′(x)|q is a convex function for q > 1, then∣∣∣∣∣f(a) + f(b)2 − 1b−a ∫ b a f(x)dx ∣∣∣∣∣ ≤ (b−a)(|f ′(a)| + |f′(b)|) 8 . (1.3) Recently, İscan [3] introduced the concept of harmonically convex functions and established Hermite- Hadamard type inequality for harmonically convex functions. Definition 1.3 ( [3, 4]) A function f : I ⊂ R\{0} → R is said to be harmonically convex function on I, if f ( 1 tx−1 + (1 − t)y−1 ) ≤ tf(x) + (1 − t)f(y), ∀x,y ∈ I,t ∈ [0, 1]. (1.4) f is said to be harmonically concave function if −f is harmonically convex function. Theorem 1.4 ( [3, 4]) Let f : I ⊂ R\{0} → R be a harmonically convex function a,b ∈ I with a < b. If f ∈ L[a,b] , then f ( 2ab a + b ) ≤ ab b−a ∫ b a f(x) x2 dx ≤ f(a) + f(b) 2 . (1.5) Received 1st July, 2016; accepted 18th September, 2016; published 3rd January, 2017. 2010 Mathematics Subject Classification. 26D15, 26A51. Key words and phrases. Hermite-Hadamard’s inequality; harmonically convex function; estimate; mean; inequality. c©2017 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 15 16 WEN WANG, JIBING QI Theorem 1.5 ( [3, 4]) Let f : I ⊂ R\{0}→ R be a harmonically convex function a,b ∈ I with a < b and f′ ∈ L[a,b]. If |f′(x)|q is harmonically convex on [a,b] for q > 1, 1 p + 1 q = 1, then∣∣∣∣∣f(a) + f(b)2 − abb−a ∫ b a f(x) x2 dx ∣∣∣∣∣ ≤ ab(b−a) 2 ( 1 p + 1 )1 p (µ1|f′(a)|q + µ2|f′(b)|q) 1 q , (1.6) where µ1 = [ a2−2q + b1−2q[(b−a)(1 − 2q) −a] ] 2(b−a)2(1 −q)(1 − 2q) , µ2 = [ a2−2q + b1−2q[(b−a)(1 − 2q) − b] ] 2(b−a)2(1 −q)(1 − 2q) . For many recent results related to Hermite-Hadamard type inequalities for harmonically functions, see [3–7]. The aim of this paper is first to establish a integral identity. Then, using this identity, some new estimates for Hermite-Hadamard inequalities for harmonically convex functions are established by İ. İscan in [3] are derived. 2. Some lemmas In order to prove our main results we need some lemmas. Lemma 2.1 Let f : I ⊂ R\{0}→ R be a differentiable function on I0 and a,b ∈ I0 with a < b. If f′ ∈ L[0, 1], then for λ ∈ [0, 1], one has (1 −λ)f ( ab (1 −λ)a + λb ) + λf ( ab (1 −λ)a + λb ) − ab b−a ∫ b a f(x) x2 dx = b−a ab [∫ 1−λ 0 t [tb−1 + (1 − t)a−1] f′ ( 1 tb−1 + (1 − t)a−1 ) dt − ∫ 1 1−λ t− 1 [tb−1 + (1 − t)a−1] f′ ( 1 tb−1 + (1 − t)a−1 ) dt ] . (2.1) Proof. Let x = 1 tb−1+(1−t)a−1 , t ∈ [0, 1] and x ∈ [a,b], then( 1 a − 1 b )∫ 1−λ 0 t (tb−1 + (1 − t)a−1)2 f′ ( 1 tb−1 + (1 − t)a−1 ) dt = tf ( 1 tb−1 + (1 − t)a−1 )∣∣∣∣1−λ 0 − ∫ u a f(x) x2 ab b−a dx = (1 −λ)f ( ab (1 −λ)a + λb ) − ab b−a ∫ u a f(x) x2 dx. (2.2) and ( 1 b − 1 a )∫ 1 1−λ t (tb−1 + (1 − t)a−1)2 f′ ( 1 tb−1 + (1 − t)a−1 ) dt = tf ( 1 tb−1 + (1 − t)a−1 )∣∣∣∣1 1−λ − ∫ b u f(x) x2 ab b−a dx = λf ( ab (1 −λ)a + λb ) − ab b−a ∫ b u f(x) x2 dx, (2.3) where u = 1 (1−λ)b−1+λa−1 . So (7) follows from (8) and (9).� � NEW ESTIMATES OF HERMITE-HADAMARD INEQUALITIES 17 Remark 2.2 From (7) we derive the following two identities. f ( 2ab a + b ) − 2ab b−a ∫ b a f(x) x2 dx = 2(b−a) ab [∫ 1 2 0 t [tb−1 + (1 − t)a−1] f′ ( 1 tb−1 + (1 − t)a−1 ) dt − ∫ 1 1 2 t− 1 [tb−1 + (1 − t)a−1] f′ ( 1 tb−1 + (1 − t)a−1 ) dt ] ; (2.4) f(a) + f(b) 2 − ab b−a ∫ b a f(x) x2 dx = b−a 2ab [∫ 1 0 t [tb−1 + (1 − t)a−1] f′ ( 1 tb−1 + (1 − t)a−1 ) dt − ∫ 1 0 t− 1 [tb−1 + (1 − t)a−1] f′ ( 1 tb−1 + (1 − t)a−1 ) dt ] . (2.5) Proof. Take λ = 1 2 in (7), we can derive (10). We respectively take λ = 0 and λ = 1 in (7) and add two inequalities, then (11) is obtained. � Lemma 2.3 By integral calculation, then C1(a,b,λ) = ∫ 1−λ 0 t(1 − t)[tb + (1 − t)a]2dt = (1 −λ)3 [ 1 5 (b−a)2(1 −λ)2 + 1 2 a(b−a)(1 −λ) + 1 3 λ2 ] ; (2.6) C2(a,b,λ) = ∫ 1−λ 0 t2[tb + (1 − t)a]2dt = (1 −λ)2 [( 1 20 + 1 5 λ ) (b−a)2(1 −λ)2 + ( 1 6 + 1 2 λ ) a(b−a)(1 −λ) + ( 1 6 + 1 3 λ ) λ2 ] ; (2.7) C3(a,b,λ) = ∫ 1 1−λ t(1 − t)[tb + (1 − t)a]2dt = ∫ λ 0 (1 −u)u[(1 −u)b + ua]2du = − 1 5 (b−a)2λ5 + 1 4 (a2 + 3b2 − 4ab)λ4 + 1 3 (2ab− 3b2)λ3 + 1 2 b2λ2; (2.8) C4(a,b,λ) = ∫ 1 1−λ (1 − t)2[tb + (1 − t)a]2dt = ∫ λ 0 u2[(1 −u)b + ua]2du = 1 5 (b−a)2λ5 + 1 2 b(a− b)λ4 + 1 3 b2λ3, (2.9) where u = 1 − t. 3. Main results Our main results are stated as follows. 18 WEN WANG, JIBING QI Theorem 3.1 Let f : I ⊂ R\{0} → R be a differentiable function and f′ ∈ L[a,b]. If |f′(x)|q is harmonically convex on [a,b] with 0 ≤ a < b for q ≥ 1, then∣∣∣∣∣(1 −λ)f ( ab (1 −λ)a + λb ) + λf ( ab (1 −λ)a + λb ) − ab b−a ∫ b a f(x) x2 dx ∣∣∣∣∣ ≤ b−a ab { (C1(a,b,λ)) 1−1 q [ |f′(b)|qC1(a,b,λ) + |f′(a)|qC2(a,b,λ) ]1 q + (C3(a,b,λ)) 1−1 q [ |f′(b)|qC3(a,b,λ) + |f′(a)|qC4(a,b,λ) ]1 q } . (3.1) Proof. From Lemma 2.1 and using Hölder inequality, further, since |f′(x)|q is harmonically convex on [a,b], we have I = ∣∣∣∣∣(1 −λ)f ( ab (1 −λ)a + λb ) + λf ( ab (1 −λ)a + λb ) − ab b−a ∫ b a f(x) x2 dx ∣∣∣∣∣ ≤ b−a ab [∫ 1−λ 0 t [tb−1 + (1 − t)a−1] ∣∣∣∣f′ ( 1 tb−1 + (1 − t)a−1 ) dt ∣∣∣∣ + ∫ 1 1−λ 1 − t [tb−1 + (1 − t)a−1] ∣∣∣∣f′ ( 1 tb−1 + (1 − t)a−1 ) dt ∣∣∣∣ ] ≤ b−a ab  (∫ 1−λ 0 t [tb−1 + (1 − t)a−1]2 dt )1−1 q (∫ 1−λ 0 t [tb−1 + (1 − t)a−1]2 ∣∣∣∣f′ ( 1 tb−1 + (1 − t)a−1 )∣∣∣∣q dt )1 q + (∫ 1 1−λ 1 − t [tb−1 + (1 − t)a−1]2 dt )1−1 q ∫ 1 1−λ 1 − t [tb−1 + (1 − t)a−1]2 ∣∣∣∣f′ ( 1 tb−1 + (1 − t)a−1 )∣∣∣∣q dt ] ≤ b−a ab   (∫ 1−λ 0 t [tb−1 + (1 − t)a−1]2 dt )1−1 q [∫ 1−λ 0 t [ t|f′(b)|q + (1 − t)|f′(a)|q ] [tb−1 + (1 − t)a−1]2 dt ]1 q + (∫ 1 1−λ 1 − t [tb−1 + (1 − t)a−1]2 dt )1−1 q [∫ 1 1−λ (1 − t) [ t|f′(b)|q + (1 − t)|f′(a)|q ] [tb−1 + (1 − t)a−1]2 dt ]1 q   . Noticing that [tb−1 + (1 − t)a−1]−1 ≤ ta + (1 − t)b, and using (12-15), then, from above inequality we have I ≤ b−a ab   (∫ 1−λ 0 t[tb + (1 − t)a]2dt )1−1 q [∫ 1−λ 0 t[tb + (1 − t)a]2 [ t|f′(b)|q + (1 − t)|f′(a)|qdt ]]1q + (∫ 1 1−λ (1 − t)[tb + (1 − t)a]2dt )1−1 q [∫ 1 1−λ (1 − t)[tb + (1 − t)a]2 [ t|f′(b)|q + (1 − t)|f′(a)|q ] dt ]1 q } = b−a ab  (C1(a,b,λ))1−1q [∫ 1−λ 0 [ |f′(b)|qt2[tb + (1 − t)a]2 + |f′(a)|qt(1 − t)[tb + (1 − t)a]2 ] dt ]1 q + (C3(a,b,λ)) 1−1 q [∫ 1 1−λ [ |f′(b)|qt(1 − t)[tb + (1 − t)a]2 + |f′(a)|q(1 − t)2[tb + (1 − t)a]2 ] dt ]1 q } = b−a ab { (C1(a,b,λ)) 1−1 q [ |f′(b)|qC1(a,b,λ) + |f′(a)|qC2(a,b,λ) ]1 q + (C3(a,b,λ)) 1−1 q [ |f′(b)|qC3(a,b,λ) + |f′(a)|qC4(a,b,λ) ]1 q } . So the proof is complete. � NEW ESTIMATES OF HERMITE-HADAMARD INEQUALITIES 19 Corollary 3.2 Assume that all the assumptions of Theorem 3.1 are satisfied. If we take q = 1 and M = max{|f′(a)|, |f′(b)|}, then∣∣∣∣∣(1 −λ)f ( ab (1 −λ)a + λb ) + λf ( ab (1 −λ)a + λb ) − ab b−a ∫ b a f(x) x2 dx ∣∣∣∣∣ ≤ M(b−a) ab [ C1(a,b,λ) + C2(a,b,λ) + C3(a,b,λ) + C4(a,b,λ) ] . (3.2) Corollary 3.3 Assume that all the assumptions of Theorem 3.1 are satisfied. If we take λ = q = 1 and M = max{|f′(a)|, |f′(b)|}, then∣∣∣∣∣f(a) − abb−a ∫ b a f(x) x2 dx ∣∣∣∣∣ ≤ M(b−a)ab [ 1 4 (b−a)2 + 1 6 b(b− 4a) ] . (3.3) Corollary 3.4 Assume that all the assumptions of Theorem 3.1 are satisfied. If we take λ = 0, q = 1 and M = max{|f′(a)|, |f′(b)|}, then∣∣∣∣∣f(b) − abb−a ∫ b a f(x) x2 dx ∣∣∣∣∣ ≤ M(b−a)ab [ 1 4 (b−a)2 + 2 3 a(b−a) ] . (3.4) Corollary 3.5 Assume that all the assumptions of Theorem 3.1 are satisfied. If we take λ = 1 2 , q = 1 and M = max{|f′(a)|, |f′(b)|}, then∣∣∣∣∣f ( 2ab a + b ) − ab b−a ∫ b a f(x) x2 dx ∣∣∣∣∣ ≤ M(b−a)ab × { C1(a,b, 1 2 ) [ C1(a,b, 1 2 ) + C2(a,b, 1 2 ) ] + C3(a,b, 1 2 ) [ C3(a,b, 1 2 ) + C4(a,b, 1 2 ) ]} . (3.5) Remark 3.6 By (18) and (19) we obtain the following inequality∣∣∣∣∣f(a) + f(b)2 − abb−a ∫ b a f(x) x2 dx ∣∣∣∣∣ ≤ M(b−a)ab [ 1 12 (4b2 − 6ab−a2) ] . (3.6) 4. Some Applications for Special Means Let a,b are two nonnegative number with a < b. Let us recall the following special means of a and b. (1) The arithmetic mean A = A(a,b) := a+b 2 ; (2) The geometric mean G = G(a,b) := √ ab; (3) The harmonic mean H = H(a,b) := 2ab a+b ; (4) The logarithmic mean L = L(a,b) := b−a ln b−ln a; (5) The -logarithmic mean Lp = Lp(a,b) := ( bp+1 −ap+1 (p + 1)(b−a) )1 p , a 6= b,p ∈ R,p 6= 0,−1. These means are often applied to numerical approximation and in other areas. However, the fol- lowing simple relationships are known in the literature: H ≤ G ≤ L ≤ A. (4.1) It is also known that Lp is monotonically increasing respecting to p ∈ R, denoting L0 = I and L−1 = L. 20 WEN WANG, JIBING QI Proposition 1. Let 0 < a < b. Then we obtain the following inequalities:∣∣∣∣H − G2L ∣∣∣∣ ≤ b−aab × { C1(a,b, 1 2 ) [ C1(a,b, 1 2 ) + C2(a,b, 1 2 ) ] + C3(a,b, 1 2 ) [ C3(a,b, 1 2 ) + |C4(a,b, 1 2 ) ]} ;∣∣∣∣A− G2L ∣∣∣∣ ≤ b−aab [ 1 12 (4b2 − 6ab−a2) ] . Proof. The assertion follows from inequalities (20) and (21), respectively, for f(x) = x, x ∈ R++. � Proposition 2. Let 0 < a < b. Then we derive the following inequalities:∣∣H2 −G2∣∣ ≤ 2(b−a) a × { C1(a,b, 1 2 ) [ C1(a,b, 1 2 ) + C2(a,b, 1 2 ) ] + C3(a,b, 1 2 ) [ C3(a,b, 1 2 ) + |C4(a,b, 1 2 ) ]} ;∣∣∣∣A(a2,b2) − G2L ∣∣∣∣ ≤ 2(b−a)a [ 1 12 (4b2 − 6ab−a2) ] . Proof. The assertion follows from inequalities (20) and (21), respectively, for f(x) = x2, x ∈ R++. � Proposition 3. Let 0 < a < b. Then we have the following inequalities:∣∣Hp+2 −LppG2∣∣ ≤ 2bp+2(b−a)ab × { C1(a,b, 1 2 ) [ C1(a,b, 1 2 ) + C2(a,b, 1 2 ) ] + C3(a,b, 1 2 ) [ C3(a,b, 1 2 ) + |C4(a,b, 1 2 ) ]} ; ∣∣A(ap+2,bp+2) −LppG2∣∣ ≤ 2bn+2(b−a)ab [ 1 12 (4b2 − 6ab−a2) ] . Proof. The assertion follows from inequalities (20) and (21), respectively, for f(x) = xp+2, x ∈ R++ and p ∈ (−1,∞)\{0}. � References [1] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 5 (1998), 91-95. [2] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, 1991. [3] İ. İscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 43 (6) (2014), 935-942. [4] E. Set and İ. İscan, Hermite-Hadamard type inequalities for Harmaonically convex functions on the co-ordinates, arXiv:1404.6397v1 [math.CA]. [5] İ. İscan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional intergrals, Applied Mathematics and Computation, 238 (2014), 237-244. [6] İ. İscan, Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, arXiv:1310.4851v1 [math.CA]. [7] İ. İscan, Hermite-Hadamard and Simpson-Like Type Inequalities for Differentiable Harmonically Convex Functions, Journal of Mathematics, 2014 (2014), Article ID 346305. [8] İ. İscan, Generalization of different type integral inequalities for s-convex functions via fractional integrals, Appli- cable Analysis, 93 (9) 2014, 1846-1862. [9] G. Toad er, Some generalizations of the convexity, Proceedings of the Colloquium on Approximation and Optimiza- tion, Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329-338. [10] F. X. Chen and S. H. Wu, Some Hermite-Hadamard Type Inequalities for Harmonically s-Convex Functions, The Scientific World Journal, 2014 (2014), Article ID 279158. [11] Tian-Yu Zhang, Feng Qi, Integral Inequalities of Hermite-Hadamard Type for m-AH Convex Functions, Turkish Journal of Analysis and Number Theory, 3(2) 2014, 60-64. [12] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp. 147 (2004), 137-146. [13] Kuei-Lin Tseng, Shiow-Ru Hwang, S. S. Dragomirc, New Hermite-Hadamard-type inequalities for convex functions (II), Comput. Math. Appl. 62 (2011), 401-418. NEW ESTIMATES OF HERMITE-HADAMARD INEQUALITIES 21 [14] Constantin P. Niculescu, The Hermite-Hadamard inequality for log-convex functions, Nonlinear Analysis, 75 (2012), 662-669. [15] W. Wang, S. G. Yang, Schur m-power convexity of a class of multiplicatively convex functions and applications, Abstract and Applied Analysis, 2014 (2014), Article ID 258108. [16] W. Wang, İ. İscan, H. Zhou, Fractional integral inequalities of Hermite-Hadamard type for m-HH convex functions with applications, Advanced Studies in Contemporary Mathematics (Kyungshang). 26 (3) (2016), 501-512. 1School of Mathematics and Statistics, Hefei Normal University, Hefei 230601,P.R.China 2School of Mathematical Science, University of Science and Technology of China, Hefei 230026, China ∗Corresponding author: wenwang1985@163.com, wwen2014@mail.ustc.edu.cn 1. Introduction 2. Some lemmas 3. Main results 4. Some Applications for Special Means References