International Journal of Analysis and Applications ISSN 2291-8639 Volume 13, Number 1 (2017), 108-118 http://www.etamaths.com POSITIVE SOLUTIONS FOR A SINGULAR SUM FRACTIONAL DIFFERENTIAL SYSTEM MEHDI SHABIBI1, MIHAI POSTOLACHE2,3,∗ AND SHAHRAM REZAPOUR2,4 Abstract. We investigate the existence of positive solutions for a singular sum fractional differential system under some boundary conditions by providing different conditions. Also, we give an example to illustrate one of our main results. 1. Preliminaries It has been published many works on the existence of solutions for different singular fractional differential systems (see for example, [2], [3], [6], [7], [10] and [12]). In 2010, the existence of positive solutions for the singular Dirichlet problem Dαu(t) + f(t,u(t),Dµu(t)) = 0 with boundary conditions u(0) = u(1) = 0 is investigated, where 1 < α < 2, 0 < µ ≤ α − 1, f is a Caratheodory function on [0, 1] × (0,∞) ×R and Dα is Riemann-Liouville fractional derivative ( [1]). In 2013, the singular problem Dαu + f(t,u,Dγu,Dµu) + g(t,u,Dγu,Dµu) = 0 with boundary conditions u(0) = u′(0) = u′′(0) = u′′′(0) = 0 is reviewed, where 3 < α < 4, 0 < γ < 1, 1 < µ < 2, Dα is the Caputo fractional derivative and f is a Caratheodory function on [0, 1]×(0,∞)3 ( [4]). By using main idea of [1] and [4], we investigate positive solutions for the singular differential system of equations  Dα1u1 + f1(t, u1, . . . , um, D µ1u1, . . . , D µmum) + g1(t, u1, . . . , um, D µ1u1, . . . , D µmum) = 0, . . . . . . Dαmum + fm(t, u1, . . . , um, D µ1u1, . . . , D µmum) + gm(t, u1, . . . , um, D µ1u1, . . . , D µmum) = 0, (1.1) with boundary conditions ui(0) = 0, u ′ i(1) = 0 and dk dtk [ui(t)]t=0 = 0 for 1 ≤ i ≤ m and 2 ≤ k ≤ n−1, where αi ≥ 2, [αi] = n − 1, 0 < µi < 1, D is the Caputo fractional derivative, fi is a Caratheodory function, gi satisfies Lipschitz condition and fi(t,x1, . . . ,x2m) is singular at t = 0 of for all 1 ≤ i ≤ m. We say that a map f : [0, 1] × D ⊆ [0, 1] × D → Rn is Caratheodory whenever the function t 7→ f(t,x1, . . . ,xn) is measurable for all (x1, . . . ,xn) ∈ D and (x1, . . . ,xn) 7→ f(t,x1, . . . ,xn) is continuous for almost all t ∈ [0, 1] and for each compact K ⊆ D there exists ϕK ∈ L1[0, 1] such that |f(t,x1, . . . ,xn)| ≤ ϕK(t) for almost all t ∈ [0, 1] and (x1, . . . ,xn) ∈ K. Put ‖x‖1 = ∫ 1 0 |x(t|dt, ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}, ‖(x1, . . . ,xn)‖∗ = max{‖x1‖, . . . ,‖xn‖}, ‖(x1, . . . ,xn)‖∗∗ = max{‖x1‖, . . . ,‖xn‖,‖x′1‖, . . . ,‖x ′ n‖}, Y = CR([0, 1]), X = C 1 R([0, 1]). By considering the problem (1.1), we assume the following hypotheses: H1: f1, . . . ,fm are Caratheodory functions on [0, 1] × (0,∞)2m and there exists positive constants m1, . . . ,mm such that fi(t,x1, . . . ,x2m) ≥ mi Received 24th July, 2016; accepted 17th September, 2016; published 3rd January, 2017. 2010 Mathematics Subject Classification. 34A08; 34B16. Key words and phrases. Caputo derivative; fixed point; singular system; positive solution. c©2017 Authors retain the copyrights of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License. 108 A SINGULAR SUM FRACTIONAL DIFFERENTIAL SYSTEM 109 for almost all t ∈ [0, 1] and all (x1, . . . ,x2m) ∈ D := (0,∞)2m. H2: g1, . . . ,gm are nonnegative and |gi(t,x1, . . . ,x2m) −gi(t,y1, . . . ,y2m)| ≤ 2m∑ k=1 Lik|xk −yk|, for almost all t ∈ [0, 1] and for all (x1, . . . ,x2m), (y1, . . . ,y2m) ∈ D, where L11, . . . ,Lm1 , . . . ,L12m, . . . ,Lm2m in [0,∞) are constants such that 1 Γ(αi − 1) ( m∑ k=1 Lik + m∑ k=1 Lim+k Γ(2 −µi) ) < 1. H3: there exist some maps γ1, . . . ,γm ∈ L1([0, 1]), some non-increasing maps p1, . . . ,pm ∈ CR(D) with ∫ 1 0 pi ( M1t α1, . . . ,Mmt αm, M1(1 −µ1) 2 t1−µ1, . . . , Mm(1 −µm) 2 t1−µm ) dt < ∞ and some functions h1, . . . ,hm ∈ CR([0,∞)2m) such that limx→∞ hi(x,...,x) x = 0, hi is nondecreasing in all components and fi(t,x1, . . . ,x2m) + gi(t,x1, . . . ,x2m) ≤ pi(x1, . . . ,x2m) + γi(t)hi(x1, . . . ,x2m), for almost all t ∈ [0, 1] and all (x1, . . . ,x2m) ∈ D, where Mi = mi αi−1Γ(αi+1) for all 1 ≤ i ≤ m. Now for each 1 ≤ i ≤ m and n ≥ 1, put fi,n(t,x1, . . . ,x2m) = fi(t,χ1(x1), . . . ,χn(x2m)), where χn(u) = u whenever u ≥ 1n and χn(u) = u whenever u < 1 n . It is easy to check that fi,n(t,x1, . . . ,x2m) + gi(t,x1, . . . ,x2m) ≤ pi ( 1 n ,. . . , 1 n ) + γi(t)hi ( x1 + 1 n ,. . . ,x2m + 1 n ) , fi,n(t,x1, . . . ,x2m) ≥ mi and fi,n(t,x1, . . . ,x2m) + gi(t,x1, . . . ,x2m) ≤ pi(x1, . . . ,x2m) + γi(t)hi ( x1 + 1 n ,. . . ,x2m + 1 n ) , for all (x1, . . . ,xn) ∈ D, 1 ≤ i ≤ m and almost all t ∈ [0, 1]. First, we investigate the regular fractional differential system  Dα1u1 + f1,n(t,u1, . . . ,um,D µ1u1, . . . ,D µmum) = 0 . . . . . . Dαmum + fm,n(t,u1, . . . ,um,D µ1u1, . . . ,D µmum) = 0, (1.2) with same boundary conditions in (1.1). Now, we present some necessary notions. According to [5], the Riemann-Liouville integral of order p for a function f : (0,∞) → R is Ipf(t) = 1 Γ(p) ∫ t 0 (t−s)p−1f(s)ds if the right-hand side map is defined pointwise on (0,∞) . The Caputo fractional derivative of order α > 0 for a function f : (a,∞) → R is defined by cDαf(t) = 1 Γ(n−α) ∫ t 0 fn(s) (t−s)α+1−n ds, where n = [α] + 1; please, see [5]. Lemma 1.1 ( [8]). If x ∈ CR[0, 1]∩L1[0, 1], then IαDαx(t) = x(t) + ∑n−1 i=0 cit i for some real constants c0,c1, . . . ,cn−1, where 0 < n− 1 ≤ α < n. 110 SHABIBI, POSTOLACHE AND REZAPOUR It has been proved in [11] that∫ t 0 (t−s)α−1sβds = B(β + 1,α)tα+β, B(β,α) = Γ(α)Γ(β) Γ(α + β) , β > 0, α > −1. We need the next result. Lemma 1.2 ( [9]). Let M be a closed, convex and nonempty subset of a Banach space X, A a compact and continuous operator and B a contraction. Then, there exist z ∈ M such that z = Az + Bz. Lemma 1.3. Let y ∈ L1[0, 1], α ≥ 2 and n = [α] + 1. Then, the unique solution of the equation Dαu(t) + y(t) = 0 with boundary conditions u′(1) = u(0) = u′′(0) = · · · = un−1(0) = 0 is u(t) =∫ 1 0 Gα(t,s)y(s)ds, where t ∈ [0, 1] and Gα(t,s) =   t(1 −s)α−2 Γ(α− 1) , 0 ≤ t ≤ s ≤ 1 t(1 −s)α−2 Γ(α− 1) − (t−s)α−1 Γ(α) , 0 ≤ s ≤ t ≤ 1. Proof. By Using Lemma 1.1 and the boundary conditions, we get u(t) = − 1 Γ(α) ∫ t 0 (t−s)α−1y(s)ds + c1t and so u′(1) = − 1 Γ(α−1) ∫ 1 0 (1 − s)α−2y(s)ds + c1. Since u′(1) = 0, c1 = 1Γ(α−1) ∫ 1 0 (1 − s)α−2y(s)ds. Thus, u(t) = − 1 Γ(α) ∫ t 0 (t−s)α−1y(s)ds + t Γ(α−1) ∫ 1 0 (1 −s)α−2y(s)ds. Hence, we conclude that u(t) =∫ 1 0 Gα(t,s)y(s)ds, where Gα(t,s) = t(1−s)α−2 Γ(α−1) − (t−s)α−1 Γ(α) whenever 0 ≤ s ≤ t ≤ 1 and Gα(t,s) = t(1−s)α−2 Γ(α−1) whenever 0 ≤ t ≤ s ≤ 1. � Consider the Green function Gα(t,s) as in Lemma 1.3. If 0 < t ≤ s < 1, then it is clear that Gα(t,s) > 0. If 0 < s < t < 1, then t(1−s)α−2 Γ(α−1) − (t−s)α−1 Γ(α) > 0 if and only if α− 1 > (t−s) α−1 t(1−s)α−2 and so Gα(t,s) > 0. One can check that Gα(t,s) > 0, Gα(t,s) ≤ 1Γ(α−1) and ∫ 1 0 Gα(t,s)ds ≤ 1Γ(α) , for all t,s ∈ (0, 1). Also, ∫ 1 0 Gα(t,s)ds ≥ tΓ(α) − tα Γ(α+1) ≥ t α(α−1) Γ(α+1) and ∂ ∂t Gα(t,s) > 0 for all t,s ∈ (0, 1). Moreover, Gα, ∂ ∂t Gα ∈ CR([0, 1] × [0, 1]), ∂∂tGα(t,s) ≤ 1 Γ(α−1) , for all t,s ∈ [0, 1] and ∫ 1 0 ∂ ∂t Gα(t,s) ≥ 1−t α−1 Γ(α) , for all t ∈ [0, 1]. Suppose that x ∈ C1R[0, 1] and 0 ≤ µ ≤ 1. Since D µx(t) = 1 Γ(2−µ) ∫ t 0 (t−s)−µx′(s)ds for all 0 ≤ t ≤ 1, |Dµx| ≤ ‖ x′‖ Γ(1−µ) ∫ t 0 (t−s)−µds = ‖ x′‖ Γ(2−µ)t 1−µ and so |Dµx| ≤ ‖ x′‖ Γ(2−µ) and D µx ∈ CR[0, 1]. Now, put P = {(x1, . . . ,xm) ∈ Xm : xi(t) ≥ 0 and x′i(t) ≥ 0 for all t ∈ [0, 1] and 0 ≤ i ≤ m}. For each n ≥ 1 and 0 ≤ i ≤ m, define the maps Φi,n(x1, . . . ,xm)(t) = ∫ 1 0 Gαi(t,s)fi,n(s,x1(s), . . . ,xm(s),D µ1x1(s), . . . ,D µmxm(s))ds, and Ψi(x1, . . . ,xm)(t) = ∫ 1 0 Gαi(t,s)gi(s,x1(s), . . . ,xm(s),D µ1x1(s), . . . ,D µmxm(s))ds, Tn(x1, . . . ,xm)(t) =  Φ1,n(x1, . . . ,xm)(t)... Φm,n(x1, . . . ,xm)(t)   and Ψ(x1, . . . ,xm)(t) =  Ψ1(x1, . . . ,xm)(t)... Ψm(x1, . . . ,xm)(t)   for all (x1, . . . ,xm) ∈ P . A SINGULAR SUM FRACTIONAL DIFFERENTIAL SYSTEM 111 Lemma 1.4. The map Ψ : P → P is a contraction. Proof. It is easy to check that Ψi(x1, . . . ,xm)(t) ≥ 0 and Ψ′i(x1, . . . ,xm)(t) = ∫ 1 0 ∂ ∂t Gαi(t,s)gi(s,x1(s), . . . ,xm(s),D µ1x1(s), . . . ,D µmxm(s))ds ≥ 0 for all t ∈ [0, 1], (x1, . . . ,xm) ∈ P and 0 ≤ i ≤ m. Note that, ‖Ψi(x1, . . . ,xm) − Ψi(y1, . . . ,ym)‖ = sup t∈[0,1] ∣∣∣∫ 1 0 Gαi(t,s)[gi(s,x1(s), . . . ,xm(s),D µ1x1(s), . . . ,D µmxm(s)) −gi(s,y1(s), . . . ,ym(s),Dµ1y1(s), . . . ,Dµmym(s))]ds ∣∣∣ ≤ ∣∣∣∫ 1 0 Gαi(t,s)ds ∣∣∣(Li1‖x1 −y1‖ + · · · + Lim‖xm −ym‖ +Lim+1‖D µ1x1 −Dµ1y1‖ + · · · + Li2m‖D µmxm −Dµmym‖) ≤ 1 Γ(αi) (Li1‖x1 −y1‖ + · · · + L i m‖xm −ym‖ + Lim+1 Γ(2 −µ1) ‖x′1 −y ′ 1‖ + · · · + Li2m Γ(2 −µm) ‖x′m −y ′ m‖) ≤ 1 Γ(αi) ( m∑ k=1 Lik + m∑ k=1 Lim+k Γ(2 −µi) ) ‖(x1, . . . ,xm) − (y1, . . . ,ym)‖∗∗ ≤ 1 Γ(αi − 1) ( m∑ k=1 Lik + m∑ k=1 Lim+k Γ(2 −µi) ) ‖(x1, . . . ,xm) − (y1, . . . ,ym)‖∗∗ for all 0 ≤ i ≤ m and so ‖Ψ(x1, . . . ,xm) − Ψ(y1, . . . ,ym)‖∗ = max 1≤i≤m ‖Ψi(x1, . . . ,xm) − Ψi(y1, . . . ,ym)‖ ≤ max 1≤i≤m { 1 Γ(αi − 1) ( m∑ k=1 Lik + m∑ k=1 Lim+k Γ(2 −µi) )} ‖(x1, . . . ,xm) − (y1, . . . ,ym)‖∗∗ . Similarly, one can show that ‖Ψ′(x1, . . . ,xm) − Ψ′(y1, . . . ,ym) ‖∗ ≤ max 1≤i≤m { 1 Γ(αi − 1) ( m∑ k=1 Lik + m∑ k=1 Lim+k Γ(2 −µi) )} ‖(x1, . . . ,xm) − (y1, . . . ,ym) ‖∗∗. Thus, we get ‖Ψ(x1, . . . ,xm) − Ψ(y1, . . . ,ym) ‖∗∗ ≤ max 1≤i≤m { 1 Γ(αi − 1) ( m∑ k=1 Lik + m∑ k=1 Lim+k Γ(2 −µi) )} ‖(x1, . . . ,xm) − (y1, . . . ,ym)‖∗∗ . Since max1≤i≤m { 1 Γ(αi−1) (∑m k=1 L i k + ∑m k=1 Lim+k Γ(2−µi) )} < 1, Ψ is a contraction mapping. � Lemma 1.5. For each n ≥ 1, Tn is a completely continuous operator on P. 112 SHABIBI, POSTOLACHE AND REZAPOUR Proof. Let n ≥ 1, (x1, . . . ,xm) ∈ P and 1 ≤ i ≤ m. Choose a positive constant mi such that fi,n(t,x1(t), . . . ,xm(t),D µ1x1(t), . . . ,D µmxm(t)) ≥ mi for almost all t ∈ [0, 1]. Since Gαi and ∂ ∂t Gαi are nonnegative and continuous on [0, 1]× [0, 1] for all 1 ≤ i ≤ m, we conclude that Φi,n(x1, . . . ,xm)(t) ≥ 0 and (Φi,n(x1, . . . ,xm)) ′ (t) ≥ 0 for all t ∈ [0, 1] and 1 ≤ i ≤ m. Hence, Tn maps P into P . Now, we prove that Tn is continuous. Let {(x1,k, . . . ,xm,k)} be a convergent sequence in P with limk→∞(x1,k, . . . ,xm,k) = (x1, . . . ,xm). In this case, we get limk→∞xi,k = xi and limk→∞x ′ i,k = x ′ i uniformly on [0, 1] (i = 1, 2, . . . ,m). But, |Dµixi,k(t) − Dµixi(t)| ≤ ‖x′i,k−x′i‖ Γ(2−µi) for all t ∈ [0, 1] and 1 ≤ i ≤ m. Thus, we conclude that limk→∞D µixi,k(t) = D µixi(t) uniformly on [0, 1]. Hence, lim k→∞ fi,n(t,x1,k(t), . . . ,xm,k(t),D µ1x1,k(t), . . . ,D µmxm,k(t)) = fi,n(t,x1(t), . . . ,xm(t),D µ1x1(t), . . . ,D µmxm(t)). Since fi,n ∈ Car([0, 1] × R2m), {(x1,k, . . . ,xm,k)} is bounded in Xm there exist a map ϕi ∈ L1[0, 1] such that mi ≤ fi,n(t,x1,k(t), . . . ,xm,k(t),Dµ1x1,k(t), . . . ,Dµmxm,k(t)) ≤ ϕi(t) (1.3) for almost all t ∈ [0, 1], 1 ≤ i ≤ m and k ≥ 1. By using the Lebesgue dominated convergence theorem, we conclude that |Φi,n(x1,k, . . . ,xm,k)(t) − Φi,n(x1, . . . ,xm)(t)| ≤ 1 Γ(αi) ∫ 1 0 |fi,n(s,x1,k(s), . . . ,xm,k(s),Dµ1x1,k(s), . . . ,Dµmxm,k(s)) −fi,n(s,x1(s), . . . ,xm(s),Dµ1x1(s), . . . ,Dµmxm(s))|ds, and |(Φi,n(x1,k, . . . ,xm,k) )′(t) − (Φi,n(x1, . . . ,xm) )′(t) | ≤ 1 Γ(αi − 1) ∫ 1 0 |fi,n(s,x1,k(s), . . . ,xm,k(s),Dµ1x1,k(s), . . . ,Dµmxm,k(s)) −fi,n(s,x1(s), . . . ,xm(s),Dµ1x1(s), . . . ,Dµmxm(s))|ds. Hence, limk→∞ ∣∣∣(Φi,n(x1,k, . . . ,xm,k))j (t) − (Φi,n(x1, . . . ,xm))j (t)∣∣∣ = 0 uniformly on [0, 1] for j = 0, 1. Thus, ‖Tn(x1,k, . . . ,xm,k)(t) −Tn(x1, . . . ,xm)(t)‖∗∗ → 0 and so Tn is continuous. Now, we prove that Tn maps bounded sets to relatively compact subsets. Let {(x1,k, . . . ,xm,k)} be a bounded sequence in P. Choose a positive number S such that ‖xi,k‖≤ S and ∥∥∥x′i,k∥∥∥ ≤ S for all 1 ≤ i ≤ m and for k ≥ 1. Since ‖Dµixi,k‖ ≤ 1Γ(2−µi) for all 1 ≤ i ≤ m, there exist a map ϕi ∈ L1[0, 1] such that (1.3) holds for almost all t ∈ [0, 1], 1 ≤ i ≤ m and k ≥ 1. Note that 0 ≤ Φi,n(x1,k, . . . ,xm,k)(t) = ∫ 1 0 Gαi(t,s)fi,n(s,x1,k(s), . . . ,xm,k(s),D µ1x1,k(s), . . . ,D µmxm,k(s))ds ≤ 1 Γ(αi) ∫ 1 0 ϕi(s)ds = ‖ϕi‖1 Γ(αi) and 0 ≤ (Φi,n(x1,k, . . . ,xm,k))′(t) = ∫ 1 0 ∂ ∂t Gαi(t,s)fi,n(s,x1,k(s), . . . ,xm,k(s),D µ1x1,k(s), . . . ,D µmxm,k(s))ds ≤ 1 Γ(αi − 1) ∫ 1 0 ϕi(s)ds = ‖ϕi‖1 Γ(αi − 1) A SINGULAR SUM FRACTIONAL DIFFERENTIAL SYSTEM 113 for all 1 ≤ i ≤ m. Thus, ‖Tn(x1,k, . . . ,xm,k)(t)‖∗∗ ≤ B, where B = max1≤i≤m ‖ϕi‖1 Γ(αi−1) . This implies that {Tn(x1,k, . . . ,xm,k)} is bounded in Xm. Let 0 ≤ t1 ≤ t2 ≤ 1 and 1 ≤ i ≤ m. Then, we have∣∣(Φi,n(x1,k, . . . ,xm,k))′ (t2) − (Φi,n(x1,k, . . . ,xm,k))′ (t1)∣∣ ≤ t2 − t1 Γ(αi − 1) ∫ 1 0 (1 −s)αi−2fi,n(s,x1,k(s), . . . ,xm,k(s),Dµ1x1,k(s), . . . ,Dµmxm,k(s))ds + 1 Γ(αi) ∣∣∣∫ t2 0 (t2 −s)αi−1fi,n(s,x1,k(s), . . . ,xm,k(s),Dµ1x1,k(s), . . . ,Dµmxm,k(s))ds − ∫ t1 0 (t1 −s)αi−1fi,n(s,x1,k(s), . . . ,xm,k(s),Dµ1x1,k(s), . . . ,Dµmxm,k(s))ds ∣∣∣ ‖fi,n‖1 Γ(αi − 1) (t2 − t1) + 1 Γ(αi) [ ∫ t1 0 ((t2 −s)αi−1 − (t1 −s)αi−1)× fi,n(s,x1,k(s), . . . ,xm,k(s),D µ1x1,k(s), . . . ,D µmxm,k(s))ds + ∫ t2 t1 (t2 −s)αi−2fi,n(s,x1,k(s), . . . ,xm,k(s),Dµ1x1,k(s), . . . ,Dµmxm,k(s))ds] ≤ ‖ϕi‖1 Γ(αi − 1) (t2 − t1) + 1 Γ(αi) [∫ t1 0 ( (t2 −s)αi−1 − (t1 −s)αi−1 ) ϕi(s)ds + (t2 − t1)αi−1 ‖ϕi‖1 ] . Let ε > 0 be given. Since the function |t − s|αi−1 is uniformly continuous on [0, 1] × [0, 1], there exist δ > 0 such that (t2 − s)αi−1 − (t1 − s)αi−1 < ε for all 0 ≤ t1 ≤ t2 ≤ 1 with t2 − t1 < δ and 0 ≤ s ≤ t1. If 0 ≤ t1 ≤ t2 ≤ 1 with t2 − t1 < min{δ,ε}, then we have∣∣(Φi,n(x1,k, . . . ,xm,k))′ (t2) − (Φi,n(x1,k, . . . ,xm,k))′ (t1)∣∣ < 3ε‖ϕi‖1 Γ(αi) . Thus, ‖T ′n(x1,k, . . . ,xm,k)(t2) −T ′ n(x1,k, . . . ,xm,k)(t1)‖∗ < max1≤i≤m 3ε‖ϕi‖1 Γ(αi) . This implies that {T ′n(x1,k, . . . ,xm,k)} is equi-continuous on [0, 1]. Now by using the Arzela-Ascoli theorem, {Tn(x1,k, . . . ,xm,k)} is relatively compact and so Tn is completely continuous. � 2. Main Results Now, we are ready to provide our main results about the problem (1.1). Theorem 2.1. Assume that hypotheses H1 and H2 hold. Then, the problem (1.2) with the boundary conditions in (1.1) has a solution (x1,n, . . . ,xm,n) in P such that xi,n(t) ≥ mit αi(αi−1) Γ(αi+1) , for all t ∈ [0, 1] and 1 ≤ i ≤ m. Proof. By using Lemma 1.4, the mapping Ψ : P → P is a contraction. Also by using Lemma 1.5, the operator Tn : P → P is a completely continuous one. Now by using Lemma 1.2, there exists (x1,n, . . . ,xm,n) ∈ P such that (x1,n, . . . ,xm,n) = Tn(x1,n, . . . ,xm,n) + Ψ(x1,n, . . . ,xm,n). Thus, xi,n = Φi,n(x1,n, . . . ,xm,n) + Ψi(x1,n, . . . ,xm,n) for all 1 ≤ i ≤ m. Hence, xi,n(t) = ∫ 1 0 Gαi(t,s)fi,n(s,x1(s), . . . ,xm(s),D µ1x1(s), . . . ,D µmxm(s))ds + ∫ 1 0 Gαi(t,s)gi(s,x1(s), . . . ,xm(s),D µ1x1(s), . . . ,D µmxm(s))ds for all 1 ≤ i ≤ m. By using the assumptions, we get xi,n(t) ≥ mit αi(αi−1) Γ(αi+1) for all t ∈ [0, 1] and 1 ≤ i ≤ m. One can check that the element (x1,n, . . . ,xm,n) ∈ P is a solution for the problem (1.2) with the boundary conditions in (1.1). � Lemma 2.1. Assume that hypotheses H1, H2 and H3 hold. If (x1,n, . . . ,xm,n) is a solution for the problem (1.2) with the boundary conditions in (1.1), then {(x1,n, . . . ,xm,n)}n≥1 is relatively compact in P. 114 SHABIBI, POSTOLACHE AND REZAPOUR Proof. As we found in the last result, xi,n(t) = ∫ 1 0 Gαi(t,s)fi,n(s,x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s))ds + ∫ 1 0 Gαi(t,s)gi(s,x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s))ds for all n ≥ 1, t ∈ [0, 1] and 1 ≤ i ≤ m. Thus, x′i,n(t) ≥ mi ∫ 1 0 ∂ ∂t Gαi(t,s)ds ≥ mi(1 − tαi−1) Γ(αi) , for all t ∈ [0, 1]. Hence, Dµixi,n(t) = 1 Γ(1 −µi) ∫ t 0 (t−s)−µix′i,n(s)ds ≥ mi Γ(αi)Γ(1 −µi) ∫ t 0 (t−s)−µi(1 −sαi−1)ds > mi Γ(αi)Γ(1 −µi) ∫ t 0 (t−s)−µi(1 −s)ds for all t ∈ [0, 1]. Thus, Dµixi,n(t) > mit 1−µi Γ(αi)Γ(2 −µi) − mit 2−µi Γ(αi)Γ(3 −µi) = mit 1−µi Γ(αi) ( Γ(3 −µi) − tΓ(2 −µi) Γ(2 −µi)Γ(3 −µi) ) = mit 1−µi Γ(αi) ( 2 −µi − t Γ(3 −µi) ) ≥ mit 1−µi(1 −µi) Γ(αi)Γ(3 −µi) for all t ∈ [0, 1]. Since Γ(3 −µi) ≤ 2, we get Dµixi,n(t) ≥ mit 1−µi(1−µi) 2Γ(αi) . Now, put Mi = mi min { 1 Γ(αi) , αi − 1 Γ(αi + 1) } . Then, xi,n(t) ≥ Mitαi and Dµixi,n(t) ≥ Mi(1−µi) 2 t1−µi for all n ≥ 1, t ∈ [0, 1] and 1 ≤ i ≤ m. Hence, pi(x1,n(t), . . . ,xm,n(t),D µ1x1,n(t), . . . ,D µmxm,n(t)) ≤ pi ( M1t α1, . . . ,Mmt αm, M1(1 −µ1) 2 t1−µ1 . . . , Mm(1 −µm) 2 t1−µm ) for all n ≥ 1, t ∈ [0, 1] and 1 ≤ i ≤ m. This implies that 0 ≤ x′i,n(t) = ∫ 1 0 ∂ ∂t Gαi(t,s)fi,n(s,x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s))ds + ∫ 1 0 ∂ ∂t Gαi(t,s)gi(s,x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s))ds ≤ 1 Γ(αi − 1) ∫ 1 0 pi ( M1s α1, . . . ,Mms αm, M1(1 −µ1) 2 s1−µ1 . . . , Mm(1 −µm) 2 s1−µm ) ds + 1 Γ(αi − 1) ∫ 1 0 γi(s)hi(x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s))ds for all n ≥ 1, t ∈ [0, 1] and 1 ≤ i ≤ m. Also, we have∫ 1 0 pi ( M1s α1, . . . ,Mms αm, M1(1 −µ1) 2 s1−µ1, . . . , Mm(1 −µm) 2 s1−µm ) ds := Λi < ∞ for all 1 ≤ i ≤ m. If ηn = ‖(x1,n, . . . ,xm,n)‖∗∗, then ‖xi,n‖ ≤ ηn and ∥∥x′i,n∥∥ ≤ ηn for all i and n. Thus, |Dµixi,n(t)| ≤ ηnΓ(2−µi) for all n ≥ 1, t ∈ [0, 1] and 1 ≤ i ≤ m and so 0 ≤ x′i,n(t) ≤ 1 Γ(αi − 1) ( Λi + hi(1 + ηn, . . . , 1 + ηn, 1 + ηn Γ(2 −µ1) , . . . , 1 + ηn Γ(2 −µm) ) ) ‖γi‖1 and so 0 ≤ xi,n(t) = ∫ t 0 x′i,n(s)ds for all n ≥ 1, t ∈ [0, 1] and 1 ≤ i ≤ m. A SINGULAR SUM FRACTIONAL DIFFERENTIAL SYSTEM 115 Similarly, we obtain 0 ≤ xi,n(t) ≤ 1 Γ(αi − 1) ( Λi + hi(1 + ηn, . . . , 1 + ηn, 1 + ηn Γ(2 −µ1) , . . . , 1 + ηn Γ(2 −µm) ) ) ‖γi‖1 and ηn ≤ 1Γ(αi−1) ( Λi + hi(1 + ηn, . . . , 1 + ηn, 1 + ηn Γ(2−µ1) , . . . , 1 + ηn Γ(2−µm) ) ) ‖γi‖1 for all i. Since limx→∞ hi(x,...,x) x = 0 for all 1 ≤ i ≤ m, there exists Li > 0 such that 1 Γ(αi − 1) ( Λi + hi(1 + νi, . . . , 1 + νi, 1 + νi Γ(2 −µ1) , . . . , 1 + νi Γ(2 −µm) ) ) ‖γi‖1 < νi for all νi > Li. If L = max{L1, . . . ,Lm}, then 1 Γ(αi − 1) ( Λi + hi(1 + ν, . . . , 1 + ν, 1 + ν Γ(2 −µ1) , . . . , 1 + ν Γ(2 −µm) ) ) ‖γi‖1 < ν for all ν > L. Thus, ηn = ‖(x1,n, . . . ,xm,n)‖∗∗ = max1≤i≤m{‖xi,n‖ , ∥∥x′i,n∥∥} < L which implies {‖(x1,n, . . . ,xm,n)‖∗∗} is bounded in Xm. Now, put Bi := hi ( 1 + L,. . . , 1 + L, 1 + L Γ(2 −µ1) , . . . , 1 + L Γ(2 −µm) ) and Fi(t) := pi ( M1t α1, . . . ,Mmt αm, M1(1 −µ1) 2 t1−µ1 . . . , Mm(1 −µm) 2 t1−µm ) , for all i and almost all t ∈ [0, 1]. Then, we have Λi = ∫ 1 0 Fi(t)dt and fi,n(t,x1,n(t), . . . ,xm,n(t),D µ1x1,n(t), . . . ,D µmxm,n(t)) +gi(t,x1,n(t), . . . ,xm,n(t),D µ1,nx1(t), . . . ,D µmxm,n(t)) ≤ Fi(t) + Biγi(t). If 0 ≤ t1 ≤ t2 ≤ 1, then |x′i,n(t2) −x ′ i,n(t1)| = ∣∣∣∫ 1 0 ( ∂ ∂t Gαi(t2,s) − ∂ ∂t Gαi(t2,s))× [fi,n(s,x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s)) +gi(s,x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s))]ds ∣∣∣ ≤ 1 Γ(αi − 1) [(t2 − t1) ∫ 1 0 Fi(s) + Biγi(s)ds + ∫ t1 0 ((t2 −s)αi−2 − (t1 −s)αi−2)(Fi(s) + Biγi(s) )ds + ∫ t2 t1 (t2 −s)αi−2 (Fi(s) + Biγi(s)) ds] ≤ 1 Γ(αi − 1) [(t2 − t1)(Λi + Bi‖γi‖1) + ∫ t1 0 ((t2 −s)αi−2 − (t1 −s)αi−2)(Fi(s) + Biγi(s))ds +(t2 − t1)αi−2(Λi + Bi‖γi‖1)]. Let �i > 0 be given. Choose δ(�i) > 0 such that (t2−s)αi−2−(t1−s)αi−2 < �i for all 0 ≤ t1 < t2 ≤ 1 with t2 − t1 < δ(�i) and 0 ≤ s ≤ t. If we put 0 < δ < min{δ(�1), . . . ,δ(�m), α1−2 √ �1, . . . , αm−2 √ �m}, then |x′i,n(t2) − x ′ i,n(t1)| ≤ 3 �i Γ(αi−1) (Λi + Bi‖γi‖1) for all 1 ≤ i ≤ m. Hence, {(x1,n, . . . ,xm,n) ′} is equi-continuous and so {(x1,n, . . . ,xm,n)}n≥1 is relatively compact in Xm. � Theorem 2.2. Assume that hypotheses H1, H2 and H3 hold. Then the system (1.1) has a solution (x1, . . . ,xm) in P such that D µixi(t) ≥ Mi(1−µi) 2 t1−µi and xi(t) ≥ Mitαi for all t ∈ [0, 1] and 1 ≤ i ≤ m. 116 SHABIBI, POSTOLACHE AND REZAPOUR Proof. By Theorem 2.1, for each n ≥ 1 the system (1.2) with the boundary conditions in (1.1) has a solution (x1,n, . . . ,xm,n) ∈ P . By Lemma 2.1, {(x1,n, . . . ,xm,n)}n≥1 is relatively compact in Xm. By using the Arzela-Ascoli theorem, there exists (x1, . . . ,xm) such that limn→∞(x1,n, . . . ,xm,n) = (x1, . . . ,xm). It is obvious that (x1, . . . ,xm) satisfies the boundary conditions of the problem (1.1), Dµixi,n → Dµixi and lim n→∞ fi,n(t,x1,n(t), . . . ,xm,n(t),D µ1x1,n(t), . . . ,D µmxm,n(t)) +gi(t,x1,n(t), . . . ,xm,n(t),D µ1x1,n(t), . . . ,D µmxm,n(t)) = fi(t,x1(t), . . . ,xm(t),D µ1x1(t), . . . ,D µmxm(t)) +gi(t,x1(t), . . . ,xm(t),D µ1x1(t), . . . ,D µmxm(t)) for almost all t ∈ [0, 1] and 1 ≤ i ≤ m and so (x1, . . . ,xm) ∈ P . Now, suppose that K := supn≥1 ‖(x1,n, . . . ,xm,n)‖∗∗. Then, we have ‖D µixi,n‖≤ KΓ(2−µi) for all n and 1 ≤ i ≤ m. Hence, 0 ≤ Gαi(t,s)[fi,n(s,x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s)) +gi(s,x1,n(s), . . . ,xm,n(s),D µ1x1,n(s), . . . ,D µmxm,n(s))] ≤ 1 Γ(αi − 1) ( Fi(s) + hi(1 + K,.. . , 1 + K, 1 + K Γ(2 −µi) , . . . , 1 + K Γ(2 −µi) )γi(s) ) for almost all (t,s) ∈ [0, 1] × [0, 1], n ≥ 1 and 1 ≤ i ≤ m. Now by using the Lebesgue dominated theorem, we conclude that xi(t) = ∫ 1 0 Gαi(t,s)fi(s,x1(s), . . . ,xm(s),D µ1x1(s), . . . ,D µmxm(s))ds + ∫ 1 0 Gαi(t,s)gi(s,x1(s), . . . ,xm(s),D µ1x1(s), . . . ,D µmxm(s))ds for all 1 ≤ i ≤ m and t ∈ [0, 1], and this completes the proof. � Next example illustrates our last result. Example 2.1. Let us study the system  D 5 2 x1 + 1 t 2 3 (2 + a1x1 + a2x2 + a3D 1 3 x1 + a4D 1 2 x2) +(0.1e 1 1+x1 + 0.2e 1 1+x2 + 0.1e 1 1+D13x1 + 0.2e 1 1+D12x2 ) = 0 D 7 3 x2 + 1 t 1 2 (1 + b1x1 + b2x2 + b3D 1 3 x1 + b4D 1 2 x2) +(0.2e 1 1+x1 + 0.2e 1 1+x2 + 0.3e 1 1+D13x1 + 0.1e 1 1+D12x2 ) = 0 with boundary condition x1(0) = x2(0) = 0, x ′ 1(1) = x ′ 2(1) = 0 and x ′′ 1 (0) = x ′′ 2 (0) = 0, where a1,a2,a3,a4,b1,b2,b3 and b4 are positive constants. Consider the functions f1(t,x1,x2,x3,x4) = 1 t 2 3 (2 + a1x1 + a2x2 + a3x3 + a4x4), f2(t,x1,x2,x3,x4) = 1 t 1 2 (1 + b1x1 + b2x2 + b3x3 + b4x4), g1(t,x1,x2,x3,x4) = p1(x1,x2,x3,x4) = 0.1e 1 1+x1 + 0.2e 1 1+x2 + 0.1e 1 1+x3 + 0.2e 1 1+x4 , g2(t,x1,x2,x3,x4) = p2(x1,x2,x3,x4) = 0.2e 1 1+x1 + 0.2e 1 1+x2 + 0.3e 1 1+x3 + 0.1e 1 1+x4 , h1(x1,x2,x3,x4) = 2 + a1x1 + a2x2 + a3x3 + a4x4, h2(x1,x2,x3,x4) = 1 + b1x1 + b2x2 + b3x3 + b4x4, λ1(t) = 1 t 2 3 and λ2(t) = 1 t 1 2 . Put m = 2, α1 = 5 2 , α2 = 7 3 , µ1 = 1 2 , µ2 = 1 3 , L11 = 0.1, L 1 2 = 0.2, L13 = 0.1, L 1 4 = 0.2, L 2 1 = 0.2, L 2 2 = 0.2, L 2 3 = 0.3, L 2 4 = 0.1, m1 = 2 and m2 = 1. One can check that f1 and f2 are Caratheodory functions, f1(t,x1,x2,x3,x4) ≥ 2, f2(t,x1,x2,x3,x4) ≥ 1 A SINGULAR SUM FRACTIONAL DIFFERENTIAL SYSTEM 117 for all (x1,x2,x3,x4) ∈ (0,∞)4 and almost all t ∈ [0, 1], g1 and g2 are nonnegative, |g1(t,x1,x2,x3,x4) −g1(t,y1,y2,y3,y4)| ≤ 4∑ i=1 L1i |xi −yi| and |g2(t,x1,x2,x3,x4) −g2(t,y1,y2,y3,y4)| ≤ 4∑ i=1 L2i |xi −yi| for all (x1,x2,x3,x4), (y1,y2,y3,y4) ∈ (0,∞)4 and t ∈ [0, 1]. Also, we have 1 Γ(α1 − 1) ( 2∑ k=1 L1k + 2∑ k=1 L12+k Γ(2 −µ1) ) = 1 Γ( 3 2 − 1) (0.1 + 0.2 + 0.1 Γ( 5 3 ) ) + 0.2 Γ( 5 3 ) ) < 1 and 1 Γ(α2 − 1) ( 2∑ k=1 L2k + 2∑ k=1 L22+k Γ(2 −µ2) ) = 1 Γ( 4 3 − 1) (0.2 + 0.2 + 0.3 Γ( 3 2 ) ) + 0.1 Γ( 3 2 ) ) < 1. Note that the maps p1 and p2 are non-increasing respect to all components. If M1 := m1 α1 − 1 Γ(α1 + 1) = 2 × 3 2 Γ( 7 2 ) = 3 Γ( 7 2 ) , M2 := m2 α2 − 1 Γ(α2 + 1) = 1 × 4 3 Γ( 10 3 ) = 4 3Γ( 10 3 ) , then ∫ 1 0 p1 ( M1t α1,M2t α2, M1(1 −µ1) 2 t1−µ1, M2(1 −µ2) 2 t1−µ2 ) dt < ∞ and ∫ 1 0 p2 ( M1t α1,M2t α2, M1(1 −µ1) 2 t1−µ1, M2(1 −µ2) 2 t1−µ2 ) dt < ∞. Also, the functions h1 and h2 are non-decreasing respect to all components, lim x→∞ h1(x,. . . ,x) x = lim x→∞ 2 + a1x + a2x + a3x + a4x x = 0 and lim x→∞ h2(x,. . . ,x) x = lim x→∞ 1 + b1x + b2x + b3x + b4x x = 0. Now by using Theorem 2.2, the problem (2.1) has a positive solution. References [1] R. P. Agarwal, D. O’Regan and S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl. 371 (2010), 57-68. [2] R. P. Agarwal, D. O’Regan and S. Stanek, Positive solutions for mixed problems of singular fractional differential equations, Math. Nachr. 285 (1) (2012), 27-41. [3] Z. Bai and T. Qiu, Existence of positive solution for singular fractional differential equation, Appl. Math. Comput. 215 (2009), 2761-2767. [4] Z. Bai, W. Sun and W. Zhang, Positive solutions for boundary value problems of singular fractional differential equations, Abstr. Appl. Anal. 2013 (2013), Art. ID 129640. [5] I. Podlubny, Fractional Differential Equations, Academic Press, 1999. [6] R. Li, H. Zhang and H. Tao, Unique solution of a coupled fractional differential system involving integral boundary conditions from economic model, Abstr. Appl. Anal. 2013 (2013), Art. ID 615707. [7] Sh. Rezapour and M. Shabibi, A singular fractional fractional differential equation with Riemann-Liouville integral boundary condition, J. Adv. Math. Stud. 8 (1) (2015), 80-88. [8] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integral and Derivative: Theory and Applications, Gordon and Breach (1993). [9] D. R. Smart, Fixed Point Theorems, Cambridge University Press, 1980. [10] S. Stanek, The existence of positive solutions of singular fractional boundary value problems, Comput. Math. Appl. 62 (2011), 1379-1388. [11] N. Tatar, An impulsive nonlinear singular version of the Gronwall-Bihari inequality, J. Inequal. Appl. 2006 (2006), Art. ID 84561. 118 SHABIBI, POSTOLACHE AND REZAPOUR [12] A. Yang and W. Ge, Positive solutions for boundary value problems of n-dimension nonlinear fractional differential system, Bound. Value Probl. 2008 (2008), Art. ID 437453. 1Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran 2Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan 3Department of Mathematics & Computer Science, University Politehnica of Bucharest, 313 Splaiul Independenţei, 060042 Bucharest, Romania 4Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran ∗Corresponding author: mi.postolache@mail.cmuh.org.tw; mihai@mathem.pub.ro 1. Preliminaries 2. Main Results References