Int. J. Aquat. Biol. (2018) 6(1): 8-14 DOI: ISSN: 2322-5270; P-ISSN: 2383-0956 Journal homepage: www.ij-aquaticbiology.com © 2018 Iranian Society of Ichthyology Original Article Comparison of meristic traits in Transcaucasian chub (Squalius turcicus De Filippi, 1865) from Caspian Sea basin Atta Mouludi-Saleh, Yazdan Keivany*,1Seyed Amir Hossein Jalali Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran. Article history: Received 10 September 2017 Accepted 2 January 2018 Available online 2 5 February 2018 Keywords: Cluster Analysis Kolmogorov-Smirnov Meristic Morphology Abstract: For comparison of meristic characters of Squalius turcicus, in 12 rivers of Caspian Sea basin, 535 specimens were captured. Some 14 meristic characters were counted. Classification of meristic characters showed that most specimens of all populations have 8 soft dorsal rays, 9 soft anal rays, 19 branched caudal fin rays, 15 soft pectoral rays, 9 soft pelvic rays, 41-47 lateral line scales, 7-9 scales above LL, 3-5 scales below LL, 18-21 predorsal scales and 14-16 circumpeduncle scales. The results showed significant differences (P<0.05) in means of all meristic characters except dorsal, pelvic and pectoral fin spins between the populations. The PCA and CVA showed overlapping among the populations, although some populations were separated from the others. Also, cluster analysis divided Divandareh River population in a separate group and it was distinct from other populations. Generally, the results of meristic characters cannot well-separate the populations of this species from each other. Introduction Transcaucasian chub, Squalius turcicus formerly known as S. cephalus in the Iranian inland waters is a cyprinid species distributed in the Caspian Sea and Urmia Lake basins (Keivany et al., 2016a; Esmaeili et al., 2017). This species lives in the middle and upper parts of rivers with relatively cool water and cobblestone bottoms. Turan et al. (2007) studied the morphological variation in S. cephalus, across Turkish inland waters. Mouludi-Saleh et al. (2016b, c, 2017a) studied the morphology of S. namak populations in rivers of the Namak Lake basin. Poria et al. (2014) studied morphometric and meristic characteristics of S. cephalus in the Shohaday-e-Songhor Dam Lake. Gorjian Arabi et al. (2011) surveyed morphological diversity of S. cephalus in the Talar River, Mazandaran Province. Babazadeh and Vatandoost (2013) surveyed morphometric and meristic characteristics of S. cephalus in Tajan River, Mazandaran Province. Alizadeh et al. (2015) studied morphological variation of S. orientalis in the southern Caspian Sea basin. Despite its wide distribution, there is no comprehensive work on the species. *Corresponding author: Yazdan Keivany DOI: https://doi.org/10.22034/ijab.v6i1.317 E-mail address: keivany@cc.iut.ac.ir Recently, Özuluğ and Freyhof (2011) suggested that S. turcicus De Filippi, 1865 might be a valid species occurring in the southern Caspian Sea basin and Turan et al. (2013) supported this view and provided some morphological data distinguishing this species from S. orientalis. Khaefi et al. (2016) suggest that S. orientalis and S. turcicus are very closely related and might represent just one species. Squalius turcicus might be more widespread and Squalius populations of the Urmia Lake and Caspian Sea basins might belong to this species (Esmaeili et al., 2017). Herein, we followed Esmaeili et al. (2017) and consider the southern Caspian Sea species as S. turcicus. The aim of this study was to evaluate the diversity of meristic characters in populations of S. turcicus in the Caspian Sea basin for possibility of finding distinct populations. Materials and Methods During 2010-2011 from 16 rivers of the Caspian Sea basin, including Babol, Palangab, Tajan, Talvar, Chalak, Divandareh, Zarin, Zalkie, Sefid, Shafa Ghezel-Ozan, Kasma, Tonekabon, Neka, Noor and 9 Int. J. Aquat. Biol. (2018) 6(1): 8-14 Haraz rivers (Fig. 1), 535 specimens were collected by a seine net. After anesthetizing with 1% clove oil solution and fixing in 10% neutralized formalin, specimens were transferred to the Isfahan University of Technology Ichthyology Museum (IUT-IM) for further studies. Some 14 meristic characters were counted under a stereomicroscope (Tables 1, 2, 3). The data were analysed for normality using Kolmogorov-Smirnov test and non-normal data were analyzed by Kruskal-Wallis test. These analyses were carried out using Excel 2013 and SPSS 19 for Windows at 95% confidence limit. Significantly different data were used for Principal Component Analysis (PCA), Canonical variate analysis (CVA) and Cluster analyses (CA) in PAST software. Results According to the results, all data were not normal. Except dorsal, pelvic and pectoral fin spins, all other 11 examined characters were significantly different among the populations. The significant characters were used for PCA, CVA and cluster analyses. Dorsal spins were 2-3 in all specimens from different rivers and their soft rays ranged 7-10. There were significant differences between some populations (P<0.05) (Table 1). Anal spins were 2-3 in all specimens from different basins and their soft rays ranged 8-10. There were significant differences between some populations (P<0.05) (Table 1). The principal caudal rays ranged 18-21 and a significant differences found between basins (P<0.05) (Table 2). Table 1. Minimum-maximum, mean±SD and frequency of each count (%) of the dorsal and anal fin rays of Squalius turcicus from different Caspian Sea basin tributaries in Iran, collected during summer 2010-2011. Dorsal soft rays Frequency of each count (%) Anal soft rays Frequency of each count (%) rivers min-max mean±SD 7 8 9 10 min-max mean±SD 25 52 10 Babol 8-10 9.31±0.71 0 16 37 47 8-10 8.97±0.70 18 32 23 Palangab 8-10 9.14±0.59 0 10 64 26 8-10 9.32±0.77 22 56 50 Tajan 8-10 8.83±0.71 0 34 48 18 8-10 9.00±0.67 7 79 22 Talvar 8-9 8.50 ±0.52 0 50 50 0 8-10 9.07±0.47 0 56 14 Tonekabon 8-10 8.81±0.75 0 38 44 18 9-10 9.44±0.51 0 88 44 Chalak 8-9 8.11±0.32 0 88 12 0 9-10 8.11±0.32 25 65 12 Divandareh 8-10 8.40±0.68 0 70 20 10 8-10 8.85±0.59 54 46 10 Zarin 8 7.00±0.00 0 100 0 0 8 8.33±0.49 92 4 0 Zalkie 8-9 8.11±0.32 0 11 89 0 8-10 8.12±0.44 67 33 4 Sefied 7-9 7.89±0.47 17 78 5 0 8-9 8.33±0.49 62 38 0 Shafa 8-9 8.23±0.44 0 38 62 0 8-9 8.23±0.44 43 67 0 Gheze-Ozan 8-9 8.63±0.49 0 37 63 0 8-9 8.57±0.50 54 46 0 Kasma 8-9 8.03±0.19 0 3 97 0 8-9 8.47±0.51 59 31 0 Neka 8 8.00±0.00 0 100 0 0 8-9 8.41±0.50 71 29 0 Noor 8 8.00±0.00 0 100 0 0 8-9 8.29±0.46 59 31 0 Haraz 8-9 8.00±0.00 0 97 3 0 8-9 8.23±0.44 42 46 0 Total 7-10 8.47±0.69 1 61 30 8 8-10 8.69±0.66 25 52 12 Figure 1. Collection points of Squalius turcicus in the Caspian Sea basin. 10 Mouludi-Saleh et al./ Comparison of meristic traits in Squalius turcicus The pectoral spiny rays were 0-1 in the examined specimens and their branched rays ranged 14-17. The pelvic spiny rays were 1-2 in the examined specimens and their rays ranged 7-9 in all populations. A significant differences was found between some of the rivers for the pectoral rays (P<0.05) (Table 4). The scales below the lateral line ranged 3-5, on the lateral line 41-47, above the lateral line 7-9, predorsal 18-21 and circumpeduncle 12-16 in the examined specimens. There was a significant differences between some of the rivers (P<0.05) (Table 4). According to PCA, 52.83% of the variance were accounted for first two components positioned above the Jolliffe line and circumpeduncle scales along the two main axes of PC1 and PC2 had the highest variation (Fig. 2). According to the classification of the populations (Fig. 3), the studied populations partially overlap and do not fully differentiate from each other. Although some populations (Ghezel-Ozan, Kasma, Sefid and Talvar) are separated. The results of Table 2. Minimum-maximum, mean±SD and frequency of each count (%) of the caudal fin rays of Squalius cephalus from different Caspian Sea basin tributaries in Iran, collected during summer 2010-2011. Caudal rays Frequency of each count (%) rivers min-max min-max 18 19 20 21 Babol 18-21 18-21 2 51 35 13 Palangab 18-20 18-20 7 79 14 0 Tajan 18-20 18-20 10 78 12 0 Talvar 18-20 18-20 14 64 22 0 Tonekabon 18-20 18-20 6 82 12 0 Chalak 19-20 19-20 0 74 26 0 Divandareh 18-20 18-20 10 85 5 0 Zarin 18-19 18-19 20 80 0 0 Zalkie 18-19 18-19 12 88 0 0 Sefied 18-20 18-20 6 88 6 0 Shafa 18-20 18-20 7 61 32 0 Ghezel-Ozan 18-20 18-20 4 93 3 0 Kasma 19-21 19-21 0 86 7 7 Neka 18-19 18-19 2 98 0 0 Noor 18-19 18-19 2 98 0 0 Haraz 18-20 18-20 3 3 14 80 Total 18-21 18-21 5 80 12 3 Table 3. Minimum-maximum and mean±SD of the scales in Squalius turcicus from Caspian Sea basin during 2010-2011. Scales below LL LL sclaes Scales above LL Predorsal sclaes Circumpeduncle scales rivers min- max mean±SD min- max mean±SD min- max mean±SD min- max mean±SD min- max mean±SD Babol 3-4 3.79±0.58 41-45 43.29±0.6 3 7-8 7.97±0.16 18-20 18.79±0.66 14-15 14.01±0.12 Palangab 3-4 3.68±0.48 43-46 43.96±0.9 2 8-9 8.22±0.15 18-19 18.32±0.48 14-16 14.21±0.63 Tajan 4-5 4.43±0.50 42-46 43.33±1.0 0 7-8 7.97±0.18 18-20 18.24±0.50 14 14.00±0.00 Talvar 3-4 3.43±0.51 43-47 44.14±1.1 0 7-8 7.36±0.50 18-20 19.07±0.92 14-15 14.14±0.53 Tonekabon 3-4 3.19±0.40 43-46 43.88±1.0 2 8-9 8.38±0.25 18-20 18.50±0.52 14-16 14.75±1.00 Chalak 3-4 3.06±0.24 42-47 43.79±1.2 2 7-8 7.97±0.17 18-20 18.57±0.70 14-16 14.74±0.98 Divandareh 3-4 3.35±0.75 43-45 43.90±0.9 1 7-8 7.30±0.47 18-21 19.05±0.94 14-15 14.05±0.60 Zarin 4-5 4.13±0.35 43-46 43.80±0.7 7 7-8 7.60±0.51 18-19 18.53±0.52 14-16 14.53±0.92 Zalkie 3-4 3.80±0.82 42-46 43.80±1.0 8 7-8 7.20±0.41 18-21 18.88±0.83 14-16 14.48±0.77 Sefied 4-5 4.89±0.32 43-46 43.67±0.9 7 7-8 7.17±0.38 18-20 18.50±0.62 14-16 15.00±0.97 Shafa 4-5 3.77±0.60 43-46 43.77±1.1 7 7-8 7.23±0.44 18-20 18.77±0.73 14 14.00±0.00 Ghezel-Ozan 4-5 4.69±0.47 43-45 44.02±0.8 5 7-8 7.55±0.85 18-20 18.76±0.52 14-16 15.10±1.01 Kasma 3-4 3.97±0.18 44-47 45.87±0.9 7 7-8 7.27±0.45 18-21 18.90±0.76 14-16 15.20±1.00 Neka 3-4 3.69±0.47 44-47 44.59±0.7 0 7-8 7.18±0.39 18-20 18.88±0.56 14-16 14.18±0.57 Noor 4-5 4.29±0.51 43-47 44.81±0.8 7 7-8 7.02±0.14 18-20 18.69±0.55 14-15 14.73±0.74 Haraz 3-4 3.07±0.26 44-46 44.59±0.5 7 7-8 7.14±0.35 18-19 18.31±0.47 14 14.00±0.00 Total 3-5 3.60±0.71 41-47 44.03±1.1 0 7-9 7.55±0.59 18-21 18.65±0.66 14-16 14.42±0.78 11 Int. J. Aquat. Biol. (2018) 6(1): 8-14 Table 4. Minimum-maximum, mean±SD and frequency of each count (%) of the pectoral and pelvic fin rays of Squalius turcicus from different Caspian Sea basin tributaries in Iran, collected during summer 2010-2011. Pectoral fin rays Frequency of each count (%) Pelvic fin rays Frequency of each count (%) rivers min-max mean±SD 14 15 16 17 min-max mean±SD 7 8 9 Babol 14-16 15.12±0.77 24 40 36 0 9 9.00±0.00 0 0 100 Plangab 14-16 15.07±0.90 32 32 36 0 9 9.00±0.00 0 0 100 Tajan 14-17 15.25±0.97 26 35 28 11 8-9 8.65±0.48 0 39 61 Talvar 14-16 15.29±0.61 7 57 36 0 9 9.00±0.00 0 0 100 Tonekabon 14-15 14.69±0.48 5 95 0 0 8-9 8.56±0.51 0 43 67 Chalak 14-16 14.49±0.61 57 37 6 0 8-9 8.37±0.49 0 66 34 Divandareh 15-16 15.55±0.51 0 45 55 0 8-9 8.80±0.41 - 20 80 Zarin 14-15 14.33±0.49 67 33 0 0 8 8.00±0.00 0 100 0 Zalki 14-16 14.84±0.75 36 44 20 0 8-9 8.88±0.33 0 8 92 Sefied 14-15 14.33±0.49 67 33 0 0 8-9 8.28±0.46 0 72 28 Shafa 14-16 15.00±0.82 31 38 31 0 8-9 8.62±0.51 0 38 62 Gheze-Ozan 14-16 15.00±0.61 18 63 19 0 8-9 8.49±0.51 0 50 50 Kasma 14-16 15.17±0.53 6 70 24 0 8-9 8.87±0.35 0 13 87 Neka 14-15 14.51±0.51 49 51 0 0 8-9 8.43±0.50 0 57 43 Noor 14-16 14.65±0.53 37 61 2 0 8-9 8.40±0.49 0 65 35 Haraz 14-15 14.62±0.49 38 62 0 0 8-9 8.86±0.35 0 10 90 Total 14-17 14.89±0.74 32 42 18 8 8-9 8.64±0.47 0 35 65 Figure 2. The role of the first character along the two axes. 12 Mouludi-Saleh et al./ Comparison of meristic traits in Squalius turcicus CVA showed significant differences amongst the populations and little overlap can be observed. Although some populations (Palangab, Talvar, Zari and Zalkie) are well-separated from each other by great distances (Fig. 4). In the cluster analysis, six major clusters were recognized (Fig. 5). Kasma population was the most distinct population, and other groups were Tajan+Palangab+Babol+Tonekabon, Divandareh+Talvar, Shafa+Haraz+Noor+Neka+ Zalkie, Chalak+Zari, and Sefid+ Ghezel-Ozan. Discussion The meristic characters of fishes such as scales, fin rays, gill rakers and pharyngeal teeth are genetically controlled, while, morphometric characters such as lengths and their ratios are highly affected by environmental factors (Keivany et al., 2016b). The final number of meristic characters on fish depends on prevailing environmental conditions during early development of the individuals. Fish populations in habitats with different environmental conditions, will Figure 3. The result of PCA of meristic characters of the studied populations in the Caspian Sea basin. Figure 4. The results of CVA of meristic characters of the studied populations in Caspian Sea basin. 13 Int. J. Aquat. Biol. (2018) 6(1): 8-14 show a high morphological diversity (Keivany et al., 2016c). Although there are significant differences in mean values of most meristic characters, but they are highly overlapping. It seems that genetic differentiations among the studied populations are not sufficient to fully separate the populations from each other (Keivany et al., 2012). Besides, these characters are affected by size and environmental conditions (Khara et al., 2006; Daneshvar et al., 2013). The results separated some studied populations (Such as Ghezel-Ozan, Kasma, Sefid and Talvar) based on meristic data using PCA that this method used in other studies as well (Keivany et al., 1997, 2015; Patimar et al., 2010). Also, in CVA, there were overlaps, however, some populations were separated. In cluster analysis, Divandareh River population was clustered in one group and was separated from other populations and had the highest distinction. In the current study the dorsal spiny and soft rays were 2-3, 7-10, anal spiny and soft rays 3, 8-10, caudal fin rays 18-21, pelvic soft rays 8-9, pectoral soft rays 14-17, circumpeduncle scales 12-16, predorsal scales, 18-21, lateral line sclaes41-47, scales above LL 7-9 and scales below LL 3-5. In other studies conducted in Iran, the dorsal spines and soft rays of this species were 2-3, 7-9, anal spines anal soft rays 2-3, 7-10, caudal fin rays as 18-21, pelvic 6-9, pectoral soft rays 13-19, circumpeduncle scales 12-16, predorsal scales 18-21, lateral line scales 38-48, scales above LL 5-7 and scales below LL 7-8 (Abdoli and Naderi, 2009; Dadashpour Ahangari et al., 2011; Alizadeh et al., 2015). For S. cephalus in Europe, dorsal spines and soft rays were reported as 3, 8, anal soft rays 7-9, pectoral spine and soft rays 1, 14-17, pelvic spine and soft rays 2, 8, lateral line scales 42-48, scales above LL 7-9, scales below LL 3-5, (Steindachner, 1895; Karaman, 1924; Drensky, 1951; Libosvarsky, 1956; Banarescu, 1964; Dimovski and Grupce, 1972; Ivanovi, 1973; Economidis, 1974; Georgieve, 2000). In general, the figures in this study are consistent with previous studies for this species and for S. cephalus complex in other regions (e.g., Mouludi- Saleh et al., 2017b). Thus, the meristic characters do not well-defined characters in S. cephalus senso lato populations (in Iran S. turcicus, S. orientalis and S. berak) due to their low variation and overlapping. Acknowledgements We would like to thank S. Dorafshan, M. Nasri, S. Asadollah, A. Nezamoleslami and A. Mirzaei for their help in field work and M. Zamani-Faradonbe for his help in laboratory. This research was financially supported by Isfahan University of Technology. References Abdoli A., Naderi M. (2009). Fish biodiversity in southern Caspian Sea basin. Aquaculture Scientific Publications. 234 p. Alizadeh M., Patimar R., Abdoli A., Farhangi M., Golzarianpour K. (2015). A study on morphological variation of Chub, Leuciscus orientalis, (Nordmann, 1840) in the southern Caspian Sea basin. Journal of Animal Environment, 7: 217-228. Babazadeh M., Vatandoost S. (2013). A survey on morphometric and meristic characteristics of Squalius cephalus (Linnaeus, 1758) population of Tajan River in Mazandaran Province. Journal of Marine Science and Technology Research, 8: 96-110. Coad B.W. (2017). Freshwater fishes of Iran. www.briancoad.com. Dadashpour Ahangari V., Rahmani H., Vatandost S. (2011). Investigation of morphometric and meristic characteristics of Squalius cephalus populations in Figure 4. Cluster analysis of the studied populations of Squalius turcicus in the Caspian Sea basin. 14 Mouludi-Saleh et al./ Comparison of meristic traits in Squalius turcicus Gamasiab and Talar River. Journal of Aquatic Sciences, 1: 47-59. Daneshvar E., Keivany Y., Paknehad E. (2013). Comparative biometry of the Iranian cichlid, Iranocichla hormuzensis, in different seasons and sexes. Research in Zoology, 3: 56-61. Dimovski A., Grupce, R. (1972). L'Ichthyofaune de la riviere Treska. Acta Musei Macedonici Scientiarum Naturalium, 12: 185-205. Drensky P. (1951). Ribite v Bulgaria. Izd. BAN. Dofia. Economidis P.S. (1974). Étude morphologique, systématique et zoogéographique des poissons d'eau douce de la Macédoine orientale et de la Thrace occidentale (régions grecques) (Doctoral dissertation, Thesis, University of Thessaloniki (in Greek with French summary)). Esmaeili H.R., Mehraban H., Abbasi K., Keivany Y., Coad B.W. (2017). Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status. Iranian Journal of Ichthyology, 4: 1-114. Georgiev S. (2000). Taxonomical characteristics of chub Leuciscus cephalus (L innaeus, 1758) from the river Babuna (Macedonia). Ribarstvo, 58: 137-152. Gorjian Arabi M.H., Roohi M., Kazemian M., Vatandoust S., Janbazi A. (2011). Survey on morphological diversity of European chub (Squalius cephalus) in Touji head branch of Talar River in Mazandaran Province. Journal of Marine Science and Technology Research, 6: 26-39. Karaman S. (1924). Pisces macedoniae. Hrvatska stamparija. Split. Keivany Y., Nelson J.S., Economidis P.S. (1997). Validity of Pungitius hellenicus, a stickleback fish from Greece. Copeia, 1997: 558-564. Keivany Y., Nezamoleslami A., Dorafshan, S. (2015). Morphological diversity of Garra rufa (Heckel, 1843) populations in Iran. Iranian Journal of Ichthyology, 2: 148-154. Keivany Y., Soofiani N.M., Ebrahimi E., Asadollah, S. (2012). Meristic variations in the populations of southern Iranian toothcarp, Aphanius dispar dispar (Teleostei: Cyprinodontidae). Iranian Journal of Biology, 24: 313-319. Keivany Y., Nasri M., Abbasi K., Abdoli A. (2016a). Atlas of inland water fishes of Iran. Iran Department of Environment Press. 218 p. Keivany Y., Mousavi S.M.A., Dorafshan S., Zamani- Faradonbe M. (2016b). Morphological variations of Alburnus mossulensis (Heckel, 1843) populations in Tigris tributaries of the Persian Gulf basin in Iran (Teleostei: Cyprinidae). Iranian Journal of Ichthyology, 3: 190-202. Keivany Y., Mousavi S.M.A., Dorafshan S., Zamani- Faradonbe M. (2016c). Morphological diversity of Alburnus mossulensis (Heckel, 1843) populations in Karun River basin. Journal of Applied Ichthyological Research, 4: 87-104. Khaefi R., Esmaeili H.R., Sayyadzadeh G., Geiger M.F., Freyhof J. (2016). Squalius namak, a new chub from Lake Namak basin in Iran (Teleostei: Cyprinidae). Zootaxa, 4169: 145-159. Khara H., Keyvan A., Vosoughi G., Pourkazemi M., Rezvani S., Nezami S.A., Ramin M., Sarpanah A.N. (2006). Comparison of morphometric and meristic of bream (Abramis brama orientalis Berg 1905), in Caspian Sea and Anzali Wetland. Pajouhesh and Sazandegi, 73: 177-187. (In Farsi) Libosvarsky J. (1956). Prispevok k promenlivosti telesnych mer jelce tlouste v rece Svratke. Folia Zoologica, (XIX), 83: 90 p. Mouludi-Saleh A., Keivany Y., Jalali S.A.H. (2017a). Biometrical comparison of Chub (Squalius namak Khaefi et al., 2016) in rivers of Lake Namak Basin. Journal of Fisheries Science and Technology, Submitted. Mouludi-Saleh A., Keivany Y., Jalali S.A.H. (2017c). Geometric morphometric comparison of Chub (Squalius namak Khaefi et al., 2016) in rivers of Lake Namak Basin of Iran. Research in Zoology, 7: 1-6. Patimar R., Chalanchi M.G., Chamanara V., Naderi L. (2010). Some life history aspects of Garra rufa (Heckel, 1843) in the Kangir River, western Iran. Zoology in the Middle East, 51: 57-66. Poria M., Bahramizadeh E., Noori F., Shahbazi K. (2014). Study of morphometric and meristic characteristics of (Squalius cephalus) in Shohaday-e- Songhor Dam Lake. Iranian Journal of Aquatic Animals and Fisheries, 5: 27- 34. Steindachner F. (1895). Beiträge zur Kenntniss der Süsswasserfische der Balkan-Halbinsel. K.-K. Hof-u. Staatsdr, in Komm. bei Gerold. Turan D., Kottelat M., Doğan E. (2013). Two new species of Squalius, S. adanaensis and S. seyhanensis (Teleostei: Cyprinidae), from the Seyhan River in Turkey. Zootaxa, 3637: 308-324. Turan D., Tomovic L., Peši V. (2007). Morphological variation in a common Turkish cyprinid Squalius cephalus, across Turkish water catchment areas. Zoology in the Middle East, 40: 63-70. Int. J. Aquat. Biol. (2018) 6(1): 8-14 E-ISSN: 2322-5270; P-ISSN: 2383-0956 Journal homepage: www.ij-aquaticbiology.com © 2018 Iranian Society of Ichthyology چکیده فارسی خزر حوضه در( Squalius turcicus De Filippi, 1865) ایرودخانه سفید ماهی شمارشی هایویژگی مقایسه جاللی امیرحسین سید ،*کیوانی یزدان صالح، مولودی عطا علی .ایران ،۸۴۱۵۶۸۳۱۱۱ اصفهان اصفهان، صنعتی دانشگاه طبیعی منابع دانشکده شیالت گروه چکیده: ۱۴نمونه صید گردید. حدود ۵۳۵رودخانه حوضه خزر، ۱۲در Squalius turcicus ایهای شمارشی ماهی سفید رودخانهبرای مقایسه ویژگی شعاع نرم مخرجی، ۹شعاع نرم پشتی، ۸ها دارای های جمعیتبندی صفات شمارشی نشان داد که اغلب نمونهویژگی شمارشی شمارش گردید. طبقه فلس زیر خط جانبی، ۳-۵فلس باالی خط جانبی، ۹-7فلس خط جانبی، ۴۱-۴7شعاع شکمی، ۹ای، شعاع نرم سینه ۱۵شعاع منشعب دمی، ۱۹ های شمارشی به در بین همه ویژگی( P >0۵/0) داریهای معنی. نتایج تفاوتهستندفلس دور ساقه دمی ۱۴-۱۶فلس جلوی باله پشتی و ۲۱-۱۸ ها همپوشانی نشان داد، گرچه برخی از جمعیت های اصلی و متغیرهای کانونی بینآنالیز مؤلفهای نشان داد. جز خارهای باله پشتی، مخرجی و سینه ها قرار داد. در ای جمعیت رودخانه دیواندره را در یک خوشه جداگانه و جدای از سایر جمعیتها از هم جدا بودند. همچنین، آنالیز خوشهجمعیت های این گونه را به خوبی از هم جدا نماید.تواند جمعیتمجموع، نتایج صفات شمارشی نمی .شناسی، ریختشمارشی هایویژگی اسمیرنو،-کولمولورو آزمون ای،خوشه آنالیز :کلمات کلیدی