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MARKET RISK VaR HISTORICAL 
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Abstract

The modern market risk model using Value at Risk (VaR) method in the banking 
area under the BASEL II Accord can take different forms of simulation. In this 
paper, historical simulation will be applied to the VaR model comparing the 
two different approaches of Geometric Brownian Motion (GBM) process and 
Bootstrapping methods. The analysis will use correlation plots and examine the 
effects of the autocorrelation function for stock returns.
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1.  Introduction
 
In all aspects of life, we often want to have the ability to predict the future with 
some certainty. The most reliable techniques used for forecasting the future are 
probability theory and statistical applications. In the banking and fi nance world, 
we often combine quantitative engineering techniques such as quantum physics, 
classical econometrics theory and operational research techniques to help with 
predictions of the movement of liquidity price in fi nancial markets. 

In the area of fi nancial market risk, the main technique used to predict 
the movement of prices is based on the so-called Value at Risk (VaR) model. 
This model has been used widely in the banking industry after the completion 
of the BASEL I accord in 1996 and ever since it was publicly introduced by J. 
P. Morgan in 1997 (see Pearson (2002) for more details). The mathematical 
methods behind this model are based on the stochastic process using geometric 
Brownian motions which will be introduced in the next section. More detailed 
explanations of the BASEL accord and the market risk model can be found in 
Surapaitoolkorn (2007).
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The main feature of the VaR model is the performance by calculating 
risk statistics using a bank’s portfolio value with a correlation method like the 
parametric VaR or simulation methods using the historical or the Monte Carlo 
(MC) techniques. Two essential criteria for choosing the simulation method 
are the accuracy of the estimated output and the timing required to create such 
output (see Glasserman (2004) for more details). Simulation method requires 
fast computer machine and software technology as well as the best risk model 
specialist (often referred to as “fi nancial engineer”) who can handle the data 
applications, the stochastic process techniques, the simulation methods and 
who can understand the market risk drivers well. In this analysis, the historical 
simulation method will be used. It will be explained in Section 3.

One of the most important concepts in modelling market risk is the use of 
adequate future fi nancial market price returns. Financial market data required for 
the estimation of VaR often come in terms of market prices and spread rates such 
as interest rates, foreign exchange (FX) rates, equity index rates, and implied 
volatilities. These prices and rates shall be referred to as ‘market return rates’. 
Market price returns provided by the bank often come in daily high frequency 
date rates. In this quantitative analysis, the equity index rates will be used. They 
are introduced in Section 4.

In this paper, the estimation of future expected value of fi nancial assets 
using fi nancial market data will be analysed using the Autocorrelation (ACF) 
produced from the historical simulation of the VaR Model. The stochastic 
processes involved in the VaR model will be introduced in the next section. The 
aim is to see the effects of the simulation path generated from fi nancial market 
data. 

2. Stochastic Process for Market Risk VaR Model

There are a lot of VaR applications used for the calculation of risk factors in 
measuring fi nancial market risk. Among them is McNeil et al. (2005). The 
purpose of using the VaR Model is to fi nd the expected loss of a portfolio over 
some time horizon with a given level of probability at the maximum level using 
stochastic processes. In this section, we begin with the key theory behind the 
VaR model known as the stochastic process.

In the world of fi nance, the uncertainty of the future can be quantifi ed using 
the so-called stochastic process. Many genius mathematicians and scientist 
like Gauss, Wiener, Levy, and Ito have contributed the most extraordinary 
mathematical techniques such as Gaussian distribution, Wiener process, 
Brownian motions, Levy processes, and Ito’s Lemma respectively to the modern 
world of fi nancial banking. See Mikosch (2006) for further details.

All of these techniques are based on the method of stochastic process which 
is proven to be the most powerful tool for forecasting the future of important 
fi nancial applications in the banking sector. Stochastic process is used in 
simulation methods to obtain the maximum values of the required market risk 
statistics. The simplest stochastic process can be defi ned using mathematical 
notations as
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              (1)

where Y
t
  is the random variable which can be any market return rate; t refers 

to time interval frequency type of data like monthly, daily, hourly, second-by-
second (or tick-by-tick); and A is defi ned as some space in the process.

A. Geometric Motion Processes
One of the most useful stochastic processes that are well used in fi nancial 

engineering is the geometric motion. The word geometric often refers to 
exponential form of mathematics. There are three useful geometric motions used 
in the market risk banking system. We will defi ne them in this section.

In the market risk system, Y
t
  can take different forms of stochastic process 

depending on the type of market data returns. Suppose that Y
t
  represents the 

stock price process at time t. In fi nancial mathematics, the stock price process Y
t
  

is often of the Geometric exponential form given by

              (2)

                       or

              (3)

where, X
t 
 is defi ned as the rate of log-return of the stock price. The log-return 

process X
t
  can be modelled by a stochastic diffusion equation (SDE), for 

example an Ornstein-Uhlenbeck (OU) process, or a Levy process, for example 
Variance Gamma process.

The three geometric motions are defi ned as followed:

(i) Geometric Brownian Motion (GBM) Process
 
Geometric Brownian Motion (GBM) process is named after Robert Brown, 

the biologist whose research dates to the 1820s. It was Norbert Wiener (1923) 
who introduced Brownian motion to the mathematical world.  If X

t 
 is a Brownian 

with or without drift, then equation (3) is called Geometric  B r o w n i a n 
Motion (GBM). The SDE for Y

t
  can be written as

       (4)

 
where, Z

t
  is a standard Brownian Motion. In this case, Y

t
  has a Log-Normal 

distribution, since X
t
  has a normal  distribution. Therefore, equation (4) is 

sometimes called Log-Normal model. In practice, we often use this geometric 
process for equity index rates or stock price returns.

,tttt dZYdtYdY

ATtYY tt ,),(
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  (ii) Geometric Ornstein-Uhlenbeck (OU) Process

The Ornstein-Uhlenbeck (OU) Process is named after Leonard Salomon 
Ornstein and George Eugene Uhlenbeck, the Dutch physicist whose research 
dates to the 1920s. It is also known as the mean reverting stochastic process.

In any market risk model, the log-return X
t
  is an OU Process with dynamics 

SDE as follows

      (5)

 or

       (6)

where, Z(t) is a standard Brownian Motion, α is the speed of reversion, µ 
is the (log) mean reversion level, and σ is the volatility. Then equation (3) may 
be called Geometric OU Process. In practice we often use this geometric process 
for interest rates.

 
(iii) Geometric Levy Process
 
The Levy Process is named after the French mathematician Paul Levy. This 

is the stochastic continuous time process based in probability theory. Wiener 
Process is one of the most well-known examples of the Levy Process which has 
to have stationary independent increments as well as starting the value at zero. 
Another good example of the Levy Process is the Poisson Process.

If X
t
  is a Levy Process, for example X

t 
 is a Variance Gamma Process, then 

a Brownian Motion is a special Levy process, therefore (4) is also a Geometric 
Levy Process.

3. Historical Simulation and Bootstrapping Method

Historical simulation is one of the most well-known simulation methods used for 
market risk modelling. In historical simulation, rather than generating random 
numbers from a machine, the actual past history of market data are used so as 
to refl ect realities like fat tails, persistence, and other common stylized facts of 
volatility.  In historical simulation, we assume that past history is repeated and 
predict the future using the past data. The data used can be referred to as “non-
overlapping” or “overlapping” data. 

In this section, we fi rstly analyse these two types of data using the historical 
simulation. Bootstrapping method used to help with the correlation between 
paths as well as the limitation of data series will be introduced at the end of this 
section.

,)log(()log( ttt dZdtYYd

,)( ttt dZdtXdX
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(i) Non-overlapping d  ata
For non-overlapping data, consider the following:
• The 1st simulation run is to be constructed from [1,…,n]
•  The 2nd simulation run is to be constructed from  [n+1,…, 2n]
• and so on until….. 
• The Nth / n (if N is a multiple of n) simulation run is to be constructed 

from [N- n+1 ,…, N]

In practice, more paths are generated in order to increase accuracy of the VaR. 
This is where the overlapping historical periods can be used.

(ii) Overlapping data
For overlapping data, consider a n  day VaR calculation (e.g. 10 days). Obviously, 
the simulation must construct many paths composed of n observations. Assume 
that for each market risk factor there exist N historical observations.  Currently 
the paths will be sampled as follows. 
• Observations [1,…,n] can be used to construct the fi rst path. 
• Observations [2,…, (n+1)] can be used to construct the second path, and so 

on until
• The N-n+1 path is constructed from observations [(N-n+1), … , N]; so that 

N-n+1 (> N/n) simulation paths are generated from this overlapped data.
 
Let take a discrete example. Suppose that the stock prices for the last 3 days 

were 100, 105.13, 111.63 and today’s stock price is 119.72, so that the daily 
stock returns for the past 3 days were 5%, 6% and 7%. 

If this data is used to run the historical simulation and predict the stock 
price for tomorrow and 3 days from today, we have:
• At time node 1 for day 1 : 

 119.72 * exp(0.05) = 125.86, and
• At time node 2 for day 3 : 

 125.86 * exp(0.06) * exp(0.07) = 125.86 * exp(0.13) = 143.33 

So the rate change data used for time node 1 is 5% and that for time node 2 is 
13%. 

For example, assume that there are 9 days of past data and we want to 
estimate the values for the next 3 days.  From the data of days 1, 2 and 3, we can 
generate one path for future 3 days, from days 4, 5, 6 for the 2nd path, and from 
days 7, 8, 9 for the 3rd path.  Now, we have 3 historical simulation paths, and at 
each future time node of day 1, 2 and 3, we have 3 samples each so that we can 
compute the statistics for the values.  

In historical simulation, the process often allows for overlapping.  This 
means that it is possible to use [days 1, 2, 3] for the 1st path, [days 2, 3, 4] for the 
2nd path, [days 3, 4, 5] for the 3rd path, etc.  This way, more simulation paths are 
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generated. The only disadvantage is that the paths are correlated.  The purpose 
of this analysis is to see if any distortion results due to this correlation. To avoid 
the correlation problem, (for example, 3-day data can be randomly picked from 
9 days of data) the bootstrapping methods may be introduced.

Bootstrapping Method 
In historical simulation method, the main problem often found is the lack of 
historical data. To avoid this problem, we introduce a statistical technique 
known as Bootstrapping. Bootstrapping method assumes that daily returns are 
independent and can be used in our historical simulation. For example, we can 
randomly sample the rate of returns from the historical data and repeat many 
times to extract more information from the given data. The basic idea of the 
bootstrapping method is to take some real data and then create a large number of 
replicate data sets by sampling with replacement (with equal probability) from 
the original sample. Thus each new, replicate data set is a slightly perturbed 
version of the original one. Sampling with replacement means that every sample 
is returned to the data set after sampling. Therefore a particular data point from 
the original data set could appear multiple times in a given bootstrap sample.  

4.  Quantitative Analysis for Market Risk Model

In this section, we will outline the correlation and autocorrelation functions, 
proposed analysis and the analysis carried out for this paper. The US equity 
returns using the 10 assets of 1000 observations is used as fi nancial market data. 
MATLAB software is chosen to help with constructing the market risk VaR 
model in order to generate the simulated paths using the three different methods 
of sampling from the historical data. 

(i) Correlation and Autocorrelation Functions (ACF)
The linear correlation of two variables X, and Y can be defi ned as

           , where                                                        (7)

The correlation value lies between –1 to +1, where high positive or negative 
correlation is possible depending on the market movements. Let us consider the 
following three examples.

• In the overlapping data, if the market is keep moving up, so that the 
rate of return for a week is 0.1, 0.2, 0.4, 0.5, 0.7, then the one-day 
lagged data could be 0.2, 0.4, 0.5, 0.7, 0.8. Obviously they are highly 
positively correlated. 

• If the market moves up and down, the correlation between the initial 
data and the lagged data could be negatively correlated.  For example, 

2
1

varvar
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if the daily returns are 0.1, 0.0, 0.2, 0.1, 0.2, and the one-day lagged 
data are 0.0, 0.2, 0.1, 0.2, 0.0, then the correlation is highly negative.

• For Non-overlapping real market data, it is possible to obtain either 
positive or negative correlation values. If the rates were moving up 
last week and moving up again this week, then there is a positive 
correlation between last week and this week. If the rates were moving 
up last week and moving down this week, then there is a negative 
correlation between last week and this week.

 The Auto-Correlation Function (ACF) or serial correlation occurs 
when we know that observations that are recorded sequentially over time are not 
independent of one another. For example, if a series X = (X

t
 , X

t-1
), then X

t 
, X

t-1
 

share information. This happened in overlapped historical periods. The ACF can 
be defi ned as

                         (8)

(ii) Proposed Analysis 
It is proposed that the autocorrelation effect can be quantifi ed by 

constructing a simple stand-alone simulation of this process in MATLAB. In 
particular, historical market equity data will be used to construct the sample 
paths (in the manner outlined above). The terminal value of each sample path 
will be used to value a simple contract (for example a vanilla option) and the 
VaR of this contract calculated. 

The simulation will run for calculating the VaR for a 10-day horizon. 
We will then analyse the resulting sample paths generated for ACF or serial 
autocorrelation. In addition to this, each of the simulated paths will be analysed 
for evidence of systematic bias in their correlations. For example, the correlations 
between paths and their autocorrelation functions can be determined. 

This method will then be contrasted with the three further procedures for 
sampling from the historical data provided. 

• (i) Selecting non-overlapping periods. That is, observations (1...n)  will 
be used to construct the fi rst path, observations (n+1)...,2n  will be used 
to construct the second path, and so on until the N / n th path is con-
structed from observations. N-n+1, … , N.

• (ii) A sampling procedure based on the Bootstrap method will be 
utilised (where samples of  n  observations will be chosen repeatedly at 
random from the set of N observations). 

• (iii) Each of these procedures can also be undertaken using simulated 
equity data generated from a GBM process as detailed in subsection 
2.1. 

,
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(iii) Analysis
For procedures (i) and (ii) using the non-overlapping and the overlapping periods 
via the Bootstrapping method, there exists a new window N

w
 for each generated 

new path. The number of new windows can be considered as

        (9)

where Tob represents the number of total observations, Horizon represents the 
sample size within each window, and Tau represents number of increments 
for the next simulation path (i.e. 1 day, 2 days,…etc.). Note that when horizon 
equals Tau, we have a non-overlapping path. 

For procedure (iii), by generating simulated data using a GBM process, 
we will perform the same analysis on this simulated data (which has the 
same moments as the actual market data) as we do for the historical data for 
comparison (so that the length of the simulated time series is identical to that of 
the historical data). 

The GBM process can be considered as follows:

      (10)

where S
t 
– S

t-1
  = ∆S  is the change in stock price, S  is the small interval of time, 

∆t  , and ε is a random drawing from a standardised normal distribution. A 
parameter µ represents the expected rate of return per unit time from the stock 
and a parameter σ represents the volatility of the stock price.  

5. Empirical Results

For Bootstrapping methods, simulated values of variables mentioned in equation 
(9) for the historical paths give a mixture of negative and positive values.  Using 
the two following examples, the results are shown below.

(i) Taking the ‘Tau’, ‘Horizon’ to be 500, and the ‘Tob’ to be 2500, 

there are the  non-overlapping historical periods. The number of 

windows is 5. The correlation values is displayed below:

1. Using the GBM process,

 1      0.071894     0.090361     -0.020968   -0.0013005
     0.071894  1      0.025145       0.026059     -0.056777
     0.090361 0.025145     1     -0.011327    -0.02862
 -0.020968  0.026059     -0.011327     1     -0.015625
 -0.0013005   -0.056777    -0.02862     -0.015625     1

1
Tau
HorizonTobNW ,

ttSS tt 2
exp

2

1
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2. Using the Bootstrapping method,

 1      0.041655      0.098772      0.033606       0.08557
      0.041655        1     -0.015867     -0.016676      0.016893  
 0.098772     -0.015867      1     -0.026674      -0.008783 
 0.033606     -0.016676     -0.026674      1       0.010165  
 0.08557      0.016893     -0.008783      0.010165       1

 By examining the correlation plots (not shown) for these outputs it was 
observed that the plots are not adequate. This shows that we should increase the 
number for variables Tau and Horizon. The second analysis is detailed below.

(ii) Taking the Tau = 10, Horizon = 1500, and Tob = 2500 there are overlapping 
historical periods. The number of window is 101. The correlation values 
for the fi rst 5 columns (i.e 5 windows) and the fi rst 5 paths are displayed 
below.     

 
 1. Using GBM process,

 1 0.015563      0.039555      0.038064     0.0037525
      0.015563       1       0.015907      0.038379      0.034823
   0.039555      0.015907         1      0.012851      0.038529
     0.038064      0.038379       0.012851         1      0.0078944
    0.0037525     0.034823      0.038529     0.0078944      1

 2. Using the Bootstrapping method,

 1     0.0081298     -0.013902     -0.032916      0.017007
     0.0081298      1      0.013858     -0.011403     -0.034304
     -0.013902      0.013858        1      0.021605     -0.010686
     -0.032916   -0.011403      0.021605       1      0.022989
      0.017007     -0.034304     -0.010686     0.022989       1

 The correlation plots displayed in Figure 1 represent the simulation of 
Path 1. These plots suggest that there exists a serial correlation between paths 
around zero. The extreme point of value 1 comes from the diagonal matrix of 1 
where each path is correlated to itself. This is just one example of one particular 
path;  however, it is true for all historical simulation paths. At this stage, let 
us examine the autocorrelation (ACF) plots below to see whether our model is a 
suitable model for our data set. 

 By taking the lag at 50, the ACF plots for Path 1 show little correlation 
for the paths at all lag. Slightly more auto-correlation at lag 14 occurred in the 
second plot below. Again, the ACF plots for all paths are similar to the Path 1. 
This means that the historical simulation model may be of value in fi tting with 
our fi nancial stock data.  
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Figure 1: Correlation Plots using the GBM process and the Bootstrapping 
method

Figure 2: ACF Plots using the GBM process and the Bootstrapping method
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6. Conclusion

These empirical results suggest that the GBM process and Bootstrapping 
methods provide similar output in terms of correlation values and the ACF plots. 
That is, the correlation values are not consistent. The non-overlapping paths 
should provide correlation values to be relatively larger than the overlap paths. 
Although this is not always the case, it seems that the values of correlation are 
very similar throughout (i.e. around zero) for all methods. 
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