International Journal of Energetica (IJECA) https://www.ijeca.info ISSN: 2543-3717 Volume 8. Issue 1. 2023 Page 24-30 This open access article is licensed under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/) Page 24 Optimal tilt angle for photovoltaic panels in the Algerian region of El- Oued in the spring season: An experimental study Soulef Largot 1 , Noureddine Bessous 1 , Mokhtar Ghodbane 2* , Boussad 2 , Rania Zhar 3 , Khadija Lahrech 3 1 Electrical Engineering Department, University of El-Oued, ALGERIA 2 Mechanical Engineering Department, Faculty of Technology, Saad Dahlab University of Blida 1, Blida 09000, ALGERIA 3 Sidi Mohamed Ben Abdellah University. LIPI Laboratory ENS National school of applied science ENSA, Fez, MOROCCO * Corresponding author E-mail: ghodbanemokhtar39@yahoo.com Abstract – The tendency to exploit solar energy in the electricity production in Algeria is a priority and a major goal of the Algerian government, and for this reason it seeks to provide all the necessary capabilities to achieve this lofty goal. Photovoltaic electricity is one of the effective technologies for the solar electricity production, but before installing any photovoltaic panel, it is important to determine its optimal tilt angle, and based on this, this study allowed to show the optimal tilt angle of the photovoltaic panels in the Algerian region of El Oued in the spring season, and accordingly, two days (March 21 st , 2023, and April 21 st , 2023) were chosen to conduct this experimental study. Based on the obtained results, the optimal PV tilt angle for the month of March is 33° and 28° for the month of April. In addition, the greater the amount of solar radiation, the higher the efficiency and productivity of the PV panels, as the highest values for them (6.31 % and 62.17 W, respectively) were recorded on April 21st, 2023. The results of this study will contribute to the correct installation of photovoltaic panels in the Algerian region of El-Oued, especially if the photovoltaic panels are equipped with dual-axis solar tracking systems. Keywords: Solar electricity production, Photovoltaic panels, Optimal tilt angle, Productivity; Performance. Received: 20/05/2023 – Revised: 12/06/2023 – Accepted: 20/06/2023 I. Introduction C rr tly, th w rl 's i s rc f rgy is f ssil f ls (g s, il, c l), which is li it s rc i t r s bj ct t pl ti , -r w bl , its p ll ti g g s s t th vir t. Th t is why th s rch f r lt r tiv , cl , s st i bl , r w bl s rc s is pri rity f r ll c tri s f th w rl [1], sp ci lly Alg ri . Th Alg ri g v r t c r g s th sp y st blish t f i fr str ct r f r th xpl it ti f r w bl rgy s rc s, sp ci lly s l r rgy. I r r t chi v this l fty g l, which is th xpl it ti f s l r rgy i y t ch l gic l fi l s, y sci tific r s rch s p blish i i x sci tific j r ls sh w th t Alg ri r c iv s ily h g t f s l r r i ti , s th i s l ti r ti i Alg ri is b tw 2000 3900 h rs/y r th v r g v il bl rgy is b tw 1700 2650 kWh/ ², i. . 5 kWh/ ² p r y i st p rts f th ti l t rrit ry [2, 3]. I th lit r t r , y st i s h v b c ct pplic ti s th t ll w th r w bl rgy xpl it ti i Alg ri , s t ch s l r istill ti i r r t pr vi p t bl w t r [4, 5]. It w s ls f th t S i t l. h v c ct s v r l xp ri ts th p ssibility f si g li r Fr s l r fl ct rs s s l r w t r h t rs i th Alg ri r gi f li [6, 7], th y h v r ch th p ssibility f i pr vi g th p rf r c f th s li r s l r https://www.ijeca.info/ https://creativecommons.org/licenses/by-nc/4.0/ Soulef Largot et al. / International Journal of Energetica (IJECA) Vol. 8, N°1, 2023, pp. 24-30 Page 25 c c tr t rs by isp rsi g p rticl s i p r w t r [8, 9]. I iti , Gh b t l. h v c ct xp ri t l, ric l, CFD li g f s l r w t r h t rs si g li r Fr s l r fl ct rs [10, 11]. M r v r, s rch st i ric lly th p ssibility f si g p r b lic tr gh c ll ct rs i c t rs i stri l f ciliti s t h t i stri l - ils (MX b s silic il fl i s) [12], k wi g th t t ch l gy is c rr tly xp ri ci g c ti s zi g v l p t, it is i t f r s i y i stri l fi l s [13, 14]. A th r s rch h v st i ric lly th p ssibility f si g li r Fr s l r fl ct rs i c t rs i stri l f ciliti s t h t i stri l - ils (MX b s silic il fl i s) [15]. Als , r s rch gr p h s pr v th p ssibility f si g li r s l r c c tr t rs t riv ir c iti rs by r vi g th c pr ss r r pl ci g it with j ct r p p [16-18]. H r , p r b lic tr gh c ll ct rs r li r Fr s l r fl ct rs c b s , s p r b lic tr gh c ll ct rs r r ptic l th r l ffici t [19-22], b t li r Fr s l r fl ct rs r l ss xp siv [23]. M r v r, Li r Fr s l r fl ct rs c b s t pr c s l r th r l l ctricity [24, 25], s s l r l ctric st ti s c b st blish i Alg ri th t p r t with th s li r s l r c c tr t rs th ir l v liz c st f rgy is v ry cc pt bl c p r t f ssil l ctricity [26]. S v r l st i s h v c ct ric l st y s l r w t r isi f cti si g s ll li r Fr s l r fl ct rs [27]. R c t w rk h v cr t g r l lg rith i i g t fi th pti l l y t f ph t v lt ic p ls irr g l rly sh p s rf c s [28]. I iti , it h s b f th t F r á z-R bi r t l. h v st i s w-t th tr gh V-c vity f r l w- c c tr ti ph t v lt ic syst s b s s ll li r Fr s l r fl ct rs [29]. As t , th r is l t f r s rch i th lit r t r c r gi g tr t w r s th xpl it ti f s l r rgy i y fi l s i p rt t t ch l gic l pplic ti s i Alg ri . Th i bj ctiv f this st y is t t r i th pti l tilt gl f th ph t v lt ic p ls i Alg ri r gi f El-O i th spri g, th r f r , pr ctic l xp ri ts w r c ct tw ph t v lt ic p ls (PV) th t h v th s t ch ic l ch r ct ristics. Th xp ri t l st y w s c ct cc r i g t th p r t rs sh w i T bl 1. Wh t r i i g th pti l PV tilt gl , ll gi rs t ch ici s will b bl t c rr ctly i st ll th PV syst s (st - l PV syst s, gri -c ct PV syst s) i El-O r gi , this will bl th s PVs t giv th gr t st pr ctivity b r ff ctiv . II. Materials and Methods Th xp ri t l w rk w s c rri t tw ph t v lt ic p ls with si il r t ch ic l ch r ct ristics. Th Alg ri r gi f El-O (33.57°, 6.77, 50) w s s l ct f r th st y. Th xp ri t l st ps w r s f ll ws: Acq isiti f tw ph t v lt ic p ls (RAGGIE typ , RG-M165W l) is with c p city f 165 w tts. Th t ch ic l ch r ct ristics f th tw ph t v lt ic p ls r st y r sh w i Fig r 1. Figure 1. St i ph t v lt ic p ls th ir t ch ic l ch r ct ristics  M f ct r f t l h l rs f r ph t v lt ic p ls, s th s PV h l rs c v i b th ir cti s, v rtic l (t tr ck th s 's h ight, ch g th tilt PV gl ) h riz t l (t tr ck th s 's p th fr st t w st). Th s f ct r st l s pp rts c h l th ph t v lt ic p ls i b th v rtic l h riz t l p siti s.  Acq isiti f s ri g vic s f r cli tic c iti s (Pyr t r PYR 1307 t s r th s l r gl b l r i ti , A t r M t r (AM- 4206M) t s r th wi sp , A t r M t r (AM-4206M) t s r th bi t ir t p r t r .  Acq isiti f s ri g vic s f r l ctric l p r t rs (Digit l M lti t r MX 20 (METRIX- typ ) t s r th l ctric c rr t), Digit l M lti t r CT44053 (CROWN-typ ) t s r th Soulef Largot et al. / International Journal of Energetica (IJECA) Vol. 8, N°1, 2023, pp. 24-30 Page 26 l ctric l v lt g . T t , th l ctric l r sist c h s b fix t 5 Ω si g v ri bl r sistiv l f th ECODIME-typ .  C rryi g t th sir pr ctic l xp ri ts i tw ys (March 21 st , 2023, and April 21 st , 2023) f spri g. As ti pr vi sly, th i f th st y is t t r i th pti l PV tilt gl i th Alg ri r gi f El-O , cc r i gly, ch ph t v lt ic p l h s b li k t th l ctric l s ri g vic s t f r l ctric l cycl , cc r i gly, st y f tw l ctric l circ its si lt sly r th s cli tic c iti s h s b st i . b t r iff r t xp ri t l c iti s s sh w i T bl 1.  As sh w i Fig r 2 , th first circ it will b c ll th "r f r c l ctric l circ it (RC)", it will c t i th r f r c ph t v lt ic p l (PVr), igit l lti t r MX 20 (METRIX-typ ), ECODIME l ctric l r sist c fix t 5 Ω, ll thr f which r c ct i s ri s, whil th igit l lti t r CT44053 (CROWN-typ ) t s r th l ctric l v lt g will b c pl i p r ll l with th v ri bl r sistiv l .  As sh w i Fig r 2b, th s c circ it will b c ll th " l ctric l circ it r v ri bl c iti s (ECVC)", it will c t i th ph t v lt ic p l r v ri bl c iti s (PVcv), igit l lti t r MX 20 (METRIX-typ ), ECODIME l ctric l r sist c fix t 5 Ω, ll thr f which r c ct i s ri s, whil th igit l lti t r CT44053 (CROWN-typ ) t s r th l ctric l v lt g will b c pl i p r ll l with th v ri bl r sistiv l . Figure 2. St i l ctric l circ its T bl 1 c t i s th xp ri t l c iti s f r th tw ph t v lt ic p ls, b ri g i i th t th tw st i ph t v lt ic p ls h v b s bj ct t pr vi s pr ctic l xp ri ts r th s cli tic c iti s th s xp ri t l c iti s t v rify th ir t ch ic l pr ctic l si il rity. T t , th r s lts f pr vi s xp ri ts h v pr v gr t c v rg c i th pr ctivity f th tw p ls r th s xp ri t l c iti s, wh r s ll iff r c i p w r f (P = 0.41V × 0.069A = 0.02869 watt) w s r c r b tw th . This r s lt (P = 0.02869 watt) pr v th cc r cy f th r s lts bt i , wh r th pr ctivity f th tw ph t v lt ic p ls (PVr PVcv) is v ry cl s r th s p r ti g c iti s. Table 1. Exp ri t l c iti s f r th st y PVr PVcv D a y T il t a n g le ( °) T r a c k in g s y st e m E ff e c ti v e a p e r tu r e c o n d it io n T il t a n g le ( °) T r a c k in g s y st e m E ff e c ti v e a p e r tu r e c o n d it io n 0 3 /2 1 /2 0 2 3 33 S t ti ry ri t t t h s th C l 28 S t ti ry ri t t t h s th C l 0 4 /2 1 /2 0 2 3 33 S t ti ry ri t t t h s th C l 28 S t ti ry ri t t t h s th C l With r g r t th q ti s s t c lc l t th tp t f th ph t v lt ic p l its ffici cy, th y r s f ll ws: P = I × V (1) η = P APV × IG (2) Soulef Largot et al. / International Journal of Energetica (IJECA) Vol. 8, N°1, 2023, pp. 24-30 Page 27 Wh r , P is th PV tp t (W), I is th l ctric c rr t (A), V is th l ctric l v lt g (V), η is th PV ffici cy (%), APV is th ff ctiv PV p rt r ( ²), IG is th s r gl b l irr i c (W/ ²). III. Results and Discussion This st y will ll w t r i i g th pti l PV tilt gl i th Alg ri r gi f El O . As it is k w , th p rf r c pr ctivity f y ph t v lt ic p l is ir ctly r l t t ch gi g cli tic c iti s, i p rtic l r, th t f gl b l s l r r i ti th t r ch s its ff ctiv p rt r . Fig r 3 sh ws th ch g i th cli tic c iti s th st i ys i t r s f th ch g f ti fr 06h00 t 17h00 (th ti wh th pr ctic l xp ri ts w r c ct ). Fr Fig r 3, th f ll wi g c b c cl :  Th gl b l s l r r i ti f r y (April 21 st , 2023) is gr t r th th r c r gl b l s l r r i ti f r y (M rch 21 st , 2023), wh r th high st v l f 1001 W/ ² w s r c r t 11h00. Thr gh this, it is c cl th t th p rf r c pr ctivity f th ph t v lt ic p l will b b tt r i th y (April 21 st , 2023), this is wh t is sh w i Fig r 4. Figure 3. M s r w th r t vs. ti  Th bi t ir t p r t r f r y (April 21 st , 2023) is gr t r th th bi t ir t p r t r f r y (M rch 21 st , 2023), s th high st v l f 27.6 °C w s r c r t 16h00. T t , ph t v lt ic p ls r r pr ctiv wh bi t ir t p r t r s r r t r g i g t l w, b c s high ir t p r t r s r c th p rf r c pr ctivity f ph t v lt ic p ls t v lt g r p. Th s, il s y y is th b st c iti f r pti l p rf r c pr ctivity f th ph t v lt ic p ls.  Th wi sp f r y M rch 21 st , 2023) w s gr t r th th wi sp f r y (April 21st, 2023), wh r th high st v l f 7.6 /s w s r c r t 08h00. With th v c t f t ch l gy, ph t v lt ic p ls h v b c r s phistic t fl xibl , s th y c pr c l ctricity i iffic lt cli tic c iti s. Th r f r , c st rs st h v p rst i g f th cli tic c iti s f th r i which th ph t v lt ic p ls r t b i st ll , i r r t b bl t k i f r cisi s r g r i g ph t v lt ic pr j cts. Fig r 4 sh ws th ch g i th ffici cy pr ctivity f th tw ph t v lt ic p ls (PVr PVcv). Fr th c rv s f Fig r 4, it h s b bs rv th t: Figure 4. O tp t ffici cy f th st i ph t v lt ic p ls  Pr ctivity p rf r c y (April 21 st , 2023) is b tt r th p rf r c pr ctivity y (M rch 21 st , 2023), b c s y (April 21 st , 2023) w s f ll f gl b l s l r r i ti c p r t th th r y. It is k w th t ph t v lt ic p ls will pr c th xi t f l ctric l rgy wh th s 's r ys r p rp ic l r t its ff ctiv p rt r , this c ly h pp thr gh t th y si g s -tr cki g syst s. If s -tr cki g syst s r t s , th ph t v lt ic p ls st b ir ct t th si th t s r s th t th s l r r ys f ll s l g s p ssibl th ph t v lt ic p ls. I Alg ri , th ph t v lt ic p ls st b ir ct t th s th b c s th s 's p th is i cli t th s th. Soulef Largot et al. / International Journal of Energetica (IJECA) Vol. 8, N°1, 2023, pp. 24-30 Page 28  Th pti l PV tilt gl i M rch is 33°, wh r th PVr p l g v th b st ffici cy th b st pr ctivity with v l s f 5.41% 46.7 W, r sp ctiv ly, t 12h00.  Th pti l PV tilt gl i M rch i April is 28°, wh r th PVcv p l g v th b st ffici cy th b st pr ctivity with v l s f 6.31 % 62.17 W, r sp ctiv ly, t 11h00. Alth gh th st y w s c ct i tw ys i th spri g s s , th st y r s lts pr v th t i th s s s th pti l PV tilt gl i th Alg ri r gi f El-O ch g s fr th t th. This ch g is t th lliptic l p th f th rth's r t ti r th s ch g s its i cli ti gl s w ll cc r i g t th s s . Th ph t v lt ic p ls th t r i st ll i th Alg ri r gi f El-O h v pti l i cli ti gl v ry th, t k w its v l cc r t ly, th p th f th s st b tr ck ily fr s ris t s s t f r p ri f y r. IV. Conclusions S l r rgy c b s t g r t l ctric rgy by i st lli g ph t v lt ic syst th t c t i s ph t v lt ic c lls th t c v rt s l r ph t v lt ic rgy ir ctly i t l ctricity. Th i bj ctiv f this xp ri t l st y is t fi t th pti l PV tilt gl i th Alg ri r gi f El-O i th spri g s s . Th r s lts f th st y sh w th t i th s s s , iff r t pti l PV tilt gl s c b bt i fr th t th. This iff r c i th pti l PV tilt gl fr th t th r is t th c ssity th t th ff ctiv PV p rt r st b c pl t ly p rp ic l r t th s l r r i ti c i g t it, th t th p th f th s ch g s fr th t th r t th lliptic l p th f th rth's r t ti r th s . Th st i p rt t c cl si f this st y is th t th pti l PV tilt gl f r th th f M rch is 33° 28° f r th th f April. I iti , th gr t r th t f s l r r i ti , th high r th ffici cy pr ctivity f th PV p ls, s th high st v l s f r th (6.31 % 62.17 W, r sp ctiv ly) w r r c r April 21 st , 2023. Th r s lts f this st y will c trib t t th c rr ct i st ll ti f ph t v lt ic p ls i th Alg ri r gi f El-O , sp ci lly if th ph t v lt ic p ls r q ipp with l- xis s l r tr cki g syst s. Declaration  Th th rs cl r th t th y h v k w fi ci l r -fi ci l c p ti g i t r sts i y t ri l isc ss i this p p r.  Th th rs cl r th t this rticl h s t b p blish b f r is t i th pr c ss f b i g p blish i y th r j r l.  Th th rs c fir th t th p p r w s fr f pl gi ris . References [1] R. Zhar, A. Allouhi, M. Ghodbane, A. Jamil, K. Lahrech, "Parametric analysis and multi-objective optimization of a combined Organic Rankine Cycle and Vapor Compression Cycle," Sustainable Energy Technologies and Assessments, vol. 47, 2021, pp. 101401. https://doi.org/10.1016/j.seta.2021.101401. [2] M. Ghodbane, B. Boumeddane, "Estimating solar radiation according to semi-empirical approach of PERRIN DE BRICHAMBAUT: application on several areas with different climate in Algeria," International Journal of Energetica, vol. 1, 2016, pp. 20-29. https://doi.org/10.47238/ijeca.v1i1.12. [3] M. Ghodbane, B. Boumeddane, "A numerical analysis of the energy behavior of a parabolic trough concentrator," Journal of Fundamental and Applied Sciences, vol. 8, 2016, pp. 671-691. https://doi.org/10.4314/jfas.v8i3.12. [4] A. Khechekhouche, B. Benhaoua, M.E.H. Attia, Z. Driss, A. Manokar, M. Ghodbane, "Polluted groundwater treatment in southeastern Algeria by solar distillation," Algerian Journal of Environmental Science and Technology, vol. 6, 2020. Available at: https://www.aljest.net/index.php/aljest/article/view/269/2 60. [5] A. Khechekhouche, N. Smakdji, M. El Haj Assad, A.E. Kabeel, M. Abdelgaied, M. Ghodbane, A. Allal, R. Sathyamurthy, "Impact of Solar Energy and Energy Storage on a Still's Nocturnal Output," Journal of Testing and Evaluation, vol. 51, 2023, pp. 20220701. https://doi.org/10.1520/JTE20220701. [6] Z. Said, M. Ghodbane, A.K. Tiwari, H.M. Ali, B. Boumeddane, Z.M. Ali, "4E (Energy, Exergy, Economic, and Environment) examination of a small LFR solar water heater: An experimental and numerical study," Case Studies in Thermal Engineering, vol. 27, 2021, pp. 101277. https://doi.org/10.1016/j.csite.2021.101277. [7] Z. Said, M. Ghodbane, A.A. Hachicha, B. Boumeddane, "Optical performance assessment of a small experimental prototype of linear Fresnel reflector," Case Studies in Thermal Engineering, vol. 16, 2019, pp. 100541. https://doi.org/10.1016/j.csite.2019.100541. [8] Z. Said, M. Ghodbane, L.S. Sundar, A.K. Tiwari, M. Sheikholeslami, B. Boumeddane, "Heat transfer, entropy generation, economic and environmental analyses of https://doi.org/10.1016/j.seta.2021.101401 https://doi.org/10.47238/ijeca.v1i1.12 https://doi.org/10.4314/jfas.v8i3.12 https://www.aljest.net/index.php/aljest/article/view/269/260 https://www.aljest.net/index.php/aljest/article/view/269/260 https://doi.org/10.1520/JTE20220701 https://doi.org/10.1016/j.csite.2021.101277 https://doi.org/10.1016/j.csite.2019.100541 Soulef Largot et al. / International Journal of Energetica (IJECA) Vol. 8, N°1, 2023, pp. 24-30 Page 29 linear Fresnel reflector using novel rGO-Co3O4 hybrid nanofluids," Renewable Energy, vol. 165, 2021, pp. 420- 437. https://doi.org/10.1016/j.renene.2020.101154. [9] M. Ghodbane, Z. Said, A.A. Hachicha, B. Boumeddane, "Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids," Renewable Energy, vol. 151, 2020, pp. 43-56. https://doi.org/10.1016/j.renene.2019.101137. [10] M. Ghodbane, E. Bellos, Z. Said, B. Boumeddane, A.K. Hussein, L. Kolsi, "Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector," Journal of Thermal Analysis and Calorimetry, vol. 143, 2021, pp. 4197-4215. https://doi.org/10.1007/s10973-020-09384-6. [11] M. Ghodbane, B. Boumeddane, N. Said, "A linear Fresnel reflector as a solar system for heating water: theoretical and experimental study," Case Studies in Thermal Engineering, vol. 8, 2016, pp. 176-186. https://doi.org/10.1016/j.csite.2016.06.006. [12] Z. Said, M. Ghodbane, B. Boumeddane, A.K. Tiwari, L.S. Sundar, C. Li, N. Aslfattahi, E. Bellos, "Energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using MXene-based silicone oil nanofluids," Solar Energy Materials and Solar Cells, vol. 239, 2022, pp. 111633. https://doi.org/10.1016/j.solmat.2022.111633. [13] Z. Said, P. Sharma, N. Aslfattahi, M. Ghodbane, "Experimental analysis of novel ionic liquid-MXene hybrid nanofluid's energy storage properties: Model- prediction using modern ensemble machine learning methods," Journal of Energy Storage, vol. 52, 2022, pp. 104858. https://doi.org/10.1016/j.est.2022.104858. [14] A.K. Hussein, M. Ghodbane, Z. Said, R.S. Ward, "The effect of the baffle length on the natural convection in an enclosure filled with different nanofluids," Journal of Thermal Analysis and Calorimetry, vol. 147, 2022, pp. 791-813. https://doi.org/10.1007/s10973-020-10300-1. [15] M. Ghodbane, Z. Said, A.K. Tiwari, L.S. Sundar, C. Li, B. Boumeddane, "4E (energy, exergy, economic and environmental) investigation of LFR using MXene-based silicone oil nanofluids," Sustainable Energy Technologies and Assessments, vol. 49, 2022, pp. 101715. https://doi.org/10.1016/j.seta.2021.101715. [16] M. Ghodbane, Z. Said, O. Ketfi, B. Boumeddane, A.T. Hoang, M. Sheikholeslami, M.E.H. Assad, M. Hossein Ahmadi, V.N. Nguyen, V.D. Tran, T.H. Truong, "Thermal performance assessment of an ejector air- conditioning system with parabolic trough collector using R718 as a refrigerant: A case study in Algerian desert region," Sustainable Energy Technologies and Assessments, vol. 53, 2022, pp. 102513. https://doi.org/10.1016/j.seta.2022.102513. [17] M. Ghodbane, B. Boumeddane, K. Lahrech, "Solar thermal energy to drive ejector HVAC systems: A numerical study under Blida climatic conditions," Case Studies in Thermal Engineering, vol. 28, 2021, pp. 101558. https://doi.org/10.1016/j.csite.2021.101558. [18] M. Ghodbane, B. Boumeddane, A.K. Hussein, "Performance Analysis of a Solar-Driven Ejector Air Conditioning System Under El-Oued Climatic Conditions, Algeria," Journal of Thermal Engineering, vol. 7, 2021, pp. 172-189. https://dx.doi.org/10.18186/thermal.847334. [19] M. Ghodbane, B. Boumeddane, F. Hussain, R. Zhar, K. Lahrech, J. Bhatti, B. Zhang, H. Yassin, L.C. De Silva, A. Barbón, "Evaluation of the design and optical errors for a parabolic trough collector field in an Algerian desert region: Gassi-Touil as a study area," Energy Reports, vol. 8, 2022, pp. 15326-15337. https://doi.org/10.1016/j.egyr.2022.15024. [20] M. Ghodbane, B. Boumeddane, A.K. Hussein, H.M. Ali, D. Li, "Thermal numerical investigation of a small parabolic trough collector under desert climatic conditions," Journal of Thermal Engineering, vol. 7, 2021, pp. 429-446. https://doi.org/10.18186/thermal.884657. [21] M. Ghodbane, B. Boumeddane, A.K. Hussein, D. Li, S. Sivasankaran, "Optical numerical investigation of a solar power plant of parabolic trough collectors," Journal of Thermal Engineering, vol. 7, 2021, pp. 550-569. https://doi.org/10.18186/thermal.888167. [22] M. Ghodbane, B. Boumeddane, A. Khechekhouche, S. Largot, "Study of the effect of the position and metal of the receiver tube on the performance of a parabolic trough solar collector," Materials Today: Proceedings, vol. 51, 2022, pp. 2144-2151. https://doi.org/10.1016/j.matpr.2021.12.2497. [23] M. Ghodbane, D. Benmenine, A. Khechekhouche, B. Boumeddane, "Brief on Solar Concentrators: Differences and Applications," Instrumentation Mesure Metrologie, vol. 19, 2020, pp. 371-378. https://dx.doi.org/10.18280/i18282m.190507. [24] M. Ghodbane, M. Majdak, B. Boumeddane, "The efficiency of linear Fresnel reflectors in producing superheated steam for power plant drive," E3S Web Conf., vol. 323, 2021, article 00011. https://doi.org/10.1051/e3sconf/202132300011. [25] M. Ghodbane, B. Boumeddane, Z. Said, E. Bellos, "A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant," Journal of Cleaner Production, vol. 231, 2019, pp. 494-508. https://doi.org/10.1016/j.jclepro.2019.05.1201. [26] M. Ghodbane, E. Bellos, Z. Said, B. Boumeddane, A. Khechekhouche, M. Sheikholeslami, Z.M. Ali, "Energy, Financial and Environmental investigation of a direct steam production power plant driven by linear Fresnel solar reflectors," Journal of Solar Energy Engineering, vol. 143, Apr 2021, article 021008. https://doi.org/10.1115/1.4048158. [27] A. Barbón, D. Vesperinas, L. Bayon, D. García- Mollaghan, M. Ghodbane, "Numerical simulation of a solar water disinfection system based on a small-scale linear Fresnel reflector," RSC Advances, vol. 13, 2023, pp. 155-171. https://doi.org/10.1039/D1032RA05596A. https://doi.org/10.1016/j.renene.2020.101154 https://doi.org/10.1016/j.renene.2019.101137 https://doi.org/10.1007/s10973-020-09384-6 https://doi.org/10.1016/j.csite.2016.06.006 https://doi.org/10.1016/j.solmat.2022.111633 https://doi.org/10.1016/j.est.2022.104858 https://doi.org/10.1007/s10973-020-10300-1 https://doi.org/10.1016/j.seta.2021.101715 https://doi.org/10.1016/j.seta.2022.102513 https://doi.org/10.1016/j.csite.2021.101558 https://dx.doi.org/10.18186/thermal.847334 https://doi.org/10.1016/j.egyr.2022.15024 https://doi.org/10.18186/thermal.884657 https://doi.org/10.18186/thermal.888167 https://doi.org/10.1016/j.matpr.2021.12.2497 https://dx.doi.org/10.18280/i18282m.190507 https://doi.org/10.1051/e3sconf/202132300011 https://doi.org/10.1016/j.jclepro.2019.05.1201 https://doi.org/10.1115/1.4048158 https://doi.org/10.1039/D1032RA05596A Soulef Largot et al. / International Journal of Energetica (IJECA) Vol. 8, N°1, 2023, pp. 24-30 Page 30 [28] Barbón, M. Ghodbane, L. Bayón, Z. Said, "A general algorithm for the optimization of photovoltaic modules layout on irregular rooftop shapes," Journal of Cleaner Production, vol. 365, 2022, p. 132774. https://doi.org/10.1016/j.jclepro.2022.132774. [29] J.A. Fernández-Rubiera, A. Barbón, L. Bayón, M. Ghodbane, "Sawtooth V-trough cavity for low concentration photovoltaic systems based on small-scale linear Fresnel reflectors: Optimal design, verification and construction," Electronics, vol. 12, 2023, p. 2770. https://doi.org/10.3390/electronics12132770. https://doi.org/10.1016/j.jclepro.2022.132774 https://doi.org/10.3390/electronics12132770