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A B S T R A C T S  A R T I C L E   I N F O 

Due to the dynamic nature of computer networks today, 
there is need to make the networks self-organized. Self-
organization can be achieved by applying intelligent 
systems in the networks to improve convergence time. 
Bio-inspired algorithms that imitate real ant foraging 
behaviour of natural ants have been seen to be more 
successful when applied to computer networks to make 
the networks self-organized. In this paper, we studied 
how Ant Colony Optimization (ACO) has been applied 
in the networks as a bio-inspired algorithm and its 
challenges. We identified the number of ants as a 
drawback to guide this research. We retrieved a number 
of studies carried out on the influence of ant density on 
optimum deviation, number of iterations and 
optimization time. We found that even though some 
researches pointed out that the numbers of ants had no 
effect on algorithm performance, many others showed 
that indeed the number of ants which is a parameter to 
be set on the algorithm significantly affect its 
performance. To help bridge the gap on whether or not 
the number of ants were significant, we gave our 
recommendations based on the results from various 
studies in the conclusion section of this paper.  
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1. INTRODUCTION 

A family of optimization techniques 

that have been applied as combinatorial 

problem-solving techniques form the 

widely known metaheuristics. Over the 

years, metaheuristics have been applied 

in many fields to solve complex problems 

(Liao et al., 2014). The ACO algorithm is 
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one example of these metaheuristics. 

Others include Particle Swarm 

Optimization, Bee Colony Optimization, 

Bat Optimization among others. ACO 

was introduced in the early years of the 

1990s (Blum, 2005) and has for many 

years been applied in various fields to 

tackle complex optimization issues that 

may be solved using basic methods. For 

example, the algorithm has been 

successfully applied in data compression, 

gaming theory, feature selection, 

dispatch problems, parameter estimation 

in dynamic systems, satellite control, job 

scheduling problems, congestion control, 

social graph mining, medicine for 

decision making, and target tracking 

(Kar, 2016). ACO has also been employed 

in computer networks to determine the 

shortest possible route for sending data 

from basis to destination, similar to how 

ants forage (Adiga et al., 2013), therefore 

becoming the lowest-cost route between 

any two connected nodes. This has 

increased network functioning while 

decreasing the latency that packets suffer 

in the absence of the ACO algorithm, 

when attempting to reach their target 

because computer networks are 

important to the running of any 

institution, they must be active at all 

times, regardless of the obstacles they 

may encounter. As a result, technical 

adjustments in their upkeep are required. 

ACO was employed in this example to 

make the network self-regulating and 

sustainable, so that any issues discovered 

in the network could be addressed by the 

network itself. Some academics have 

proposed using ACO to prevent the need 

for infrastructure such as nodes and 

switches, which might fail and cause the 

communication process to fail (Dressler 

et al., 2010).  

 

2. METHODS AND MATERIALS 

In this paper we adopted both 
qualitative research methods. Secondary 
data of 12 experiments published online 
was retrieved whereby results from 
various studies were compared and used 
to do the analysis using thematic 
analysis.  

3. APPLICATION OF ACO IN 
COMPUTER NETWORKS 

Ant Colony Optimization algorithm is 

a class of swarm intelligent systems that 

are applied in solving NP-hard problems. 

Swarm-intelligent systems have not been 

fully explored in literature till today 

(Gustov & Levina, 2021), but a lot is being 

done in ACO. This is because among the 

many Swarms Intelligent algorithms 

available, ACO is the most studied. 

Foraging ants in a true ant colony system 

produce pheromone trails along the 

pathways they traverse, which others 

may follow to the food source. An ant in 

the ACO algorithm is a mobile agent 

capable of dealing with computer 

network difficulties such as congestion 

and packet routing. This is made possible 

by the continuous and consistent 

modification of the routing tables by the 

agents in response to any congestion in 

the network (Sim & Sun, 2002). As the 

agents do this modification, they lay 

pheromone trails, which make clear 

routes between any nodes on the system. 

These pheromone trails acting as 

stigmergy would be handy in helping the 

future ants make a routing decision 

(Kamali & Opatrny, 2007). Other bio-
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inspired algorithms that have been 

successfully applied in computer 

networks for adaptive routing include 

the Artificial Plant Optimization (APO) 

algorithm for the implementation of the 

telecom sensor network, Artificial Neural 

Networks (ANN) for switching 

networks, the Genetic Algorithm (GA) for 

network path routing and the Leaping 

Frog Algorithm (LFA) for network 

designing and scaling problems (Kar, 

2016). However, ACO has been the most 

often used and researched optimization 

algorithm since it has shown the highest 

performance and has been the most 

effective (Caro & Dorigo, 2004). As a 

result, this research concentrated on the 

design and use of ACO in many sectors, 

and more especially on its application in 

computer networks, and how it may even 

be improved in terms of the ideal number 

of ants required to be employed for better 

performance in these networks. Forward 

and backward ants are used in these 

algorithms (Jacobsen et al., 2011). The 

proactive ACO routing algorithm 

ANTNET has been used effectively in 

packet-switched networks (Caro & 

Dorigo, 1998). The ANTNET algorithm 

propels a forward ant from the nest or 

source node at regular intervals towards 

its objective of food. When a forwarding 

ant reaches at its destination, it uses the 

list to return to the nest or source and 

update the pheromone values deposited 

in the routes or connections. If ACO is 

applied in an ideal network, the ants are 

translated into packets, and the routes 

they use become the links between the 

nodes on that very network. If we have 

redundant links between the devices on 

the network, then the packets are 

expected to go through the shortest route 

to the destination if they are well 

optimized.  

4. DRAWBACKS AND VARIATIONS 

OF ACO 

The ACO has shown certain benefits, 

such as positive feedback for quick 

solutions, dynamic applications that 

adjust to changes such as additional 

distances, and intrinsic parallelism. It has, 

however, shown several limitations, such 

as probability distribution changes due to 

iterations and convergence time (Selvi & 

Umarani, 2010). More precisely, 

ANTHOCNET's disadvantage is the 

quantity of routing messages routing that 

must be delivered in the network before 

the formation of routes to the destination, 

the downside of ANTNET is the time 

necessary to build a route system 

between any two nodes in the network. 

This is referred to as the convergence 

time (Selvi & Umarani, 2010). Last but not 

least the stagnation of ants in the working 

process of the algorithm (Caro & Dorigo, 

1998) is also another problem common in 

ACO algorithms.  Parameter setting of a 

basic ant colony algorithm is mainly the 

cause of these variations and is still under 

experimental stage till today (Wei, 2014).  

4.1 ACO Algorithm Parameter Setting 

The following are the parameters 

under consideration (Wei, 2014). 

m - number of ants.  

α - pheromone relative importance.  

β - relative importance of heuristic 

factor.  
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ρ- pheromone evaporation coefficient 

while (1-ρ) indicates the pheromone 

persistence factor.  

Q - amount of pheromone released by 

ants  

The following is the general formula 

used in the algorithm with the above 

parameters. The ants would 

independently select the next town or city 

to tour at time t, hence the probability of 

ant k to move from city i to j is given by 

(Caro & Dorigo, 1998):  

 

After all the ants have toured all the 
cities in the search space, each of the 
paths is updated according to Eq. (2) 
below. 

 

Were, 

 

and,  

 

This study compares various 
researches on the impact of number of 
ants (m) shown in Eq. (3) on optimal 
solution and convergence time of the 
algorithm. 

5. THE EFFECT OF THE NUMBER OF 

ANTS (M) ON ACO 

OPTIMIZATION  

According to (Colorni et al., 1991) the 
number of ants is among the controllable 
parameters affecting the performance of 
ACO. We examine at 12 tests from three 
research to see how the number of ants in 
the ACO algorithm affects its 
convergence. Here, we look at whether or 
not an optimal solution is found and how 
long it takes for the solution to be found. 

5.1. Experiment 1 

This experiment was done by Aydin and 
Yilmaz (Sivagaminathan & 
Ramakrishnan, 2007). The two presented 
an investigation into the number of ants 
used in ACO in relation to the number of 
iterations, penalized objective function, 
and optimization time. For the purposes 
of this study, the results obtained from 
the number of iterations as well as time of 
optimization versus the number of ants 
are taken into account (See Figs. 1). 

 

Fig. 1. The Average Iteration Number 
Versus Number of Ants 

(Sivagaminathan & Ramakrishnan, 2007) 

 

Fig. 2. The Optimization Time Versus 
Number of Ants (Sivagaminathan & 

Ramakrishnan, 2007) 
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From Fig. 1 above, as the number of ants 
rises, the number of iterations reduces. In 
contrast to Fig. 2 above, the optimization 
time increases quickly when the 
population of ants grows. In terms of the 
precise number of ants required for the 
optimum solution, this research does not 
give a direct answer, as it only suggests 
that it is critical to identify the 
appropriate number of ants in order to 
get the best solution in the shortest 
amount of time. However, from the 
experimental results in fig. 1 and 2 above, 
it is obvious that the fewer the ants, the 
greater the number of iterations, and 
hence the shorter the optimization time. 
In other terms, when the number of ants 
rises, the number of iterations decreases 
yet the optimization time increases since 
numerous ants take longer to converge. 
However, this experiment was limited to 
small problems, and the exact number of 
optimal ants could not be established 
clearly.  

5.2. Experiment 2 

We examine this experiment done by 
Alobaedy et al (Yilmaz & Aydin). In this 
experiment, the researchers categorized 
optimization problems into small and 
medium scales using data sets of 50 and 
100 cities respectively. They were able to 
measure the execution time, best 
solution, total number of new solutions 
obtained among other metrics.  Fig. 3 
below shows the results obtained in 
terms of execution time against the 
number of ants for small scale problem of 
50 cities. Figure 3 shows that increasing 
the number of ants causes an increase in 
the execution time. 

 

Fig. 3. Execution Time Against the 
Number of Ants (50 Cities) (Yilmaz & 

Aydin) 

When the experiment with 100 ants 
(medium) was run as shown below in Fig. 
4, a similar pattern was noted. However, 
due to the complexity of this issue, the 
execution time of the method increased in 
fig. 4. 

 

Fig. 4. Execution Time Against the 
Number of Ants (100 Cities) (Yilmaz & 

Aydin) 

This research reveals that increasing 
the number of ants did not improve the 
algorithm's performance, but if the 
number is low, the performance was 
enhanced. Nevertheless, the experiment 
was performed under two problem 
variations that is small and medium sized 
problems. For small sized problem the 
execution time was small and difficult to 
determine the exact number of ants 
needed to optimize the solution. Whereas 
on the medium sized problem, the 
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execution time doubled and the number 
of optimum ants for that solution was 
found to be 16 out of 100. 

5.3. Experiment 3 

In this experiment, Christoffer and Lars 
(Alobaedy et al., 2017; Stutzle & Hoos, 
2000; Aydin) carried out comparisons on 
three ACO variations model (RankedAS 
EliteAS, and MMAS). The EliteAS relies 
on specialist ants to work. These 
secondary ants, or specialized ants, are 
utilized to impose the elitist approach. 
The other ants called the normal ants 
work differently. The specialist ants 
multiply the pheromone on the best 
solution found by normal ants (Petterson 
& Lundell, 2018) making it stay longer 
without decomposing unlike the normal 
routes in other ant systems. The 
RankedAS on the other hand also use 
specialist ants but these ants deposit 

pheromones on many good paths found 
instaed of depositing all pheromones on 
the best solution found (Petterson & 
Lundell, 2018). Every route is graded by 
length, with the best-ranked route getting 
the most pheromones and the worst-
ranked route receiving the fewest. Lastly, 
the MMAS has no specialist ants which 
means it only uses the normal ants. Here, 
the pheromone deposited on a given path 
can never exit a maximum value or 
getlower than a given minimum value. 
This ensures that the pheromone level on 
a path does not get too low that the path 
is rendered unusable or the path should 
never be filled with the pheromone so 
much that it overshadows all the other 
routes (Bullnheimer et al., 1997). This 
happens through smoothing of the edges 
whenever pheromone concentration 
levels are going below or above the 
extremes (See Figs. 5-9). 

 

5.3.1 EliteAS 

 

 

Fig 5. Average Deviation from Optimum Ants in relation to 101 Cities (Alobaedy 
et al., 2017) 

1 % 10 % 20 % 30 % 40 % 50 60 % % 70 % 80 % 90 % 100 

% 5 

10 % 

15 % 
EliteAS  |  101 cities 

1 % 25 % 50 % 75 100 % 
Specialists in relation to ants 
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Fig 6. Average Deviation from Optimum Ants in relation to 225 Cities (Alobaedy 
et al., 2017)

In EliteAS as shown in figs. 5 and 6, only 
between 10-30% of the ants showed a 
better performance.

5.3.2.   RankedAS

 

Fig 7. Average Deviation from Optimum Ants in relation to 101 Cities (Alobaedy 
et al., 2017) 

 

Fig 8. Average Deviation from Optimum Ants in relation to 225 Cities (Alobaedy 
et al., 2017) 

1 % 10 % 20 % 30 % 40 % 50 % 60 % 70 80 % % 90 % 100 
Ants in relation to cities 

5 % 

10 % 

% 15 
EliteAS  |  225 cities 

1 25 % % 50 % 75 % 100 
Specialists in relation to ants 

1 % 10 % 20 % 30 % 40 % 50 % 60 % 70 80 % % 90 % 100 

5 % 

10 % 

15 % 
1 25 % 50 % 75 % 100 % 5 

Specialists in relation to ants 

1 % 10 20 % 30 % 40 % 50 % 60 % 70 % % 80 % 90 % 100 
Ants in relation to cities 

5 % 

% 10 

15 % 
RankedAS  |  225 cities 

1 % 25 % 50 % 75 % 100 5 
Specialists in relation to ants 
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Fig 9. Average Deviation from Optimum Ants in relation to 532 Cities (Alobaedy 
et al., 2017) 

As shown from the results in figs. 5,6,7,8 
and 9 above, the results of RankedAS and 
EliteAS are contrasting each other. A 
large percentage of specialized ants 
degrades the solution more than a low 
proportion of specialized ants. In 
RankedAS, the number of normal ants 
has an effect of deviation from optimum 
solution when using 5 specialized ants 
but when using more specialized ants 
there is no effect. In this case, the optimal 
solution is obtained when 5 specialized 

ants and 100% regular ants are used in 
relation to cities (Alobaedy et al., 2017). 
Nonetheless, with figure 9 where we 
have 525 cities, using more than 50% of 
the normal ants brings about worse 
results as the deviation from optimum is 
high as shown by the red line. It found 
that, when implementing some 
RankedAS, the highest number of normal 
ants which is 100% of ants showed better 
performance in terms of convergence (See 
Figs. 10-12). 

 

5.3.3 Min-Max ant System 

 

Fig 10. Average Deviation from Optimum Against Ants in Relation To 101 Cities 
(Alobaedy et al., 2017) 
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Fig 11. Average Deviation from Optimum Against Ants in Relation To 225 Cities 
(Alobaedy et al., 2017) 

 

 

Fig 12. Average Deviation from Optimum Against Ants in Relation To 532 Cities 
(Alobaedy et al., 2017) 

Fig. 10 and 11 show that increasing the 
number of ants in MMAS has no effect on 
the deviation from optimum results. 
Except for fig. 12 which shows some 

variation, overall performance of MMAS 
has is not affected by a large number of 
ants (Alobaedy et al., 2017).

6. RESULTS AND DISCUSSION 

While some eight experiments in the data 
collected show that an increase in the 
number of ants degrades the 
optimization of various ACO versions, 
two of them indicate that it actually 
improves the optimization of the 
algorithm, yet two more reveal that it has 
no impact on the results of the algorithm. 

To help understand the variation in 
EliteAS, we single out figure 9 that 
brought about worse results when the 
number of normal ants is increased. First, 
we look at the number of specialized ants 
kept at 5 in all the figures 7, 8 and 9. 
Calculating the ratio between the number 
specialized ants to that of normal ants in 
all the three experiments when the 
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algorithm is at its optimum performance 
we find; 5:100, 5:225 and 5:266 (at 50% 
ants) for figures 7,8 and 9 respectively. 
When we simplify the ratio, we get 1:20, 
1:45 and 1:53 respectively. If we take a 
look at the same figure 9, at 60% ants 
where the graph starts to deviate from the 
optimum, the ratio of the ants is 1: 63. 
From 60%, the graphs exponentially 
continue to deviate from the optimal 
solution till 100%. From this data we can 
see that for the optimal functioning of the 
algorithm the ratio of specialized ants 
and that of normal ants has to be 
considered. In figure 9, this ratio was not 
considered as the number of specialized 
ants remained to be 5. For instance, for 
every 1 specialized ant, there needs to be 

about 20 to about 50 normal ants to 
optimize the solution. When the ACO 
algorithms are optimized, they can then 
be applied in various fields of study. In 
this case when it is applied in computer 
networks, the packets would be 
translated into ants and made to be as 
intelligent as the ants of the algorithm, 
hence prevent packet looping and many 
other problems associated with 
unoptimized computer networks 
especially under dynamic situations. This 
helps improve on the network 
convergence time without making the 
time too short to cause premature 
convergence or too long to bring a lot of 
latencies in the network.  

 

5. CONCLUSION 

After identifying the main challenges 
faced by ACO which include stagnation 
of ants, actual number of routing 
messages that are needed, and 
convergence time and their main causes 
which are associated with parameter 
setting in the algorithm, we singled out 
one of the parameters which is the 
convergence time influenced by the 
number of ants in the solution space. 
However, the key problem is 
determining the ideal number of ants to 
utilize in the algorithm. It is difficult to 
quantify the number of ants necessary to 
solve a issue. First, some problems are 

less complex than others that means they 
need a smaller number of ants to be 
solved, and secondly, we have different 
types of ACO algorithms working 
differently. A well optimized algorithm 
will have a short convergence time. We 
therefore considered the results from the 
experiments done by various researchers 
as shown in the 12 figures above and 
came up with the following conclusions 
that can help determine the optimum 
number of ants needed. 1) The type of 
ACO algorithm in use, 2) The complexity 
of the problem under study, and 3) The 
ratio of the number of specialized ants to 
that of normal ants. Further research 
needs to be carried out to determine how 
best we can calculate and determine the 
optimal number of ants needed. 
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