59 | International Journal of Informatics Information System and Computer Engineering 3(1) (2022) 59-70 Association Analysis with Apriori Algorithm for Electronic Sales Decision Support System R. Fenny Syafariani Mathematics Department, Faculty of Ocean Technology Engineering and Informatics, Universiti Malaysia Terengganu, Malaysia Corresponding Email: r.fenny.syafariani@email.unikom.ac.id A B S T R A C T S A R T I C L E I N F O The purpose of this study was to determine the level of dependence of various items in order to dig up information on what items are dependent on other items. The method used in this research is descriptive analysis with a qualitative approach through a priori algorithm. The results show that the association analysis of the 26 transactions taken is 76.47%. A consumer who buys a laptop electronic device has the possibility to also buy an electronic mouse. Article History: Received 25 May 2022 Revised 30 May 2022 Accepted 10 June 2022 Available online 26 June 2022 Aug 2018 __________________ Keywords: Technology, Information System, Apriori, Algorithm, Decision Support System, Electronic sales 1. INTRODUCTION Data mining is a data processing method to find patterns from the data obtained (Ordila et al., 2020). There are many methods in data mining. One method that is often used is the association method or association rule, more precisely using the Apriori Algorithm. The data generated from the sales process or transaction data is processed by association rules to find out information related to product purchases made by buyers (Riszky et al., 2019). There are various kinds of electronic goods that are sold such as Laptops, Printers, Mouse and so on. Sales transactions continue to grow every day and cause huge data storage (Purnia et al., 2017). Most sales transaction data is only used as an archive without being International Journal of Informatics, Information System and Computer Engineering International Journal of Informatics Information System and Computer Engineering 3(1) (2022) 59-70 mailto:r.fenny.syafariani@email.unikom.ac.id R. Fenny Association Analysis with Apriori...| 60 used properly. However, this data set contains very useful information. With the application of association analysis or association rule mining in this discussion, it is hoped that association rules can be found between a combination of items. So that obtained a knowledge of the application of the concept of association mining analysis through the search for support and confidence. The previous research discussed "Application of Data Mining for Analysis of Consumer Purchase Patterns with the Fpgrowth Algorithm on Motorcycle Spare Part Sales Transaction Data" (Fajrin et al., 2018). This research is tested in order to influence consumer buying patterns, because each consumer's buying pattern is different. This needs to be analyzed further so that it can produce useful information, as well as maximize the benefits that can be obtained. Then the next research that has been done previously is discussing "Data Mining Analysis for Clustering Covid-19 Cases in Lampung Province with the K-Means Algorithm" (Nabila et al., 2021). This study was to analyze data on Covid-19 cases in order to find out the grouping of the Covid-19 case problems in Lampung Province. The grouping of data on Covid- 19 cases in Lampung Province was carried out using the Clustering method with the K-Means algorithm. The results of DBI validation using manual calculations and using the help of RapidMiner tools have differences, in this case manual calculations have better results than using RapidMiner tools, but the results of both calculations are both close to 0 which means the evaluated clusters produce good clusters. In the previous research conducted using the fpgrowth algorithm analysis method, and subsequent research using the k-means method in conducting the analysis. This research is "Association Analysis with Apriori Algorithm for Decision Support System for Selling Electronic Goods" (Riszky et al., 2019). Data mining and a priori algorithms are very useful to find out the reality of the frequency of sales of electronic goods that are most in demand by consumers. so that it can be used as very useful information in making decisions to prepare stocks of what types of electronic goods are needed in the future. 2. METHOD In this study using descriptive analysis method with a qualitative approach (Rahmawati et al., 2018). While in data processing using data mining techniques. The algorithm approach used is the a priori algorithm. The process of forming a combination of itemsets pattern and making rules starts from data analysis. The data used is data on sales of electronic goods, then followed by the formation of a combination of itemsets pattern and from an interesting combination of itemsets, association rules are formed. Then the data is made in tabular data format (Tana et al., 2018; Syahril et al., 2020; Simbolon, 2019). In relation to the application used in the test, it is an application that uses one of the Microsoft Excel databases with data in tabular data, then the sales transaction data (electronic goods data out), is converted into binary form (Triansyah et al., 2018). After that the formation of a combination of two elements with a minimum value of the frequency of occurrence = 15 and a minimum value of confidence = 75%. To 61 | International Journal of Informatics Information System and Computer Engineering 3(1) (2022) 59-70 calculate support and confidence, the following formula is used: 3. RESULTS AND DISCUSSION 3.1. Preprocessing The dataset used as a test sample in this study uses 26 transaction data. In the data there are several items of electronic goods sold, namely printers, laptops, chargers, and mice. The following is a table of transaction data that is used as a sample. Table 1. Transaction Data Table Transaction Item E1 Printer,Laptop E2 Laptop, Printer E3 Charger, Printer E4 Printer, mouse, Printer E5 Charger, Printer,Printer E6 Laptop, Printer E7 Printer,Laptop,Charger E8 Printer, Laptop, Printer E9 Printer,Laptop E10 Printer, Printer E11 Printer, Laptop, Printer E12 Laptop, Printer E13 Charger, Printer,Printer E14 Printer,Laptop E15 Printer,Laptop,Charger E16 Printer, Charger E17 Charger, Printer E18 Charger, Printer,Printer E19 Printer, Laptop, Printer Support = ๐›ด๐‘–๐‘ก๐‘’๐‘š๐‘  ๐‘๐‘ข๐‘Ÿ๐‘โ„Ž๐‘Ž๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘ก ๐‘œ๐‘›๐‘๐‘’ ๐›ด๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› ร— 100% Confidence = ๐›ด๐‘–๐‘ก๐‘’๐‘š๐‘  ๐‘๐‘ข๐‘Ÿ๐‘โ„Ž๐‘Ž๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘ก ๐‘œ๐‘›๐‘๐‘’ ๐›ด๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘›๐‘ก๐‘’๐‘๐‘’๐‘‘๐‘’๐‘›๐‘ก ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ร— 100 % R. Fenny Association Analysis with Apriori...| 62 E20 Charger, Printer,Printer E21 Laptop, Printer E22 Printer,Laptop,Charger E23 Printer,Laptop E24 Printer, mouse, Printer E25 Laptop, Printer E26 Printer, mouse, Printer 3.2. Transaction Data Tabular Format The application used in the test is a Microsoft Excel database so that the data must be converted into binary form (Sianturi et al., 2018).The conversion process is that the slip number of the data to be tested is made horizontally downwards, while all types of items will become vertical attributes, so that they form like a table, based on real sales data (electronic goods data out) the meeting point between the name of the electronic type and the number slip will become binary 1, while those that do not become meeting points will become binary 0. The results of the conversion process of sales transaction data to data format in tabular data form are as shown in the following table: Table 2. Data in the form of tabular data Transaction Printer Mouse Laptop Charger E1 1 0 1 0 E2 0 1 1 0 E3 1 0 0 1 E4 1 1 1 0 E5 1 1 0 1 E6 0 1 1 0 E7 0 1 1 1 E8 1 1 1 0 E9 1 0 1 0 E10 1 1 0 0 63 | International Journal of Informatics Information System and Computer Engineering 3(1) (2022) 59-70 E11 1 1 1 0 E12 0 1 1 0 E13 1 1 0 1 E14 1 0 1 0 E15 0 1 1 1 E16 0 1 0 1 E17 1 0 0 1 E18 1 1 0 1 E19 1 1 0 0 E20 1 1 0 1 E21 0 1 1 0 E22 0 1 1 1 E23 1 0 1 0 E24 1 1 1 0 E25 0 1 1 0 E26 1 1 1 0 17 20 17 10 In the tabular data table above, the number of occurrences (electronic items that come out) of each item is: Printer = 17, Mouse = 20, Laptop = 17, and Charger = 10. 3.3. Formation of Two Elements Combination Pattern With a minimum value of the frequency of occurrence ะค= 15. In the form table tabular data, there is one electronic item that does not meet the provisions of the frequency limit, namely Charger = 10, so in the formation of the pattern of these two elements we make a combination of pairs of 3 electronic items, namely Printer-Mouse, Laptop Printer, Mouse- Laptop. The following are tables of 2 element combinations: Table 3. Two Elements Combination Pattern (Printer, Mouse) Transaction Printer Mouse f R. Fenny Association Analysis with Apriori...| 64 E1 1 0 S E2 0 1 S E3 1 0 S E4 1 1 P E5 1 1 P E6 0 1 S E7 0 1 S E8 1 1 P E9 1 0 S E10 1 1 P E11 1 1 P E12 0 1 S E13 1 1 P E14 1 0 S E15 0 1 S E16 0 1 S E17 1 0 S E18 1 1 P E19 1 1 P E20 1 1 P E21 0 1 S E22 0 1 S E23 1 0 S E24 1 1 P E25 0 1 S E26 1 1 P Total (P) 11 Table 4. Two Elements Combination Pattern (Printer, Laptop) 65 | International Journal of Informatics Information System and Computer Engineering 3(1) (2022) 59-70 Transaction Printer Laptop f E1 1 1 P E2 0 1 S E3 1 0 S E4 1 1 P E5 1 0 S E6 0 1 S E7 0 1 S E8 1 1 P E9 1 1 P E10 1 0 S E11 1 1 P E12 0 1 S E13 1 0 S E14 1 1 P E15 0 1 S E16 0 0 S E17 1 0 S E18 1 0 S E19 1 0 S E20 1 0 S E21 0 1 S E22 0 1 S E23 1 1 P E24 1 1 P E25 0 1 S E26 1 1 P Total (P) 9 Table 5. Two Elements Combination Pattern (Printer, Laptop) Transaction Mouse Laptop f E1 0 1 S E2 1 1 P E3 0 0 S E4 1 1 P E5 1 0 S E6 1 1 P E7 1 1 P E8 1 1 P E9 0 1 S E10 1 0 S R. Fenny Association Analysis with Apriori...| 66 E11 1 1 P E12 1 1 P E13 1 0 S E14 0 1 S E15 1 1 P E16 1 0 S E17 0 0 S E18 1 0 S E19 1 0 S E20 1 0 S E21 1 1 P E22 1 1 P E23 0 1 S E24 1 1 P E25 1 1 P E26 1 1 P Total (P) 13 From the tables of the 2 elements above, P means that the items are sold together, while S means that there are no items that are sold together or there is no transaction. ฮฃ represents the number of Frequency items set. So that in the pattern of these two elements, the support value is obtained, namely: โ€ข Printer โ€“ Mouse = 11 โ€ข Printer โ€“ Laptop = 9 โ€ข Mouse โ€“ Laptop = 13 3.4. Formation of Three Elements Combination Pattern The combination of the 2 elements in the table above, we can combine into 3 elements. For the set formed on these 3 elements are Laptop, Printer, Mouse. Here is a table of 3 elements: Table 6. Three Elements Combination Pattern (Printer, Mouse, Laptop) Transaction Printer Mouse Laptop f E1 1 0 1 S E2 0 1 1 S E3 1 0 0 S E4 1 1 1 P E5 1 1 0 S 67 | International Journal of Informatics Information System and Computer Engineering 3(1) (2022) 59-70 E6 0 1 1 S E7 0 1 1 S E8 1 1 1 P E9 1 0 1 S E10 1 1 0 S E11 1 1 1 P E12 0 1 1 S E13 1 1 0 S E14 1 0 1 S E15 0 1 1 S E16 0 1 0 S E17 1 0 0 S E18 1 1 0 S E19 1 1 0 S E20 1 1 0 S E21 0 1 1 S E22 0 1 1 S E23 1 0 1 S E24 1 1 1 P E25 0 1 1 S E26 1 1 1 P Total (P) 5 It can be seen from the pattern table of the 3 elements above, the items that were sold simultaneously were Laptop โ€“ Printer - Mouse = 5 So, the support value in the 3 element pattern table is 5. 3.4. Association Rules Calculating the support and confidence values of each frequent itemset so that candidate association rules appear (Lestari, 2017). To calculate support and confidence, the following formula is used: Support = ๐›ด๐‘–๐‘ก๐‘’๐‘š๐‘  ๐‘๐‘ข๐‘Ÿ๐‘โ„Ž๐‘Ž๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘ก ๐‘œ๐‘›๐‘๐‘’ ๐›ด๐‘ก๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› ร— 100% R. Fenny Association Analysis with Apriori...| 68 So that the results are obtained as in the table below Table 7. Association Rules Candidate List If antecedent, then consequent Support Confidence Printer, Mouse 11/26*100 %= 42,30% 11/17*100 %= 64,70% Mouse, Printer 11/26*100 %= 42,30% 11/20*100 %= 55% Printer, Laptop 9/26*100%=34,61% 9/17*100%=52,94% Laptop, Printer 9/26*100%=34,61% 9/17*100%=34,61% Mouse, Laptop 13/26*100%=50% 13/20*100%=65% Laptop, Mouse 13/26*100%=50% 13/17*100%=76,47% From the table above, the support and confidence have been determined. then select the association rules that meet the minimum confidence of 75%, so that the association rules are obtained, which are as follows: Table 8. Association Rules List If antecedent, then consequent Support Confidence Laptop, Mouse 13/26*100%=50% 13/17*100%=76,47% From the results of the analysis that has been carried out, there is 1 product association rule that meets the minimum confidence limit, namely Laptop - Mouse. Then the results obtained are "76,47% of transactions that contain Laptop electronics also contain Mouse electronics. And 50% of all transactions that contain these two items". With Apriori Algorithm analysis can be applied to assist marketing strategies in a company or institutions. Data mining and a priori algorithms are very useful to find out the relationship between the frequency of sales of electronic goods that are most in demand by customers, so that they can be used as very valuable information in making decisions to prepare stocks of what types of electronic goods are needed in the future. 4. CONCLUSION A priori algorithm is used in conducting association analysis to determine the level of dependence of various items to explore information on what items have dependence on other items based on 26 transaction records that are sampled. The author performs an association analysis calculation from the samples taken so that the result is that 76.47% of a consumer who buys laptop electronics has the possibility to also buy mouse electronics. And 50% of all transactions that contain these two items. Confidence = ๐›ด๐‘–๐‘ก๐‘’๐‘š๐‘  ๐‘๐‘ข๐‘Ÿ๐‘โ„Ž๐‘Ž๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘ก ๐‘œ๐‘›๐‘๐‘’ ๐›ด๐‘กโ„Ž๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘›๐‘ก๐‘’๐‘๐‘’๐‘‘๐‘’๐‘›๐‘ก ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ร— 100 % 69 | International Journal of Informatics Information System and Computer Engineering 3(1) (2022) 59-70 REFERENCES Ordila, R., Wahyuni, R., Irawan, Y., & Sari, M. Y. (2020). Penerapan Data Mining Untuk Pengelompokan Data Rekam Medis Pasien Berdasarkan Jenis Penyakit Dengan Algoritma Clustering (Studi Kasus: Poli Klinik Pt. Inecda). Jurnal Ilmu Komputer, 9(2), 148-153. Riszky, A. R., & Sadikin, M. (2019). Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan. Jurnal Teknologi dan Sistem Komputer, 7(3), 103-108. Purnia, D. S., & Warnilah, A. I. (2017). Implementasi Data Mining Pada Penjualan Kacamata Menggunakan Algoritma Apriori. IJCIT (Indonesian Journal on Computer and Information Technology), 2(2). Rahmawati, F., & Merlina, N. (2018). Metode Data Mining Terhadap Data Penjualan Sparepart Mesin Fotocopy Menggunakan Algoritma Apriori. PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic, 6(1), 9-20. Triyansyah, D., & Fitrianah, D. (2018). Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing. InComTech: Jurnal Telekomunikasi dan Komputer, 8(3), 163-182. Nabila, Z., Isnain, A. R., Permata, P., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K- Means. Jurnal Teknologi Dan Sistem Informasi, 2(2), 100-108. Riszky, A. R., & Sadikin, M. (2019). Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan. Jurnal Teknologi dan Sistem Komputer, 7(3), 103-108. Sianturi, F. A. (2018). Penerapan Algoritma Apriori Untuk Penentuan Tingkat Pesanan. Jurnal Mantik Penusa, 2(1). Lestari, N. (2017). Penerapan Data Mining Algoritma Apriori Dalam Sistem Informasi Penjualan. Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika, 3(2), 103-114. Tana, M. P., Marisa, F., & Wijaya, I. D. (2018). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Pada Toko Oase Menggunakan Algoritma Apriori. JIMP-Jurnal Informatika Merdeka Pasuruan, 3(2). Syahril, M., Erwansyah, K., & Yetri, M. (2020). Penerapan Data Mining untuk menentukan pola penjualan peralatan sekolah pada brand wigglo dengan R. Fenny Association Analysis with Apriori...| 70 menggunakan algoritma apriori. Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD, 3(1), 118-136. Simbolon, P. H. (2019). Implementasi Data Mining Pada Sistem Persediaan Barang Menggunakan Algoritma Apriori (Studi Kasus: Srikandi Cash Credit Elektronic dan Furniture). JURIKOM (Jurnal Riset Komputer), 6(4), 401-406. Fajrin, A. A., & Maulana, A. (2018). Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor. Kumpulan Jurnal Ilmu Komputer (KLIK), 5(01), 1-10.