International Journal of Interactive Mobile Technologies (iJIM) – eISSN: 1865-7923 – Vol 17 No 09 (2023) Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm https://doi.org/10.3991/ijim.v17i09.38773 Baseem G. Nsaif(), Adheed H. Sallomi Electrical Engineering Department, Mustansiriyah University, Baghdad, Iraq eema1033@uomustansiriyah.edu.iq Abstract—The importance of locating a mobile phone has increased signifi- cantly during last decade for security and commercial reasons. Locating the mo- bile phone leads to locating people. This is done by using the most common prop- agation models in the mobile phone network design to calculate the distance be- tween the mobile phone and the base station, in addition to using positioning algorithms to predict the location of the mobile station. In this work, three tele- communication towers that provide mobile phone service for Zain Iraq were se- lected, located within the Mahmudiya area in Baghdad as a case study, and a test drive was conducted to measure the signal strength received from these base sta- tions at more than 10 points located within the coverage area of these base sta- tions. The Okumura-HATA model, and the UMTS propagation model were used to calculate the distances. The Gray-Wolf algorithm was used to improve mobile phone position prediction. Keywords—GWO, LBS, LOS, RSSI 1 Introduction Wireless technologies have become available for public use due to the great devel- opment in radio technologies in addition to the change in the industry's tendency to build infrastructure for new networks. Nowadays it is a part of most people's daily life. People use cell phones on a daily basis and they constantly have them on hand. For this reason, the ability to indirectly track mobile phones has led to people being tracked. Information that some users have been somewhere at some time is not very useful in general, but may be very important and useful in specific contexts such as security and emergencies. Mobile operators are required to provide all information about their cus- tomers to law enforcement agencies if the agencies have court permission. Location Based Services (LBS) are very well established in emergency services because the call- ers are often too young or injured so they cannot report their precise position. The po- sition of the caller should be available at the public safety answering point at the time the emergency call starts or very shortly after [1, 2]. Obstructions in the Line-Of-Sight (LOS) path between a mobile phone and a base station can cause localization errors. The Non-Line-Of-Sight (NLOS) error has long been seen as a major problem in local- iJIM ‒ Vol. 17, No. 09, 2023 127 https://doi.org/10.3991/ijim.v17i09.38773 mailto:eema1033@uomustansiriyah.edu.iq Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm ization. As a result, it's critical to reduce or eliminate NLOS errors in location estima- tion. In practice, NLOS pathways change frequently due to environmental impacts. Moreover, the signals are reflected due to obstacles, and multiple scattered signal paths are formed, which is difficult to design precisely [3, 4]. Signal reflection properties vary as the frequency of the signal changes. Moreover, the reflection of the signal depends on many factors regarding the obstacle such as the obstacle material and shape. There- fore, the accurate modeling of NLOS errors cannot be achieved in practice [5, 6]. Al- gorithms, such as the hybrid algorithms, the Taylor series algorithm, and the grey wolf optimization algorithm, are used to predict the mobile location [7-12]. The purpose of this project is to estimate mobile location with the greatest precision possible with the use of grey wolf algorithm. The paper's structure is as follows: The methodology of mobile location estimation is given in Section 2. Methods of Received Signal Strength Indication (RSSI) are discussed in Section 3, while the Grey Wolf Optimization method is presented in Section 4 (GWOA). Part 5 is where the simulation results of the sug- gested methodologies are done, and the work's conclusions are shown in the last part. 2 Methodology estimation mobile location To identify the mobile phone location, precise measurements of one BS are needed; if the measurements are error-free (this is ideal case). This project has developed the high accuracy of measuring receiver signal with error route. Three phases are included in the algorithm for estimating mobile location with path loss [13-17]. a) Dataset: Measurements were taken by mobile service providers, and they depended on at least three different cell towers (BS) because of hearability. b) Select a model for propagation.: The propagation model aids in the calculation of path loss and distance between mobile and BS (for example, the UMTS model and the Hata model). c) Estimating the Mobile Location: The mobile location has been estimated using grey wolf optimization (GWO) algorithm, that help to select the highest accuracy measurements. 3 Received Signal Strength Indication (RSSI) measurement techniques There are several localization techniques used for BS location estimation in wireless networks RSS is the most accuracy technology [18-23]. The project focus on one of the most popular range-based techniques that depends on RSSI, because the received signal asset is a function of distance. The RSSI technique implemented by the received signal strength measurements from three or more nearby known BS to find the mobile station location, as shown in Figure 1 [24]. The coverage area of each BS is denoted by a circles whose center is the BS location. The mobile position should lie at the area covered by the selected three BS. The distance between the unknown MS position and the three BSs has used to solve the following circles equations [25]: 128 http://www.i-jim.org Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm (𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2 = 𝑟𝑟12 (𝑥𝑥 − 𝑥𝑥2)2 + (𝑦𝑦 − 𝑦𝑦2)2 = 𝑟𝑟22 (1) (𝑥𝑥 − 𝑥𝑥3)2 + (𝑦𝑦 − 𝑦𝑦3)2 = 𝑟𝑟3 2 where (𝑥𝑥, 𝑦𝑦) is the MS location coordinate, and (𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2) and (𝑥𝑥3, 𝑦𝑦3) are the coordinates of the midpoints of the circles that represent the coverage area of BS1, BS2, and BS3 respectively. The r1, r2 and r3 are the distances between the three BSs and the MS. The crossing of the three circles will represent the unknown location of the MS as shown in Figure 1 [26]. Fig. 1. Mobile location finding using three nearby base stations used RSSI technology The RSSI localization technique is created by signal attenuation to calculate distance between the BS and the MS. The path loss is one of the major factors that affect the RSSI localization accuracy. In order to find the distance, the propagation path lose has selected as: 1. The UMTS model antenna height effect at path loses. The path loss at any distance (d) from the transmitting antenna PL(d) is given by [27]: 𝑃𝑃𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑑𝑑) = 40[1 − 4 ∗ 10 −3(∆ℎ)] 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑑𝑑) − 18 𝑙𝑙𝑙𝑙𝑙𝑙10(∆ℎ) + 149.3 (2) Where, ∆ℎ is difference between BS and MS antenna heights. The distance be as a function of path loss implement and antenna height as: 𝑑𝑑(𝑃𝑃𝐿𝐿) = 10 � 𝑃𝑃𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 −149.3+18 𝐿𝐿𝐿𝐿𝐿𝐿10(∆ℎ) 40�1−4×10−3∆ℎ� � (3) 2. The HATA model frequency and tower height effect at path loses. The path loss at any distance (d) from the transmitting antenna is given by [28]: 𝑃𝑃𝐿𝐿𝐻𝐻𝐻𝐻𝑈𝑈𝐻𝐻(𝑑𝑑) = 158.3 − 13.82log (ℎ𝐵𝐵𝐵𝐵) + �44.9 − 6.55log (ℎ𝐵𝐵𝐵𝐵)�log (𝑑𝑑) (4) iJIM ‒ Vol. 17, No. 09, 2023 129 Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm Where, ℎ𝐵𝐵𝐵𝐵 is BS antenna height. The distance be as a function of path loss imple- ment and antenna height as: 𝑑𝑑�𝑃𝑃𝐿𝐿𝐻𝐻𝐻𝐻𝑈𝑈𝐻𝐻� = 10 � 𝑃𝑃𝐿𝐿𝐻𝐻𝐻𝐻𝑈𝑈𝐻𝐻−158.3+13.82 𝐿𝐿𝐿𝐿𝐿𝐿10(ℎ𝐵𝐵𝐵𝐵) 44.9−6.55log10�ℎ𝐵𝐵𝐵𝐵� � (5) 4 Grey Wolf optimization algorithm The Grey Wolf algorithm is based on simple ideas and don't need gradient infor- mation to be used. In a lot of cases, it is used because it can avoid "local optima." This is why it's used in lots of different engineering fields. The GWO algorithm is one of the more fascinating ones since it uses group hunting. Grey wolf hunting is split into three groups, according to Muro et al. [29]; a) track, pursue, and approach the prey. b) A hunter will chase the prey, circle around it, and surrounds it. c) attacking prey. The four groups of grey wolves are named alpha, beta, delta, and omega, and are based on how they hunt. The group is led by the alpha wolf. They are in charge of establishing the regulations. This wolf has complete control over where he sleeps, hunts, and rests. These wolves are dominating because they order other wolves to obey them. Coming up with fresh ideas is assisted greatly by an alpha wolf. There are two types of wolves: beta wolves and alpha wolves. The alpha wolves are at the top. Beta wolves follow the alpha wolf's lead, listening, responding to what alpha says and help- ing them make decisions. If the alpha wolf dies, it also has certain rights to decide. Another type of animal is called "subordinate" or "delta." These are the next level of wolves, and they are also called "delta". These wolves belong to the groups of elders, sentinels, hunters, scouts, and caregivers. A group of wolves called "delta" follows the alphas and betas. They take care of wolves called "omega". Finally, Omega is the last group of wolves. They are the least powerful and are used as scapegoats when people don't like them. These wolves have to follow the rules of all the other dominant wolves, like the fox. There aren't a lot of Omegas, but in some cases, they can help other wolves deal with their own problems [30]. Grey wolves use two distinct strategies to hunt for prey: exploration and exploitation. Exploitation is the process of finding the optimal solution in a confined search area; encircling and assaulting for prey. In the exploration stage, grey wolves explore their prey in a wide search area, and this is called searching prey. Grey wolves know the location of prey and surround them while encircling them. The prey's position vector is specified in this phase, and additional search agents alter the prey's location depending on the best solution found. The following is the surround- ing prey equation: 𝐷𝐷 = �𝐶𝐶 ∙ 𝑋𝑋𝑝𝑝(𝐾𝐾) − 𝑋𝑋(𝐾𝐾)� (6) 𝑋𝑋(𝐾𝐾 + 1) = 𝑋𝑋𝑝𝑝(𝐾𝐾) − 𝐴𝐴 ∙ 𝐷𝐷 130 http://www.i-jim.org Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm There are two coefficient vectors, 𝐴𝐴 and 𝐶𝐶 . The position vector of the prey is shown as 𝑋𝑋𝑝𝑝 , 𝑋𝑋 is the position vector. It's multiplication on an element-by-element basis. The vectors 𝐴𝐴 and 𝐶𝐶 are computed as follows: 𝐴𝐴 = 2𝑎𝑎 ∙ 𝑟𝑟 − 𝑎𝑎 (7) 𝐶𝐶 = 2 ∙ 𝑟𝑟 (8) where �⃗�𝑎 is reduced linearly from two to zero in each iteration. 𝑟𝑟 is a random vector in the range [0, 1]. The search agent's location [X, Y] is modified in accordance with the position of the prey as determined so far [𝑋𝑋∗, 𝑌𝑌∗]. The coefficient vectors 𝐴𝐴 and 𝐶𝐶 are changed to get the optimal agent at various locations [31]. Grey wolves are led by alpha, with help from beta and delta. During the hunting phase, alpha is in charge. Because there is so much to look for, the best thing isn't always clear right away. Alpha is thought to be the best solution, Beta is thought to be the second best solution, and Delta is thought to be last. These three answers are kept and changed each time so that the lowest ranked solution, omega, moves up or down. The following equation governs hunting tactics: 𝐷𝐷��⃗ 𝛼𝛼 = �𝐶𝐶1 ∗ �⃗�𝑋𝛼𝛼 − �⃗�𝑋� 𝐷𝐷��⃗𝛽𝛽 = �𝐶𝐶2 ∗ �⃗�𝑋𝛽𝛽 − �⃗�𝑋� 𝐷𝐷��⃗ 𝛿𝛿 = �𝐶𝐶3 ∗ �⃗�𝑋𝛿𝛿 − �⃗�𝑋� (9) A modified distance vector is called 𝐷𝐷��⃗ 𝛼𝛼, 𝐷𝐷��⃗𝛽𝛽, and 𝐷𝐷��⃗ 𝛿𝛿. 𝐶𝐶1, 𝐶𝐶2, and 𝐶𝐶3 are three coeffi- cient vectors that help to adjust distance vector. At this time, �⃗�𝑋 is the position of the second grey wolf's vector (omega). �⃗�𝑋1 = �⃗�𝑋𝛼𝛼 − 𝐴𝐴1 ∗ 𝐷𝐷��⃗ 𝛼𝛼 �⃗�𝑋2 = �⃗�𝑋𝛽𝛽 − 𝐴𝐴2 ∗ 𝐷𝐷��⃗𝛽𝛽 �⃗�𝑋3 = �⃗�𝑋𝛿𝛿 − 𝐴𝐴3 ∗ 𝐷𝐷��⃗ 𝛿𝛿 (10) The alpha and distance vectors �⃗�𝑋𝛼𝛼 and 𝐷𝐷��⃗ 𝛼𝛼 represent the newly calculated position �⃗�𝑋1while the beta and distance vectors �⃗�𝑋𝛽𝛽 and 𝐷𝐷��⃗𝛽𝛽 represent the newly computed posi- tion �⃗�𝑋2 while the three coefficient vectors 𝐴𝐴1, 𝐴𝐴2, and 𝐴𝐴3 are all calculated using (7). �⃗�𝑋(𝑘𝑘 + 1) = ∑  𝑛𝑛𝑖𝑖=1 𝑋𝑋�⃗ 𝑖𝑖 𝑛𝑛 (11) We now have �⃗�𝑋(𝑘𝑘 + 1) representing our newly-determined finalized new position vector, which is derived from an average sum of all the locations gained via the use of the alpha, beta, and delta wolf (𝑛𝑛 = 3). The attacking prey phase helps candidate solutions identify the local solutions. In order to do a local search, the coefficient vector 𝐴𝐴⃗ changes its range between [-2a, 2a] and [2a, 0] over the course of generations. iJIM ‒ Vol. 17, No. 09, 2023 131 Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm A value of less than 1 means that search agents use these GWO operators to look for prey in the local area. They move their positions using the locations of alpha, beta, and delta, and then attack the prey in that direction. To solve this problem, a phase where the hunter looks for prey is added. This phase helps them diverge from each other to find prey and converge to attack prey. If the value of the coefficient vector |𝐴𝐴⃗| is greater than one, the search agents depart from the prey and search for a new prey. Likewise, the parameter C vector is helpful in avoiding local optima, whereas the C vector value changes in a range of [0, 2]. The GWO method is guided by the parameters 𝐴𝐴 and 𝐶𝐶 to find the best solutions in a global search area. The algorithmic flows of GWO are shown in Figure 2 [14]. Fig. 2. Schematic diagram of the Grey Wolves Optimization (GWO) algorithms 132 http://www.i-jim.org Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm 5 Simulation results The simulation begins by choosing the Mahmudiya area in Baghdad, which is an urban area provided with mobile phone service by Zain Iraq, where mobile phone tow- ers cover most of this area. The locations of three towers were selected and ten points were selected for mobile phone within the coverage of these three towers as a case study. The locations of the base stations and all their information, including transmis- sion frequencies are shown in Table 1. Table 1. Base Stations Information base station name Cell ID Antenna Height Azimuth RF plan Latitude RF plan Longitude TX power dBm Frequency (base station to phone) MHz base sta- tion 1 22085 24 0 33.068306 44.353611 42 2112.4 22086 24 120 33.068306 44.353611 42 2112.4 22088 24 0 33.068306 44.353611 42 2117.4 22089 24 120 33.068306 44.353611 42 2117.4 Base sta- tion 2 22205 21 0 33.064167 44.347806 42 2112.4 22206 21 120 33.064167 44.347806 42 2112.4 22207 21 240 33.064167 44.347806 42 2112.4 22208 21 0 33.064167 44.347806 42 2117.4 22209 21 120 33.064167 44.347806 42 2117.4 22200 21 240 33.064167 44.347806 42 2117.4 base sta- tion 3 24015 40 30 33.072711 44.340977 45 2112.4 24016 40 110 33.072711 44.340977 45 2112.4 24017 40 220 33.072711 44.340977 45 2112.4 24018 40 30 33.072711 44.340977 45 2117.4 24019 40 110 33.072711 44.340977 45 2117.4 24010 40 220 33.072711 44.340977 45 2117.4 43348 40 30 33.072711 44.340977 45 939 43349 40 110 33.072711 44.340977 45 939 43340 40 220 33.072711 44.340977 45 939 Table 2 shows the real locations of the ten points and the strength of the signal re- ceived from the three towers at each point. iJIM ‒ Vol. 17, No. 09, 2023 133 Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm Table 2. RSSI and locations for the ten points Points Latitude Longitude RSSI from Bs1 RSSI from Bs2 RSSI from Bs3 1 33.073621 44.342534 -86 -88 -50 2 33.073813 44.344936 -83 -87 -62 3 33.073521 44.34757 -83 -88 -66 4 33.072756 44.347574 -78 -85 -68 5 33.072059 44.346653 -78 -84 -67 6 33.068062 44.353722 -32 -80 -80 7 33.068145 44.353269 -38 -78 -80 8 33.068218 44.352761 -58 -76 -77 9 33.068318 44.35187 -54 -77 -77 10 33.068849 44.347467 -74 -74 -72 The GPS uses the geographical coordinate system, represented as longitude and lat- itude in degrees. They will need to be converted to the Cartesian coordinate system, represented as X and Y in meters, to be able to work with propagation models by Uni- versal Transverse Mercator system (UTM). The location of the study area is in the UTM region 38 S. The BSs and the 10 locations GPS and UTM systems are shown in Table 3. Table 3. The Cartesian coordinates of base stations and data set points - Latitude Longitude X Y BS1 33.068306 44.353611 439663.081725295 3659045.09468529 BS2 33.064167 44.347806 439118.356885490 3658589.57847897 BS3 33.072711 44.340977 438486.810374515 3659540.78299333 1 33.073621 44.342534 438632.775096279 3659640.75839279 2 33.073813 44.344936 438857.112199104 3659660.64287148 3 33.073521 44.347572 439102.956446940 3659626.73837601 4 33.072756 44.347574 439102.616090237 3659541.92600573 5 33.072059 44.346653 439016.167656478 3659465.18816862 6 33.068062 44.353722 439673.276659839 3659017.98004523 7 33.068145 44.353269 439631.047385331 3659027.44212766 8 33.068218 44.352761 439583.677308785 3659035.82739645 9 33.068318 44.351870 439500.574176809 3659047.42684147 10 33.068849 44.347467 439089.936587933 3659108.84130624 Calculating The geographical locations of these points are carried out by calculating the distance between each point and the three towers, which is done by calculating the bath loss using a specific propagation model. The HATA model and the UMTS model are used to calculate the distances. The UMTS propagation model applied Eq. 2 to cal- culate the path loss. It was calculated by compensating for the values of transmission frequency, sector height of the BS and the height of the MS, the distances between BSs with test drive location is as shown in Table 4. 134 http://www.i-jim.org Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm Table 4. The distance between BSs with test drive location by UMTS Model Locations Distance to BS1 Distance to BS2 Distance to BS3 1 1211.98389697747 1174.86214584500 173.268751549786 2 1002.48819499313 1104.63885635854 392.039814717416 3 1002.48819499313 1174.86214584500 514.675487981598 4 730.662182592309 976.533452323594 589.705447699909 5 730.662182592309 918.164569167164 550.914638633207 6 39.8089173041653 717.553271296855 1334.27413994897 7 58.1856018602227 634.338335295869 1334.27413994897 8 206.189279184533 560.773868257464 1087.90904267956 9 160.094337205059 596.422972451485 1087.90904267956 10 567.317943520372 495.740701488213 774.173764159965 The path loss calculated by HATA model depends on transmitting frequency and the height of the BS, in addition to the height of the MS as salaried in Eq. 4. The distance between the MS and the BS has been calculated by the effect of the path losses in the HATA model as shown in the Table 5. Table 5. The distance between BSs with test drive location by HATA Model Locations Distance to BS1 Distance to BS2 Distance to BS3 1 1237.53185264287 1272.50765799708 174.906022094533 2 1088.38698774546 1195.07752374670 417.484415963651 3 1088.38698774546 1272.50765799708 510.308823588822 4 789.497443834152 989.926841894347 623.772015133808 5 789.497443834152 989.926841894347 583.393541621975 6 41.1690354002141 770.097646284784 1302.36541034995 7 64.5321818939915 679.230444863765 1302.36541034995 8 204.990509529821 599.085063375480 1139.21137795027 9 169.072972187161 637.900316748443 1139.21137795027 10 572.688042799748 528.396387225530 762.462863424050 The propagation models show high difference in the distance because of the different scenarios to calculate the distance. However, the models are empirical models and de- pend on the region and the environment. For that the gray wolf optimization algorithm have been implemented in all result to have the estimated locations with high accuracy. The GWO algorithm is used to estimate the location from the distance between the BSs and the MS that results in Table 6. The GWO is based on the service base station (BS1, BS2, or BS3) that has the strongest RSS. The GWO depends on the number of search agents and number of iterations. In the GWO program, the number of search agents is equal to 30 and 1000 iterations have been selected to give higher accuracy results. iJIM ‒ Vol. 17, No. 09, 2023 135 Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm Table 6. The GWO algorithm estimation Locations Loc. UMTS model HATA model Latitude Longitude Latitude Longitude 1 33.07271547 44.34182249 33.07271351 44.34145112 2 33.07272835 44.34426836 33.07272293 44.34323816 3 33.07272821 44.34424187 33.07272278 44.34320938 4 33.07274452 44.34735026 33.07274603 44.34763803 5 33.07162519 44.34674770 33.07274391 44.34723349 6 33.06811094 44.35361243 33.06886998 44.35360688 7 33.06735415 44.35361796 33.06767106 44.35361564 8 33.06789776 44.35144476 33.06733663 44.35153607 9 33.06872695 44.35210836 33.06883565 44.35239849 10 33.06800528 44.34766839 33.06920172 44.34856219 The GWO algorithm results on the geographical map of the study area. The Matlab program was linked with the Google Earth Pro program. The Figures 3 and 4 show the locations of the estimated points in different propagation models for test drive locations of the 10 locations. Fig. 3. GWO with UMTS Model 136 http://www.i-jim.org Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm Fig. 4. GWO with HATA Model The root mean square error (rmserror) for the GWO algorithm with three propagation models is shown in Table 7. The distance error is close to gathered for the three propa- gation models. The HATA model gives in all locations an error higher than the other two propagation models. Table 7. The rmserror for the GWO with UMTS and HATA models Loc. UMTS Model HATA Model 1 120 143 2 135 199 3 323 417 4 21 6 5 49 93 6 12 90 7 94 62 8 128 150 9 51 76 10 95 109 6 Conclusion A driving test was conducted in Mahmudiya, an urban area equipped with a mobile phone service from Zain Iraq. The locations of three communication towers were se- lected in this area. The signal received from these towers was measured at 10 points. Calculating the distance between each point with the three towers was by calculating the path losses between the point and the tower using the HATA propagation model and the UMTS propagation model. Determining the location using the two diffusion models differs due to the different analysis of the received signal. We conclude from iJIM ‒ Vol. 17, No. 09, 2023 137 Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm this that the accuracy of the position analysis depends not only on the appropriate dif- fusion model, but also on the accuracy of the measurements of the received signal. 7 References [1] NOAA, "Small Entity Compliance Guide," no. 978, pp. 13–16, 2004. [2] W. M. Hashim and A. H. Sallomi, "Broadband Microstrip Antenna for 2G/3G/4G Mobile Base Station Applications," Al-Qadisiyah Journal for Engineering Sciences, vol. 11, no. 2, pp. 165-175, 2018. https://doi.org/10.30772/qjes.v11i2.550 [3] Y. Y. Al-Aboosi, A. Z. Sha’ameri, and A. H. Sallomi, "Enhancement signal detection in underwater acoustic noise using level dependent estimation time-frequency de-noising technique," Journal of Marine Engineering & Technology, vol. 19, no. 1, pp. 1-14, 2020. https://doi.org/10.1080/20464177.2018.1508810 [4] N. Alseelawi, H. T. Hazim, "A Novel Method of Multimodal Medical Image Fusion Based on Hybrid Approach of NSCT and DTCWT," International Journal of Online & Biomedical Engineering, vol. 18, no. 3, 2022. https://doi.org/10.3991/ijoe.v18i03.28011 [5] J. Kim, "Non-line-of-sight error mitigating algorithms for transmitter localization based on hybrid TOA/RSSI measurements," Wireless Networks, vol. 26, no. 5, pp. 3629-3635, 2020. https://doi.org/10.1007/s11276-020-02285-4 [6] D. K. Taher and A. H. Sallomi, "Proposed model for interference estimation in code division multiple access," TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 16, no. 6, pp. 2549-2556, 2018. https://doi.org/10.12928/telkomnika.v16i6.10330 [7] C.-S. Chen, "Artificial neural network for location estimation in wireless communication systems," Sensors, vol. 12, no. 3, pp. 2798-2817, 2012. https://doi.org/10.3390/s120302798 [8] C.-S. Chen, Y.-J. Chiu, and J.-M. Lin, "Hybrid ToA/AoA schemes for mobile location in cellular communication systems," International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC), vol. 1, no. 2, pp. 54-64, 2010. https://doi.org/10.5121/ijasuc.2010. 1205 [9] A. H. Sallomi, "Safety Distance and Power Density Calculations for GSM Communication Systems," Journal of Engineering and Sustainable Development, vol. 15, no. 2, pp. 63-73, 2011. [10] G. A. Aramice and J. Q. Kadhim, "Secure Code Generation for Multi-Level Mutual Authentication," TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 16, no. 6, pp. 2643-2650, 2018. https://doi.org/10.12928/telkomnika.v16i6.10437 [11] R. Asgarnezhad, S. S. A. Majeed, Z. A. Abbas, and S. S. Salman, "An Effective Algorithm to Improve Recommender Systems using Evolutionary Computation Algorithms and Neural Network: Using Evolutionary Computation Algorithms and Neural Networks, an Effective Algorithm to Improve Recommender Systems," Wasit Journal of Computer and Mathematics Science, vol. 1, no. 1, pp. 27-35, 2022. https://doi.org/10.31185/wjcm.Vol1. Iss1.20 [12] I. A. Aljazaery, and M. R. Aziz, "Combination of Hiding and Encryption for Data Security," International Journal of Interactive Mobile Technologies, vol. 14, no. 9, pp. 34-47, 2020. https://doi.org/10.3991/ijim.v14i09.14173 [13] K.-T. Feng, C.-L. Chen, and C.-H. Chen, "GALE: an enhanced geometry-assisted location estimation algorithm for NLOS environments," IEEE Transactions on Mobile Computing, vol. 7, no. 2, pp. 199-213, 2007. https://doi.org/10.1109/TMC.2007.70721 138 http://www.i-jim.org https://doi.org/10.30772/qjes.v11i2.550 https://doi.org/10.1080/20464177.2018.1508810 https://doi.org/10.3991/ijoe.v18i03.28011 https://doi.org/10.1007/s11276-020-02285-4 https://doi.org/10.12928/telkomnika.v16i6.10330 https://doi.org/10.3390/s120302798 https://doi.org/10.5121/ijasuc.2010.1205 https://doi.org/10.5121/ijasuc.2010.1205 https://doi.org/10.12928/telkomnika.v16i6.10437 https://doi.org/10.31185/wjcm.Vol1.Iss1.20 https://doi.org/10.31185/wjcm.Vol1.Iss1.20 https://doi.org/10.3991/ijim.v14i09.14173 https://doi.org/10.1109/TMC.2007.70721 Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm [14] H. T. Hazim, "Secure Chaos of 5G Wireless Communication System Based on IOT Applications," International Journal of Online & Biomedical Engineering, vol. 18, no. 12, 2022. https://doi.org/10.3991/ijoe.v18i12.33817 [15] S. A. Albanee, "Smart Antenna Adaptive Beam Forming Base on Neural Network with Different Training Algorithims," Journal of Engineering and Sustainable Development, vol. 20, no. 03, pp. 2520-0917, 2016. [16] J. Kh-Madhloom, "Dynamic Cryptography Integrated Secured Decentralized Applications with Blockchain Programming," Wasit Journal of Computer and Mathematics Sciences, vol. 1, no. 2, pp. 21-33, 2022. [17] A. H. M. Alaidi, A. S. Abdalrada, and F. T. Abed, "Analysis the Efficient Energy Prediction for 5G Wireless Communication Technologies," International Journal of Emerging Technologies in Learning (iJET), vol. 14, no. 08, pp. 23-37, 2019. https://doi.org/10.3991/ ijet.v14i08.10485 [18] A. A. Adeyelu, O. J. Onah, and I. J. Orban, "An Enhanced-Received Signal Strength Technique for Estimating Mobile Station Position in Wireless Sensor Networks," Communications, vol. 7, pp. 32-38. https://doi.org/10.5120/cae2020652861 [19] G. Abd Al Kareem, "Factors Controlling MIMO Channels Capacity," Journal of Engineering and Sustainable Development, vol. 17, no. 1, pp. 182-199, 2013. [20] H. T. Salim, Enhancement of the MIMO-OFDM Technologies. California State University, Fullerton, 2013. [21] A. S. Mohamad, "Data encryption for bank management system: Data encryption for bank management system," Wasit Journal of Computer and Mathematics Sciences, vol. 1, no. 4, pp. 14-20, 2022. [22] O. H. Yahya , and I. A. Aljazaery, "Reducing the data rate in internet of things applications by using wireless sensor network," International journal of online and biomedical engineering, Article vol. 16, no. 3, pp. 107-116, 2020. https://doi.org/10.3991/ijoe.v16i03. 13021 [23] J. Q. Kadhim, "Enhancement of Online Education in Engineering College Based on Mobile Wireless Communication Networks and IOT," International Journal of Emerging Technologies in Learning (iJET), vol. 18, no. 02, 2023. https://doi.org/10.3991/ijet.v18i01. 35987 [24] M. Al Hallak, M. S. Safadi, and R. Kouatly, "Mobile positioning technique using signal strength measurement method with the aid of passive mobile listener grid," in 2006 2nd International Conference on Information & Communication Technologies, 2006, vol. 1: IEEE, pp. 105-110. [25] P. Van Rooyen, M. N. Lötter, M. Lötter, M. P. Lötter, and D. van Wyk, Space-time processing for CDMA mobile communications. Springer Science & Business Media, 2000. [26] O. Adeyelu, and I. J. Orban, "An Improved Hybrid Framework for Evaluating a Mobile Device Location in a Wireless Network," Int. J. Comput. Appl, vol. 174, no. 23, pp. 7-14, 2021. https://doi.org/10.5120/ijca2021920868 [27] U. Mobile, "Tr 101 112," Environment, pp. 1-80, 1997. [28] H. Holma and A. Toskala, WCDMA for umts: hspa evolution and lte. john Wiley & sons, 2007. https://doi.org/10.1002/9780470512531 [29] S. M. M. S. Mirjalili, and A. Lewis, "Grey Wolf Optimizer,," Adv. Eng. Softw, vol. 69, pp. 46-61, 2014. https://doi.org/10.1016/j.advengsoft.2013.12.007 [30] R. Rajakumar, J. Amudhavel, P. Dhavachelvan, and T. Vengattaraman, "GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks," Journal of computer networks and communications, vol. 2017, pp. 1-10, 2017. https://doi.org/10.1155/2017/7348141 iJIM ‒ Vol. 17, No. 09, 2023 139 https://doi.org/10.3991/ijoe.v18i12.33817 https://doi.org/10.3991/ijet.v14i08.10485 https://doi.org/10.3991/ijet.v14i08.10485 https://doi.org/10.5120/cae2020652861 https://doi.org/10.3991/ijoe.v16i03.13021 https://doi.org/10.3991/ijoe.v16i03.13021 https://doi.org/10.3991/ijet.v18i01.35987 https://doi.org/10.3991/ijet.v18i01.35987 https://doi.org/10.5120/ijca2021920868 https://doi.org/10.1002/9780470512531 https://doi.org/10.1016/j.advengsoft.2013.12.007 https://doi.org/10.1155/2017/7348141 Paper—Improving Mobile Location Prediction Using the Grey Wolf Optimization Algorithm [31] A. I. Mohsin, A. S. Daghal, and A. H. Sallomi, "A beamforming comparative study of least mean square, genetic algorithm and grey wolf optimization algorithms for multipath smart antenna system," TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 18, no. 6, pp. 2911-2920, 2020. https://doi.org/10.12928/telkomnika.v18i6.16970 8 Authors Baseem G. Nsaif, Master student in Electrical Engineering Department, College of Engi- neering, Mustansiriyah University, Baghdad, Iraq. Adheed H. Sallomi, Prof. Dr. in Electrical Engineering Department, College of Engineer- ing, Mustansiriyah University, Baghdad, Iraq. Article submitted 2023-02-11. Resubmitted 2023-03-26. Final acceptance 2023-03-29. Final version pub- lished as submitted by the authors. 140 http://www.i-jim.org https://doi.org/10.12928/telkomnika.v18i6.16970